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Hamiltonian of SU(2) lattice gauge theory in approximate tridiagonal form
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Employing Hamiltonian moments of SU(2) lattice gauge theory, with respect to the strong coupling

vacuum, the matrix elements of the Lanczos tridiagonal form are written down from the plaquette ex-

pansion to order 1/N~ in the number of plaquettes, N~. The consequences of this approximate tridiago-

nal form are studied by computing the vacuum energy density and the specific heat in the infinite lattice

limit, for strong to weak coupling. The results at this order appear to reach beyond the strong to weak

transition point at g, =2.0, as indicated by the peaking behavior of the specific heat, down to g =&2.

PACS number(s): 11.15.Ha, 11.15.Tk

I. INTRODUCi 1ON

With the nonperturbative study of gauge field theories
in the path integral formalism well and truly in the realm
of the supercomputer there has recently been a revival of
the Hamiltonian formalism [1—4]. Early semianalytic
calculations in Hamiltonian lattice gauge theory relied on
strong coupling perturbation theory where nonperturba-
tive information in the continuum limit was obtained by
Pade extrapolation of the strong coupling series to weak
coupling. Although from the outset reasonable results
for such quantities as the hadron spectrum were obtained

[5], the need for extrapolation undermines these calcula-
tions. More recently, the t expansion [6] was introduced
as a useful nonperturbative method of calculation in the
Hamiltonian lattice formalism. Since Hamiltonian mo-
ments are central to this method the bulk of the calcula-
tion is analytic. Results of good quality have been ob-
tained for various gauge theories [7—9]; however, the
method relies on Pade extrapolation to the t~00 limit,
in order to project out the ground state, which unfor-
tunately introduces some measure of ambiguity into the
results.

A new method which relies on connected Hamiltonian
moments without the need for extrapolation is the pla-
quette expansion [10]. Here, the Hamiltonian of lattice
models, for which the energy is extensive in the number
of plaquettes Nz, is cast into tridiagonal form as a cluster
expansion of the Lanczos basis with respect to N . This
plaquette expansion property is a general result which
was initially conjectured on the basis of direct calculation
and expansion of the first few elements of the Lanczos
matrix for general lattice models and has recently been
proved [11] for the first two terms in 1/N . The pla-
quette expansion relies on the calculation of relatively
low orders of moments of the Hamiltonian with respect
to a trial state with nonzero overlap in the sector of in-
terest. Once the Hamiltonian of a system is written down
in tridiagonal form the energy spectrum is calculated by a
straightforward diagonalization for increasing N . This
has been successfully carried out for the ground-state en-
ergy density in the infinite lattice limit for the case of the
one- and two-dimensional Heisenberg models [10,12,13]

to good accuracy.
In this work the Hamiltonian of SU(2) lattice gauge

theory is written down to order 1/Ny using Hamiltonian
moments calculated with respect to the vacuum strong
coupling state by Mathews et al. [14] (in the context of
the t expansion). From the plaquette expansion the vacu-
um energy density in the infinite lattice limit is computed
for a range of couplings. Of particular interest is the
question of the ability of the plaquette expansion to
match onto the strong coupling results [15,16] and pass
beyond the strong to weak coupling transition [15,17].

The paper is organized as follows. In Sec. II the pla-
quette expansion of the Lanczos recursion is outlined.
The Hamiltonian of SU(2) is written down in the Lanczos
tridiagonal form in Sec. III and diagonalized. Con-
clusions are drawn in Sec. IV.

a„=& u, IH I v„&, P„=& u, + ~ IH Iu„& . (2)

Calculation of the Lanczos matrix elements a„and p„ is

typically a formidable task: a direct application of the re-

cursion becomes prohibitively complex well before the
first ten or so iterations. One of the features of the Lanc-
zos construction is that for the lowest states of the system
only a small fraction of the complete set of states [ Iv„) ]
is required for convergence. In this sense the construc-
tion is optimal. However, in practice this su%cient num-

ber of states can only be constructed numerically in ma-
trix representation for small lattices (small basis sizes).
Certainly if one is interested in the bulk limit, N~~DO,
the limit n ~ 00 must also be taken, which, either due to
computational limitations or algebraic complexity is not

II. PLAQUETTE EXPANSION

By applying the Lanczos recursion with respect to
some initial trial state Iu, ),

Iu„&= [(H a, —))Iv, —&& p„zlv„2&],
n —1

a basis I I v„) ] is constructed in which the Hamiltonian H
is tridiagonal, in the sector corresponding to the sym-
metries of

I v, ), with matrix elements a„and p„:
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Q) Q2
a =N a +(n —1) +(n —1)(n —2) +n p 0 N N2

P P

b,
P„=N nbo+ n (n —1)

P

b2
+n(n —1)(n —2) +

N2

(3)

possible using the exact Lanczos recursion.
However, it is possible to make a cluster expansion of

a„and P„ in the number of plaquettes on the lattice
which has the remarkable property that the various terms
in the expansion parameter are related by a polynomial n

dependence. The plaquette expansions take on a particu-
larly simple form:

—12c3+21C2c3c4 4c 2c4 6c2c3e5+c2c64 2 2 2 2 3

b2=
12e,'

The plaquette expansion was originally inferred [10] by
direct application of the recursion up to the sixth itera-
tion. The proof to 0(l/N ) was carried out [11] using
the Hankel determinant representation of the a„and P„.
Although possible in principle, the proof has not, for
reasons for complexity, been carried out to higher order;
however, the higher terms were shown to persist to the
ninth iteration in the case of the one-dimensional Heisen-
berg model [12].

III. SU(2) LATTICE HAMILTONIAN

The Kogut-Susskind SU(2) lattice Hamiltonian in 3+1
dimensions is given by [18]

where the coeScient functions are given in terms of the
connected Hamiltonian moments (H" ),=c„N, with

respect to the trial state. The first few are

2 20= QEi+ g(2 —trU ),

ao=c&,

C3
a&=

C2

3C 3 4c2c3c4+c 2c5
3

Q2=
4c4,

bo=c2 ~

2
C2C4 C3

b, =
2c

(4)

where E& is the color electric flux operator corresponding
to the link /, trU is the magnetic flux operator corre-

sponding to the plaquette p, and g is the coupling con-
stant. In the context of t expansion, Mathews et a/. [14]
have calculated connected moments in the vacuum sector
up to (H' ), with respect to the strong coupling state as

a function of the coupling constant. Using these expres-
sions for c„, up to n=8, we find the following for the
Lanczos tridiagonal form of the SU(2) lattice Hamiltoni-
an in the vacuum sector up to order 1/N:

3 1 1 1 y (80n 249)+—76n —228
a„(y)=2yN + (n —1—)+ (n —1)(n —2)— (n —1)(n —2) +

y N 2y N2 36y'
(6!

t3„(y)=ny N —n(n —1) + n(n —1)(n —2)y 1 8y +11
2 N 6y~

1 4ys(223n —717) 4y (32—9n —933) 611n+ 1833
n(n —l)(n —2) +

N2 288y
(7)

wherey =2/g .
The Hamiltonian matrix defined by a„(y) and P„(y) is

diagonalized numerically and the lowest eigenvalue, cor-
responding to the ground state (vacuum), is examined. In
order to be able to systematically study the e8ect of in-
creasing the number of terms in the expansion and the
limit NP —+00 the following procedure is adopted. For
the plaquette expansion to order 1/NP' the lowest eigen-
value of the Hamiltonian matrix of the 1th Lanczos itera-
tion (i.e., the / X / matrix) is denoted by A,o"'(/, N&, y ). The
energy of the ground state Eo"'(N~,y ) corresponding to
the converged value of A,~"'(/, N„,y ) (always to be taken at

the minimum slope with respect to I) is computed for in-

creasing N . As expected one finds that the ground-state

energy density E~"'(N~,y )/N is finite in the infinite lat-

tice limit. We define this quality as

E,'"'(N„y)
6"0"'(y)—:lim

X ~oo
(8)

Typical behavior of the ground-state eigenvalue with
the Lanczos iteration I for the orders r =0, 1, and 2 is
shown in Fig. 1 for strong and weak coupling at large NP.
For the r =0 expansion the eigenvalue converges for all
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coupling. This is not the case, however, for the higher-
order expansions where after the transition from strong
to weak coupling (near y =1) the character of the Lanc-
zos convergence changes and a point of inflection devel-

ops indicating a breakdown of the expansion for fixed N .
As N ~ 00 the convergence region flattens out. The en-

ergy Eo"'(N~, y } is taken to correspond to the value of the
eigenvalue at the minimum slope. Any ambiguity associ-
ated with this choice will become irrelevant in the bulk
limit. The convergence of the vacuum energy density
E~"'(N~,y ) in the bulk limit N ~~ is shown in Fig. 2.

The plaquette expansion to order r =0 has been solved
exactly [19] for the energy density in the infinite lattice
limit using theorems on the bounds of the lowest zeros of
orthogonal polynomials. One finds [19]
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which from the connected moments for SU(2) gives

(9)
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The vacuum energy density in the bulk limit for each
of the expansion orders is shown in Fig. 3 together with a
Monte Carlo calculation by Chin et al. [15], which has
the correct strong and weak coupling limits, for compar-
ison. The weak coupling limit derived from the varia-
tional calculation by Hofsass and Horsley [17] is also
shown for comparison. The "specific heat"
C„—= —B~CO/By, derived from the analytic result for
r =0 [19], peaks at the correct transition point, g, =2.0
[7]. The results for the energy density at order r =0 be-

gin to diverge just past the transition point, whereas the
higher orders r=1,2 tend to match the weak coupling
behavior further. In general the plaquette expansion re-
sults will diverge from the exact result at a coupling
where the overlap of the trial state with the true ground
state becomes small. The nature of the departure from
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FIG. 1. Ground-state eigenvalue density A,0'(I Np y ) /Np as a
function of Lanczos iteration, I, for various couplings (a) r=0
expansion (Np =1000), (b) r =1 expansion (Np =2000), and (c)
r =2 expansion (Np =6000).

0.50
10

l

10'
Number of plaquettes N,

I

10

FIG. 2. Behavior of the r =2 expansion ground-state energy
density, E0 '(Np, y)/Np in the large lattice limit, for various
couplings.



2296 LLOYD C. L. HOLLENBERG 50

3.5

3.0-
r=0
r= 1

r=2

2.5—

2.0-

1.5-

1.0—

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

the exact result will be difFerent for each expansion order.
One would expect that as the expansion order is in-
creased the deviations from the exact result would occur
further into the weak coupling region and be less dramat-
ic than that of the lower orders calculated here. In this
regard the behavior of the r =2 expansion near y =1.5 is
somewhat surprising; however, this should not be viewed
as a problem with the method so much as a lack of un-
derstanding of the method; particularly as this behavior
might be rectified at higher orders.

FIG. 3. The large lattice limit of the vacuum energy density,
80'(y) for r=0, 1, and 2 expansion orders. The short-dashed
line corresponds to the calculations by Chin et al. [15] and the
horizontal long-dashed line corresponds to the weak coupling
limit calculated by Hofsass and Horsley [17].

IV. CONCLUSION

In this work the Hamiltonian of SU(2) has been cast
into approximate tridiagonal form in the vacuum sector
and diagonalized for the vacuum energy density in the
bulk limit. On the whole, the results demonstrate that
the plaquette expansion method to the order considered
here is able to describe the physics of the vacuum at the
strong to weak transition and just beyond. In principle,
one expects the results to be improved by increasing the
plaquette expansion order andlor choosing a better trial
state (as was done in the calculations of Chin et al. [15]).
In the calculations carried out here the r =1 results are
clearly an improvement over the analytic r=0 result.
However, the next order is, if anything, worse than the
r=1 result. This may be a potential problem for the
method as it might signify that no systematic improve-
ment of the results is possible. On the other hand, the
convergence of the plaquette expansion with expansion
order may not necessarily be monotonic. In any case,
higher orders of Hamiltonian moments are required to
approximate the weak coupling behavior of the theory
and so convergence of the method may still occur at
higher orders in the expansion. While the accuracy of
the results presented here is not quite of the caliber of the
t expansion or Monte Carlo calculations, the method
used here is simpler and, since it is semianalytic and not
dependent on extrapolation, is to a large extent cleaner.
Furthermore, this framework allows for the calculation
of excited states and so physically interesting quantities
such as glueball masses and the string tension could be
calculated by diagonalizing the plaquette expansion in
the relevant sector. As such, further work on this
method, particularly with regard to gauge field theories,
is merited.
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