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Suppose that the evolution of some large, isolated system is Hamiltonian, but that one is interested
only in the evolution of a smaller piece of the system, i.e., a subsystem. Alternatively, suppose that one is
interested in the evolution of two halves of a single Hamiltonian system, but that one is not interested in
the details of their mutual interaction. It is well known that, in either case, if the degrees of freedom of
the two pieces are not completely decoupled, an exact reduced description of the individual components
cannot be Hamiltonian. It is, however, shown here that, if one only allows for the average effects of each
piece on the other, neglecting detailed correlations between the two components in a generalized self-
consistent field approximation, one is always led to an approximate reduced description which is Hamil-

tonian.

PACS number(s): 05.20.Dd, 98.10.+z, 98.80.Hw

I. INTRODUCTION

It is, perhaps, reasonable to expect that the “funda-
mental” description of an isolated, or nearly isolated, sys-
tem, e.g., the stars within a galaxy, or the Universe as a
whole, is Hamiltonian. However, for any of a number of
reasons, one may not be interested in all of this isolated
system. One might, for example, be concerned only with
some small piece of the system, the ‘“‘subsystem,” in-
teracting with the remainder of the system, which serves
as an environment or bath.” Alternatively, one might be
concerned with the two separate halves of some interact-
ing system, but not with the details of their mutual in-
teraction.

Concrete examples of interest in astrophysics and
cosmology might include the following: (1) the evolution
of a single dilaton mode during the epoch of inflation,
which is coupled somehow to the rest of the Universe,
which plays the role of a bath; (2) the coupling of some
mode of a quantum field to the rest of the Universe, and
the problem of decoherence; (3) the motion of a single
test star within a galaxy comprised of many other field
stars; (4) the coupling of some galaxy of a surrounding
environment, e.g., the other galaxies within some rich
cluster; (5) the interaction of charged particles via an
electromagnetic field, where one is interested in the distri-
bution functions for the particles and for the electromag-
netic field, but not in correlations between the particles
and the field.

It is well known that, if one considers a reduced
description for a subsystem, or for the two halves of a sin-
gle interacting system, that description will no longer be
Hamiltonian [1]. This is important because a Hamiltoni-
an evolution, which incorporates conservation of phase
(i.e., Liouville’s theorem), is much more constrained than
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a non-Hamiltonian evolution, which will in general be
dissipative (or antidissipative) [2]. Whether or not a
Hamiltonian description is desirable may depend on the
physical setting which one envisions. However, it is of
some interest to determine quite generally whether there
exists some reasonable, controlled approximation in
which the exact reduced description can be approximated
as Hamiltonian.

The objective of this paper is to answer that question in
the affirmative. Specifically, it will be shown quite gen-
erally that, if one implements a generalized self-consistent
field approximation (S.C.F.A.), allowing only for the
‘“‘average” interactions between the pieces of the system,
one can always extract a reduced description that is
Hamiltonian. In other words, every mean field descrip-
tion of a Hamiltonian system is itself Hamiltonian.

That this is the case will be demonstrated by an explicit
construction. The starting point is the formulation of a
general Hamiltonian appropriate for two interacting sys-
tems, written in terms of the basic physical degrees of
freedom. These degrees of freedom can be more or less
anything, from individual particles to collective degrees
of freedom to the modes of a field. For specificity, in
what follows they will be denoted “particles.” For sim-
plicity, it will also be assumed that the degrees of free-
dom are countable, but this is not essential, at least for-
mally.

Given such a Hamiltonian, the analysis will be formu-
lated in terms of a statistical description, the fundamental
object being taken as a classical many-particle distribu-
tion function, which is assumed to satisfy an appropriate
many-particle Liouville equation [3]. However, one
could work equally well in terms of a quantum wave
function that satisfies a quantum Liouville equation [4] or
a many-particle Wigner function which satisfies a gen-
eralized transport equation [5]. In each case, the basic
conclusion would be the same.

The content of the self-consistent field approximation,
which leads to a Hamiltonian description, is simply that
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the many-particle distribution function for the two pieces
of the composite system may be approximated as factor-
izing into a product of reduced distribution functions for
the two pieces. It is therefore clear that the construction
can also be generalized trivially to the case of more than
two interacting systems. For example, the standard
Vlasov-Poisson system of plasma physics or galactic dy-
namics [6] corresponds to a special case where one con-
siders each of N particles as an individual system and
treats the interaction between the particles in a self-
consistent field approximation.

II. CONSTRUCTION

Let {g,,p,} denote canonical coordinates for the
“subsystem” and {x;,v;] canonical coordinates for the
“bath.” The fundamental object in a statistical descrip-
tion is then an (N +n)-particle distribution function y, so
defined that

p(gyspys - .»t)dgidp, - - - dgydpydx,

dvl ---dx,,dv,, E,u({qA:pA}’{xhvi})drqdrx (1)

1 X 15Uy« o

represents the joint probability of finding the subsystem
particles in elements dp ,dq, around specified points
(g 4,p 4) and the bath particles in elements dx;dv; around
points (x;,v;). The quantities dI"; and dT', denote, re-
spectively, the natural phase space volume elements for
the system and bath; i.e.,

N N
ar,= 1 dqdp, and dI“x=H1dxidv,- . (2)
A=1 i=

The evolution of p is assumed generated from a Hamil-
tonian

HZHS({qA,pA],t)+HB({x,-,U,-},t)
+H;({q 4,04}, {xp0:058) (3)

so that the (N +n)-particle Liouville equation takes the
form

w5 |OH o OH
o =, |94 99, g, 9p,
© [0H o BH op |_ou _
- - = —[H,u]=0, 4
+i§] dv; dx;  Ox; dv; ot [H.p] @
where
N da b da 0db
a,b]= -
[a:b) 12'1 994 dp, Op, 9q,
43 [2a 00 a0 b 5
<, | ox; dv; dv; IAx;

denotes Poisson brackets.

Although p is the fundamental object in the statistical
description, it is assumed that one is actually more in-
terest in the evolution of f and g, the reduced distribution
functions for the subsystem and bath, which are defined
respectively by integrating over the degrees of freedom of
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the bath and the subsystem:

f({qA’PA}?t)Efdrx.u’({qA’pA}’{xi’vi}vt) (6)
and
g([xi’vi}>t)5fdrq:u’({qA’pA}7{xi’vi}7t) . 7

It is straightforward to derive equations for df /3t and
og /0t. Thus, for example, by integrating Eq. (4) over
the degrees of freedom of the bath, one finds that

of 5 |OHs of BHs of
o 2, |94 3q, 3q, Opy
3H 3H
+fdr, | T
94 9q, 99, 9p,

and, similarly, an integration of the degrees of freedom of
the subsystem yields

% & |%Hs og  OHp g
ot +i§1 dv; Ox;  Ox; Oy,
o0H; 3 o0H; 3
+deq dv; 9x; Ox; dv; 0. ©

In general, Egs. (8) and (9) do not yield simply a cou-
pled system for the reduced distributions f and g, because
the full many-particle u does not factorize exactly into a
product fg. Rather, there will exist nontrivial correla-
tions between the subsystem and the bath. To make this
explicit, it is convenient to write g in the form

BUG4p 4} [x550:58)
=f({gp4}08 (x50, ),0)+p, . (10)

The physical content of this decomposition is immediate:
If there exist no correlations between the subsystem and
bath, the joint probability for the subsystem to have
specified {q,,p 4] and for the bath to have specified
{x;,v;} will be given as the product fg of the individual
probabilities f and g. If, however, correlations are
present, the joint probability will not factorize exactly,
and one can define u,. as representing the statistical
effects of these correlations on the joint probabilities.

If H; vanishes identically, it is mathematically con-
sistent to assume a complete absence of correlations: If
no correlations are present initially, none will ever be
generated by the dynamics. However, if H; is nonzero,
even a state without initial correlations will immediately
develop correlations because of the coupling between sub-
system and bath.

By writing p in the form (10), Egs. (8) and (9) can be
rewritten in a fashion which exhibits explicitly the effects
of the correlations. Specifically, one has
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3f({qapa}st) | N |3Hs ar OH, af 3(H,(q,p)) ar 3{H/gp)) af
ot iz1 |94 %94 39, 3p, Py 994 9,4  9py
N O0H; ou, O0H; du,
=— 3 [far, |t Fe ¥ o )
A=1 dp, 994 09, 9p,
and
ag({x,-,v,‘},t)+ n |8Hp ag O3Hp 3g 3(H;(x,v)) 3¢ _a(HI(x,v)) ag
ot £ | ov; ox;  Ox; v, v, ox; ox; ;
z aI{I a:u'c a}II a.u'c
[ p— J— = 1
z'lfdrq dv; dx; Ox; O, 0, (12
[
where equivalent to the coupled system
(Hy(g,p))= [ dT,g({x;,0,},0) %-}-PLfg:—PL‘uC (16)
XHI({xhvi]’{qupA},t) (13) and
d o,
an —:—+(1—P)Lyc=—(l—P)Lfg . (17)
(Hy(x,0))= [dT,f((g4.p4}:0 '
However, it is straightforward to solve Eq. (17) formally
XH({x;,0;},{q4:P4}51) - (14) o yield u, as a functional of fg at retarded times <t¢, and

Note that the quantities (H;(q,p)) and (H;(x,v))
represent, respectively, the “average” interaction Hamil-
tonians responsible for the evolution of the subsystem
and the bath.

If the Hamiltonian H is sufficiently simple, correspond-
ing, e.g., to a coupled set of oscillators, one can proceed
immediately to solve for u, as a functional of f and g to
formulate a close, albeit nonlocal, system of equations for
f and g [7]. If the Hamiltonian is more complicated, this
is not as easily done. However, there still exist various
ways in which one can proceed to derive nonlocal equa-
tions for f and g, including the introduction of time-
dependent project operators. As discussed more carefully
elsewhere [8], the idea is quite simple.

Suppose that one has a projection operator P(t), to
chosen that (i) P projects out from p the uncorrelated
product fg and (ii) the operations of projection and time
evolution commute when acting on y, i.e.,

- p_ 39
Pu=fg andPat at(P;L).

The single Liouville equation ou/dt+Lu=0 is then

(15)

then substitute that solution back into Eq. (16). The net
results is an equation of the form

2 1 pLig=—PL19(1,01.0)

—PWL() [ d7 9t,n[1—P(7)]

XL(r)f(r)g(r), (18)
where, in terms of a time ordering 7,
L)
Sty t)=Texp |~ [ “dt;[1—P(13)]L(1;) (19)
1

One possible choice for P(t) is the simple integral opera-
tion

P(O)=f({g4,p4},1) [ dT,+g({x;,v,},0) [ dT,
_f({qA’pA}’t)g({xivi}’t)fdrqfdrx .

If one integrates Eq. (18) over the degrees of freedom
of the bath, and indulges in some straightforward, albeit
tedious, manipulations, he or she concludes that

(20)

af({qA,pA},t>+§ OHs 3f OHs 3f +6(H1(q,p)> af _(H,lg.p)) af
ot iZi |94 9g, dq, 9dp, ap 4 9q 4 9q 4 ap 4
=—de‘x[l—P(t)]L(t)Q(t,T)y.c(O)—foldrfd[‘xA(t)g(t,T)A(T)f(T)g(T), @1
where

-5 90 rpy _ 9 9
A § 34, [H; <H1(q,P)>]apA +§ ax, (H;—(H;(x,v))]

9

3 (22)

i
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An analogous integration over the degrees of freedom of the subsystem then yields

o(H,(x,v)) g

3(H,(x,0)) 3g

ag([x,-,v,»},t)+ n aHB ag _aHB ag +
at “~ dv;, Ox; dx; v, ov;

=1 i I i i i

=— [dT,[1-P(O]L(1)S(t, T (0)—

Equations (21) and (23) demonstrate explicitly that p,
can be eliminated from the evolution equations for f and
g, but only at the expense of allowing for a nonlocal
description. They also show that, aside from the propa-
gation of any nontrivial initial conditions p,(0), the
effects of correlations are quadratic in A, which involves
the difference between the true interaction Hamiltonian
H; and the average values (H;(q,p)) and (H,(x,v)). It
thus follows that, to the extent that no significant initial
correlations are present and that A can be treated small,
i.e., that the differences between the true and the average
Hamiltonians are small, the right hand sides of Egs. (21)
and (23) can be neglected, so that one recovers a coupled
system of equations involving only f and g. The self-
consistent field approximation corresponds precisely to
assuming that A=p . (0)=0.

There is no guarantee that this approximation is
justified. However, there are certain cases in which one
may be able to argue that the correlations are weak, so
that u, and A can be ignored. For example, if one as-
sumes initial conditions without detailed correlations,
ie., an assumption of initial molecular chaos
(Boltzmann’s Stofzahlansatz [9]), one may be able to ar-
gue that, at least for sufficiently short time scales, correla-
tions will be relatively unimportant. The idea here is that
the “average” effects of the bath on the subsystem, and
vice versa, are presumably collective in origin, whereas
the correlational effects involve noncollective processes.
The crucial point, then, is that the natural time scale as-
sociated with the collective processes will typically be
much shorter than the time scale for noncollective pro-
cesses. This is, for example, the motivation for the
Vlasov approximation in a plasma or for a self-
gravitating system of stars [10].

What remains to be shown now is that, if one assumes
1. =0, he or she is led to an approximate reduced
description which is necessarily Hamiltonian. There are
a number of different ways in which, for some dynamical
system, one can effect a Hamiltonian formulation.
Perhaps the most general way, and the way which will be
used here, is to proceed at a formal algebraic level, which
manifests the symplectic character of the evolution. This
will be done through an explicit construction, which en-
tails the identification of a cosymplectic structure (i.e., a
generalization of the ordinary Poisson brackets) and a
Hamiltonian function [11].

The idea is in fact straightforward. Suppose that the
fundamental dynamical variables are the distribution
functions f and g, defined in an appropriate infinite-
dimensional phase space. The object then is to identify
Lie brackets {A,B}, acting on pairs of functionals
Alf,g] and B[f,g], and a Hamiltonian #[f,g], so

ox;

; ax; v,

[ldr [dT 081, DADf (g(r) . (23)

f

chosen that the evolution equations for f and g reduce re-
spectively to

gf (%,11=0 (24)
and

g

ot +{#H.gl= (25)

The Lie brackets can be taken to be of the form

A 8B SA 5B
(A, B}= [dT,f YT + [dr [ og

(26)

where 8/8f and 6/6g denote functional derivatives and
[a,b] denotes ordinary Poisson brackets defined in the
(N +n)-particle phase space, as given by Eq. (5). This is
nothing other than the Morrison [12] brackets for the
Vlasov-Poisson system, as formulated for a two-
component system with distribution functions f and g.
Equation (26) is closely related to the more familiar
brackets

OM ON_

27
} l_]%—l Cimk i do amk @7

which generate the Lie algebra associated with the three-
dimensional rotation group, and thus play an important
role in the Hamiltonian dynamics of mechanical systems.
It is straightforward to verify that the bracket operation
(26) is antisymmetric and that it satisfies the Jacobi iden-
tity, so that it defines bona fide Lie brackets. This
implies that the equations df/dt+{#,f}=0 and
dg /0t +{#,g} =0 are Hamiltonian for any choice of
Hamiltonian function #.

Suppose now that the Hamiltonian function # is
chosen as corresponding to the “average” energy associ-
ated with the particle Hamiltonian H, i.e.,

#= [dT,dT,feH
= [dT,f({q.p4},0Hs+ [dT g({x;,v;},0)H
+ [ [dT,dT, f({q4.p4},08({x;0,},0)H, . (28)

It is then easily verified that

BFH

5f =Hs+ [dT gH,

:Hs({qA;pA}7t)+(H1(iqA)pA}’t)> (29)

and
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B8H

s —1r T far,rH,

=Hs({xi’vi}’t)+(HI({xi!vi>’t)> ’ (30)

so that one recovers the self-consistent equations in the
form

S —Hg+ (B (4.0, 1] (31)
and

g‘l =[Hyz+(H,(x,0)),g] . (32)

ITI. APPLICATIONS

A number of different applications of this general ap-
proach are easily envisioned. Supposed, as the simplest
possible example, that one is concerned with a small sub-
system embedded in a bath which, in an appropriate
sense, is large. To the extent that the subsystem has only
a minimal effect on the bath, one can assume that the
bath distribution function g is independent of the subsys-
tem and specified independently, e.g., as a thermal distri-
bution g,;,. One can then calculate the evolution of f, as-
suming that f evolves in the average Hamiltonian
Hg+(H;(g,p)) associated with gy,.

A simple generalization of that most naive approxima-
tion would entail allowing for a subsystem and bath of
comparable size, but assuming that their mutual interac-
tion is weak. In this case, one might suppose that, in the
absence of any coupling, the subsystem and bath have
specified distribution functions f, and g,, and that the
coupling induces perturbative correlations §f and 8g.

Another generalization would involve the case of a sin-
gle large self-gravitating object moving through an envi-
ronment comprised of many smaller objects. Because the
single object is large, it will presumably have a substantial
effect on the surrounding environment, so that one can-
not assume that the environment is described adequately
by a fixed distribution function g. However, one may still
expect that, at least in a first approximation, the evolu-
tion of the larger object is governed by the collective
effects of the environment, and that detailed correlations
between the larger object and its surroundings are rela-
tively small.

Perhaps the quintessential example of a mean field
description is provided by the Vlasov-Poisson system, as
applied to a plasma or a galaxy. Suppose, for example,
that one is interest in a galaxy, idealized as a collection of
N point mass objects. In this case, the natural particle
Hamiltonian takes the form

= —p_ _
iy 2m; i<j=1 |qi_qj|

(33)

It is convenient to view this as a Hamiltonian involving N
different one-particle systems and N(N —1)/2 pairings
between these systems. In this context, the self-consistent
field approximation means that u factorizes into a prod-
uct of N one-particle distributions f(q;,p;,?)=f(i). The
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natural brackets then reduce to

SA 5B
8f (i)’ 8f (i)

{A,B}= (34)

i=

N
3 [dPadp.f(i)
1

and the Hamiltonian function for the distribution func-
tions { f(i)} becomes

H= 21 fd3qzd pxz_— f
N i (DOm;f(j)
63 fdaqidapidaqjdspjﬁ%m_

i<j=1

(35)

il

For the special case in which all the particles are treated
as identical, the f(i)’s all have the same functional form,
so that one recovers the standard [13] mean field Hamil-
tonian

7{=Nfd3qd3p2Lp2f

mf(‘L Imf(q’,p") (36)

la—q'|
and the standard brackets [12,14]
= [ d30d3 £| DA 3B
(A,B)= [dqd’p f 57 of 37)

Yet another example corresponds to a collection of
charged particles interacting via electromagnetic field,
which is viewed as a collection of “oscillators.” Working
in a gauge where 4,, the time component of the vector
potential, vanishes identically, the Hamiltonian may of
course be written in the form [15]

N
H=73 [(p;—eA)*+m?]'2—4n? [ d’ka'(k)-a(k)

i=1
(38)
where, in terms of creation and annihilation operators
a(k) and a'(k),

—ik-q;

Alg)= [d*k k'[a(K)e Y +alk)e V). (39)

A more conventional description in terms of a collection
of oscillators then follows from the introduction of the
conjugate variables:

17'\/2

Qk)= [af(k)+a(k)]

and (40)
P(k)=imV2[a'(k)—a(k)] .

The fundamental object in such a description is a dis-
tribution function u({q;,p;},{Q(k),P(k)},t), defined as
a joint probability for finding the particles with specified
phase space coordinates {q;,p;} and the oscillators with
specified {Q(k),P(k)}. Suppose now for convenience
that the system is confined spatially, so that the modes
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are in fact discrete. In this case, the full distribution
function can be written in the form

N ®©
AUZHf(qi’pi’t)Hg(Qk’Pk’t)+/-Lc ’ (41)
i=1 k=1

where the f(i)’s refer to particles and the g(k)’s to the
modes of the field. The assumption that =0 then leads
to a Hamiltonian description in which the f(i)’s satisfy a
Vlasov equation and the equations for the g(k)’s imply
the dynamical Maxwell equations [16].

It should be stressed that this Hamiltonian formulation
of mean field electrodynamics is fundamentally different
from, and more general than, the Hamiltonian formula-
tion of the Vlasov-Maxwell system provided, e.g., by
Marsden and Weinstein [17]. In that approach, the fun-
damental objects are the particle distribution f and the
electromagnetic field, as characterized by electric and
magnetic field strengths, E and B, or by the vector poten-
tial A and the conjugate momentum II. Here instead the
fundamental objects are the particle distributions f (i)
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and the oscillator distributions g (k), which are used to
generate the “average” E and B entering into the conven-
tional Vlasov description. A description in terms of g (k)
permits one to compute the probability that E and B as-
sume any given value, whereas the Vlasov description in-
volves only the average values of the fields.

The preceding construction can also be generalized to
nonlinear field theories as well. Even a nonlinear field
can be decomposed, at least formally, into a sum of cou-
pled oscillators, and the neglect of all correlations be-
tween particles and/or oscillators will again lead to a
Hamiltonian mean field theory. The only potential prob-
lem in this case is that, for a strongly nonlinear theory,
there may exist no preferred mode decomposition, and
that the physical content of neglecting mode-mode corre-
lations may depend on the choice of modes.
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