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Two-loop renormalization group equations for soft supersymmetry-breaking couplings
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We compute the two-loop renormalization group equations for all soft supersymmetry-breaking cou-
plings in a general softly broken N =1 supersymmetric model. We also specialize these results to the
minimal supersymrnetric standard model.
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I. INTRODUCTION

In the standard model, the mass of the Higgs scalar bo-
son is subject to quadratically divergent radiative correc-
tions which ought to be of order 5mH —A, where A is an
ultraviolet cutofF scale. This presents a naturalness prob-
lem if A ))mH, since fine tuning is then necessary to ex-
plain why the Higgs-boson mass is near the electroweak
scale. Low-energy supersymmetry [1] evades this natu-
ralness problem because the quadratic divergences can-
cel. To accomplish this, the minimal supersymmetric
standard model (MSSM) introduces a "sparticle" partner
for each standard model particle. If supersymmetry were
exact each sparticle would be degenerate in mass with its
standard model partner, which is certainly not the case
experimentally, so supersymmetry must be broken. For-
tunately, the cancellation of quadratic divergences still
works if supersymmetry is broken softly [2] by terms of
dimension 2 and 3 in the Lagrangian. The masses of the
sparticles are then determined by the soft
supersymmetry-breaking terms.

Because low-energy supersymmetry is a perturbative
solution to the naturalness problem, one can attempt to
relate observed phenomena at low energies to physics at
very high energy scales. For example, it is remarkable
that in the MSSM the three gauge couplings appear to
unify [3] at a scale 10' —10' GeV, hinting at a grand
unified theory (GUT) or some other organizing principle
such as string theory. With the eventual discovery of the
sparticles and determination of their masses, we should
gain information about the soft supersymmetry-breaking
parameters. Already we know that these parameters are
not at all arbitrary, because otherwise large flavor-
changing neutral currents would arise in the low-energy
physics due to the effects of loops containing squarks, and
the arbitrary complex phases of the soft supersymmetry-
breaking terms would be expected to give rise to a CP-
violating electric dipole moment for the neutron in viola-
tion of experimental bounds. Thus there is strong cir-
cumstantial evidence in favor of some organizing princi-
ple governing the soft supersymmetry-breaking terms.

Models obtained from supergravity [4] can provide just
such an organizing principle for the soft supersymmetry-
breaking terms specified at some very high input scale.
In minimal supergravity, the spinless particles in the
theory all obtain a common mass mo at this input scale.

In this scenario, the absence of large favor-changing neu-
tral currents can be ascribed to the consequent near-
degeneracy of the squarks. There are also scalar trilinear
couplings among the squarks, sleptons, and Higgs scalars
as allowed by R parity and gauge invariance; these are
each equal at the input scale to the corresponding Yu-
kawa coupling times a universal mass parameter A.
There is also a supersymmetry-breaking scalar (mass) in
the Higgs sector. Finally, there are three gaugino masses
which also break supersymmetry. Large CP violation can
be avoided with a common complex phase for all of the
soft supersymmetry-breaking parameters. If one makes
further assumptions about the high-energy physics, addi-
tional constraints on the parameters of the theory are ob-
tained. For example, if there is a GUT, then the gauge
couplings and gaugino masses are unified, and there may
be relations among the Yukawa couplings and among the
scalar trilinear interactions at the unification scale. How-
ever, since the supersymmetry-breaking mechanism
remains mysterious, a precise formulation of the organiz-
ing principle behind the soft terms in the MSSM remains
unclear.

In any case, with the parameters of the model specified
at the input scale by some candidate organizing principle,
one can run the couplings and masses down to low ener-
gies using the renormalization group equations and make
predictions about the sparticle masses and other low-
energy phenomena. Many authors (for example, [5—17])
have provided numerical and analytical results for the
sparticle spectrum under a variety of assumptions and
constraints on the input parameters. In studies of this
type, greater precision as well as an estimate of errors in-
curred in the running can be obtained by employing the
two-loop renormalization group equations. The two-loop
P functions for the supersymmetric couplings (gauge cou-
plings [18]and superpotential parameters [19])have been
known for some time. Recently, the two-loop P functions
for gaugino mass parameters have also been found
[20,21]. In this paper, we will complete the list of two-
loop P functions for a general softly broken supersym-
metric model, by computing the results for scalar interac-
tions which break supersymmetry softly. We will also
give the results of specializing these calculations to the
MSSM.

We consider a general N=1 supersyrnmetric Yang-
Mills model. The chiral superfields 4; contain a complex
scalar P, and a two-component fermion g; which trans-
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In addition, the Lagrangian contains
supersymmetry-breaking terms of the form

& hijkg y y
&

bijou y
& (I2)jy uiy

——'MA, A, +H. c. ,

soft

(1.2)

where M is the mass of the gaugino A, . The renormaliza-

tion group equations for the gauge coupling and the su-

perpotential parameters Y'J", p'~, and L' and the gaugino
mass M are known. In this paper we give the corre-
sponding results for the soft-breaking parameters h 'j", b'j,

and (m )j.
For simplicity we first give our results for the special

case of a simple [or U(1)] gauge group. We then explain
the modifications required if the gauge group is a direct
product in Sec. III, and discuss the specialization of these
results to the MSSM in Sec. IV. We let t"=—(t),"jdenote

the representation matrices for the gauge group G. Then

(1.3)

(1.4)

define the quadratic Casimir invariant C (R ) and the
Dynkin index S (R ) for the representation R. For the ad-

joint representation [of dimension denoted by d(G)],
C(G)5" =f" f with f" the structure constants
of the group.

In principle, the two-loop P functions for a general re-
normalizable theory have already been given in [22—24].
However, there are two practical issues which must be
addressed in order to apply those results to the case at
hand.

The first issue is that only dimensionless couplings ap-
peared in [22—24]. The two-loop P function for a gauge
coupling was given in [22], for a Yukawa coupling in

[23], and for a scalar quartic coupling in [24]. A general
renormalizable theory may also contain fermion mass
terms, scalar (mass) terms, and trilinear scalar couplings.
Fortunately, the P functions for each of these dimension-
ful couplings can be inferred from the results given in

[23] and [24] by taking some of the scalar fields to be
nonpropagating "dummy" fields with no gauge interac-
tions. For example, a fermion mass term has the form

+JR ~ 4i 4j pdummy Y)ummy Pi ((j (1.5)

Now if yd „ is taken to have no other interactions,
then the p function for the fermion mass JR'j has the
same form as that of the Yukawa coupling Y)„„.Thus
the P function for any fermion mass can be inferred
directly from the results of [23]. Similarly, scalar (mass)
terms can always be thought of as scalar quartic interac-
tions involving two dummy scalars and two normal sca-
lars, while scalar trilinear couplings can be thought of as
scalar quartic interactions with one dummy scalar and
three normal scalars, so the two-loop P functions for
those cases can be inferred from the results of [24] using a

form as a (possibly reducible) representation R of the

gauge group G. The superpotential is

W= —'Y' 4 4 4g+ —'lM'4 4 +L'4. .
6 k P I j I

small amount of careful combinatorics associated with

the symmetry factors.
The second issue to be addressed is that the results of

[22—24] were obtained using dimensional regularization

[25] (DREG). Now, DREG violates supersymmetry ex-

plicitly because it introduces a mismatch between the
numbers of gauge boson and gaugino degrees of freedom.
Therefore the use of DREG is inappropriate for (even

softly broken) supersymmetric models. Instead, one
should use the modified scheme known as dimensional
reduction [26] (DRED) which does not violate supersym-

metry.
In DREG, supersymmetry is violated in the finite parts

of one-loop graphs, and in the divergent parts of two-loop

graphs. This means that for a given set of physical quan-
tities (e.g., pole masses and S-matrix elements) the run-

ning coupling s computed in DREG with modified
minimal subtraction [27] (MS) will differ from those
computed in DRED with modified minimal subtraction

(DR) by finite one-loop corrections, and the P functions
will be different for the two schemes starting at the two-

loop level. We therefore present our P functions as they
appear in the DR scheme. This means that the results of
[22-24] must be translated from MS to DR. In [20], we

provided a "dictionary" for translating couplings be-

tween the two schemes including all finite one-loop radia-
tive corrections, which is the order necessary for the
present application to two-loop P functions. (The rela-

tionship between DRED and DREG for nonsupersym-
metric theories has recently been illuminated in [28].)
We must also take into account the fact that, in DRED,
the so-called e scalars [26] obtain one-loop mass counter-
terms due to the supersymmetry-breaking scalar and gau-

gino masses.
In summary, our method of computation is to use the

results of [22—24] for a general renormalizable theory, us-

ing dummy scalars where necessary for dimensionful cou-
plings, and translating the results from MS to DR. This
process is rather tedious, and we decline to exhibit the de-
tails here. It may also be possible in principle to extract
these results from the dimensional reduction calculations
of [29].

II. TWO-LOOP RUNNING IN A GENERAL SOFTLY
BROKEN SUPERSYMMETRIC MODEL

For completeness, we begin by reviewing the known re-
sults for gauge couplings, gaugino masses, and superpo-
tential parameters (including Yukawa couplings). This
will also serve as a useful point of reference for the nota-
tion established in the Introduction. We will then pro-
vide the two-loop P functions for h'J", b'~, and (rn );,
which constitute the new results of this paper. We do not
assume anything about the relative complex phases of
any of the parameters.

The gauge coupling at two loops is actually scheme in-
dependent. Therefore, it may be obtained simply by
specializing the results of [22] to a general supersym-
metric model. Doing so, we obtain the known [18]result
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d 1 (»+ 1

2 q (16 2)2
(2. 1)

pM(')=g [2S(R)—6C(G)]M, (2.5)

p(M' —g [
—24[C(G)] +8C(G)S(R)+16S(R)C(R)]M

+2g [h'J" —MY'J" ]y,"„C(k)/d(G) .

This result was also obtained by Yamada [21] using a
di6'erent method. Note that we have adopted a slightly
diff'erent notation here than we did in [20], since the
heights of indices on the last term in (2.6) have been re-
versed. This is the same as exchanging the role of the

gaugino mass M and its conjugate M . We do this to en-
sure consistency with results below while maintaining the
fewest possible number of M 's.

The two-loop P functions for the superpotential param-
eters can be obtained either by superfield techniques [19]
or by applying the general results of [23] and [24]. In ap-

(2.6)

P" =g '[S(R )
—3C( G)], (2.2)

g~ '=g'[ —6[C(G)] +2C(G)S(R)+4S(R)C(R )]
g'—Y'J Y;,kC(k)/d(G) . (2.3)

Here Y,"k =( Y'J")*, S(R) is the Dynkin index summed
over all chiral multiplets, and S(R)C(R) is the sum of
the Dynkin indices weighted by the quadratic Casimir in-
variant.

The two-loop P function for the gaugino mass parame-
ter may be computed (as we did in [20]) by first using the
results of [23] for a general theory in MS and then
translating the results to the DR scheme appropriate for
supersymmetry. The result is

(2.4)
16qr2 (16qr2)2

plying the latter method, one must be careful to convert
the MS results into DR, as we have already mentioned.
We obtain the same results using both methods:

1$~&Jk —p&JP ( 1 }k+ 1 {2}k (

16~' ' (16m')' '
+(k++i )+-(k~j), (2.7)

plJ—plP
dt 16qr (16qr )

(2.8)

1 1—L'=LP {1)r'+ {2}i

16qr (16qr )
(2.9)

where

y. "j=- ) y. yjpq 2yg C—(;) (2. 10)

y(; ' = —
—,'Y, „Y" Y „Y "+g Y; Y" [2C(p) —C(l)]

+25Jg [C(i)S(R)+2C(i) —3C(G)C(i)] . (2.11)

In these equations, C(r) always refers to the quadratic
Casimir invariant of the representation carried by the in-
dicted chiral superfield, while S(R) refers to the total
Dynkin index summed over all of the chiral superfields.
The objects y';" and y'; ' arise completely from wave-
function renormalization in the superfield approach, in
accordance with the "nonrenormalization" theorems of
supersymmetry [30].

Next we consider the two-loop P function for the soft
supersymmetry-breaking scalar trilinear coupling h'
This is obtained by specializing Eqs. (4.3) and (4.7) of [24]
to the supersymmetric case, with one of the external sca-
lar fields being a dummy field, and then translating the
result from MS to DR using [20]. The result is

ijk 1 ijk
h»k — P(1) q P(2)

16qr2 (16qr2)2 .

[p(1)]ijk ) hijly ymnk+ yijly h rnnk 2(h ijk 2Myijk) 2C(k )+(k )+(k~j )2

[Q ) '((J~ ——'h iJ Y Ynpq Y ymrk —y(JJY Ynpqy h mr" —Y(J Y h npqY Y~h & p lmn pqr l~nn pqr lmn pqr

+(h'J Y, YPq +2Y'J Y hPq" 2MY'J'Y, YPq"—)g [2C(p) —C(k)]

+(2h"" 8MY"")g [C—(k)S(R)+2C(k) —3C(G)C(k)]+(k~i)+(k~j) .

(2.12)

(2.13)

(2.14)

Next we consider the two-loop P function for the scalar (mass) O'J This is again . obtained by specializing Eqs. (4.3)
and (4.7) of [24] to the supersymmetric case, but with two of the external scalar fields as dummy fields, and then

translating the result from MS to DR using the results of [20]. Doing so, we find

b(J — [P())](J+ [P(2)]IJ
16qr' (16qr')'

[p(l)]ij ) bily ymnj+ ) yijly b mn+ ily h rnnj 2(bij 2M ij ) 2C( ~ )+( .

[rq(2)]ij — ) bily ypqny ymrj ) yijly b mry ypqn ) yijly „mry h pqn
~b ~ 2 1mn pqr Imn pqr Imn P pqr

ily h npqy ymrj ily ynpqy h mrj +2 yijly (bpq pqM )g2C(p )lmn pqr Imn pqr Ipq

+(b' Y, YP +2p' Y, h J 2p'Y„YPq M)g [2C—(p) —C(i)]

+(2b" 8j2"M)g [C(i)S(R)+—2C(i) 3C(G)C(i)—]+(i~j),

(2.15)

(2.16)

(2.17)
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Finally, we consider the two-loop p function for the scalar (mass) (m ), . This is once again obtained by specializing

Eqs. (4.3) and (4.7) of [24] to the supersymmetric case, with two of the external scalar fields as dummy fields, and

translating from MS to DR using [20]. One must also be careful here to take into account the mass counterterms for
the e scalars which arise in DRED. The result is

(2.18)

[P'",]j=—,'Y,. YPq"(m )j+ ,'Yj—PqY „(m },"+2Y; YJP"(m }„+h, h 85—;MMtg C(i}+2g t,"jTr[t "m ],
[P' '] = ——'(m }'YI Y 'Y YPq" ,'(—m —)jIY' "Y YP "Y —

Y& Y'" (m )'„Y YPq
m

Y Yjnm(m2)r Y Y!Pq Y Yjnr(m2}I Y YPqm 2Y YjlnY YmP(m2)q
ilm m n rpq ilm n pqr ilm npq r

Y Yjinh h mPq h hjlnY YmPq h YjlnY h mPq Y hjlnh YmPq
ilm npq ilm npq ilm npq ilm npq

+[(m )'Y&~Y +Y; Y' (m g+4Y; Y '(m )&+2h, h

—2h; Y qM 2Y; —h Mt+4Y, YjPqMMt]g [C(p)+C(q) —C(i)]

—2g t" (t"m )'Y& Y"P +8g t"jTr[t"C(r)m ]+5;g MM [24C(i)S(R)+48C(i} —72C(G)C(i)] .

+85jg C (i) [Tr[S(r)m ]—C (G)MM ] .

(2.19)

(2.20)

Here h,"k=(h'j")'. The traces are over all of the chiral
superfields, and the C(r) are the quadratic Casimir in-
variants for the irreducible representations of chiral
superfields in the traces. Note that the terms which ex-
plicitly involve t;"j are zero for non-Abelian groups.

This completes the list of two-loop P functions for a
general softly broken supersymmetric theory. %e con-
clude this section by noting a nontrivial consistency
check on these results. It has been shown [31] that an
N=2 supersymmetric Yang-Mills theory is finite to all
orders in perturbation theory provided that certain con-
straints are imposed on the representations of superfields.
This finiteness continues to hold even with soft breaking,
provided that the soft terms obey certain additional con-
straints [32]. It is an amusing exercise to check that,
when the above formulas for a general N=1 supersym-
metric model are specialized to the N=2 case with the
appropriate constraints on the representations and soft
couplings, the two-loop P functions do indeed vanish.

16gqS(R )C(R )M~8 g g,gbS, (R )Cj, (R )(M, +Mb )
b

(3.7)

in (2.6}. Note that in these cases all terms which do not
contain a quadratic Casimir invariant of a nonadjoint
representation are simply diagonal in each subgroup.

For the P functions of the superpotential parameters
and soft supersymmetry-breaking scalar interactions
(2.7)—(2.20), one always obtains a sum over subgroups.
In each of these cases, the following set of rules applies

g C(r)~ gg, C, (r), (3.8)

I

The gb in (3.5} is a sum over subgroups. Similarly, one
obtains the P function for each gaugino mass parameter
M, by applying to (2.5) and (2.6) the same rules as above,
but with one less power of g~g„and with M —+M,
wherever it appears. The exception is that

III. TWO-LOOP P FUNCTIONS FOR DIRECT
PRODUCT GROUPS g C(r)S(R)~gg, C, (r)S,(R), (3.9)

g C(G)~g, C(G, ), (3.1)

As promised, we now point out the modifications
which must be made to the preceding formulas if the
gauge group is a product of simple [or U(1)] subgroups
G, .

One obtains the P function for each gauge coupling g,
by applying the following rules to (2.2) and (2.3):

g C(r)C(G)~ g g,"C,(r)C(G, ), (3.10)

g C(r) ~ g g g,gbC, (r)Cb(r) . (3.11)
a b

Terms which also involve gaugino masses are modified
exactly as above, with

g S( R)~g, S(R ),
g C(G) ~g, C(G, )

g 'C( G)S(R }~g,'C( G, }S,(R },

(3.2) M, M~~M„M,

(3.3) except for the term

(3.4) 48g MM C(i ) ~ g g g, g~ C, (i)C„(i )
a b

(3.12)

g $(R )C(R )~ g g, gbS, (R )Cb(R },
b

g C(k)/d(G)~g, C, (k)/d(G, ) .

(3 5)

(3.6)

X [32M,M,"+8M, Mq +8Mb M, ]

(3.13)
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in Eq. (2.20). We also have in (2.19) and (2.20)

g t, 'Tr[t "m ]~gg, (t,")JTr[t,"m ],

g~t~ (t~m ) I'I I'"~ gg (t~)i(t m~)„I'&

(3.14)

The soft supersymmetry-breaking Lagrangian contains
scalar couplings

X=uh„QA'„+dhd QPd+eh, LHd+BA'„Dd+H. c,
(4.2)

(3.15)

g t,"JTr[t"C(r)m ]~g gg, gb(t,")JTr[t,"Cb(r)m ],
a b

(3.16)

g C(i)Tr[S(r)m ]~gg, C, (i)Tr[S, (r)m ] . (3.17)

Finally, we must note that there is an exceptional case
when the gauge group contains (unlike the MSSM) a
direct product of more than one U(l). One should then
choose the basis for the U(1) subgroups so that the matrix

Tr[q, qb] is diagonal, where the trace is over all chiral
superfields and q, denotes the U(1}, charge. This is al-

ways possible, since Tr[q, qb] is always a real symmetric
matrix. Then the only nontrivial rule is that the term

g C (i)Tr[S (r)m ] in (2.20) becomes a sum over non-U(1)
subgroups as before, plus a contribution

g C (i)Tr[S (r)m ]—+gag, gb (q, ),Tr[q, qb m ] (3.18)
a b

where g, and gb are sums over U(1) subgroups, and

(q, ); denotes the U(1), charge of the chiral superfield

carrying the index i.

IV. TWO-LOOP RUNNING IN THE MINIMAL
SUPERSYMMETRIC STANDARD MODEL

where hu, hd, and h, are again 3 X 3 matrices in family
space, and a caret is used to denote the scalar component
of each chiral superfield. There are also scalar masses of
the (m )', type:

X=mH H„P„+mJ AdHd+Q mgQ+E miL

+~ u~ +d d + e8 (4.3)

Here again m&, mL, m„, md, and m, are 3 X 3 matrices
in family space. Finally, the gauginos for the subgroups
SU(3)„SU(2)L, and U(1)r have masses M3, Mz, and M„
respectively. Again, we do not assume anything about
the complex phases of any of the parameters. For most
applications, it will be sufficient to retain only the Yu-
kawa couplings of the heaviest family, but we prefer to
retain complete generality.

For the sake of completeness and to provide a useful

point of reference, we begin by reviewing the known re-
sults for two-loop P functions within the MSSM. For the
three gauge couplings, we have from (2.1)—(2.3)

3—g, = B,d ga

dt 16m

3 3+, , g B.b gb g C,"Tr( Y, F„)
(1677 ) b=~

(4 4)

Here B,'"=(—", , 1, —3} for U(1}r (in a GUT normaliza-

tion), SU(2)L, and SU(3), respectively, and

In the MSSM, the gauge group is SU(3), XSU(2)L
X U(1)„,with chiral superfields Q and L for the SU(2)I-
doublet quarks and leptons, and u, d, e for the SU(2)L-
singlet quarks and leptons, and two Higgs doublet chiral
superfields H„and Hd. The superpotential is

199 27 88 26
25 5 5 5

B(Q) 9 25 24 and Cu d e
ab

11 4
5

14 l8

6 2

4 0
(4.5)

8'=uY„QH„+dYdQHd+eY, LHd+pH„Hd, (4.1}

where Y„, Yz, and Y, are each 3 X 3 Yukawa matrices.
I

The two-loop renormalization group equations for the
three gaugino mass parameters [20,21] can then be writ-

ten easily in terms of the same coefficients:

2 2 2 ' 3—M, = B,"'M, + g B,'pgb(M, +Mb }+ g C, (Tr[F„"h„] M, Tr[ Y„F—]) (4.6)

From (2.7)—(2.11), the two-loop P functions for the superpotential parameters are

d 1 ~, ~
1 ~z~

2 P (16 2)2 P
(4.7)

1) ~ p(&)
u, d, e ( 16 ) e, d, e

(4.8)

P„"'=@[Tr(3Y„Y„+3YdYd+ Y,Y, ) —3gq ——', g f ],
p„' '=@[—3Tr(3Y„Y„Y„Y„+3YdYdtYd Yz+2Y„Y„YdYt +Y,YtY,Yt)+ [16g3+ 4g~~ ]Tr(Y„Yt )

+[16g3 5g f ]Tr(Yd Yd)+ —', g, Tr(Y, Y, )+ —",gz+ —', gfgz+ —",,'g, ],

(4.9)

(4.10)
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g& =Y„[3Tr(Y„Y„)+3YtY„+YdYd ——', g3 —3g2 —15gf ],
Q

[
—3 Tr(3Y„YtY„Yt+Y„YtdYdY„)—Yd Yd Tr(3Yd Yd +Y,Y, )

—9Y„Y„Tr(Y„Y„)
Q

—4Yt Y„YtY„2—YtdYdYtdYd —2Yd Yd Y„Y„+[16g3+—', g, ]Tr(Y„Y„)+[6g2+ —,'g, ]Y„Y„

(4.1 1)

(4.12)

(4.13)

(4.14)

+ 3g2Yt Y16g4+8g2~2+136g2@+15g+gg+2743g

pz" =Yd [Tr(3Yd Yd +Y,Y, }+3Yd Yd +Y„Y„——",g 3
—3g 2

—
,', g—i] i

@~=Y [
—3 Tr(3Y Y~d Yd Yt&+ Y„YtdYd Y„+Y,Y,Y,Y, )

—3Y„Y„Tr(Y„Y„}—3Y&Yd Tr(3Yd Yd+Y, Y, }

—4Ytd Yd Ytd Yd —2Y„Y„Y„Y„—2Y„Y„YdYd+ [16g3 ——', g, ]Tr(Yd Yd )+—', g, Tr(Y, Y, )+—', g 3 Y„Y„

gv"= Y, [Tr(3YdYd+Y, Y, )+3Y,Y, —3g2 ——', g3 ],
e

pz' =Y, [
—3 Tr(3Yd Ytd Yd Yd+ Y„YtdYd Y„+Y,Y,Y,Y, )

—3Y,Y,Tr(3Y&Ytd+ Y,Yt )
—4Yt Y,Y,Y,

+[16g3 5gf ]Tr(Y&Yd)+ —', g|Tr(Y,Y, )+6g2Y, Y, + —",g2+ —', g2g3+ —",g, } .

(4.15}

(4.16)

Of course, the P functions for Y„d, are 3 X 3 matrices in family space.
The above results for the MSSM have all appeared before. Now we apply our results of Secs. II and III to arrive at

the two-loop P functions for the soft-breaking trilinear scalar couplings:

1 1

167r' "' (167r')'

ph" =h„[3Tr( Y„Yt )+5Yt Y„+Ydt Yd ——"g —3g ——"g2 j

+Y„[6Tr(h„Y„)+4Y„h„+2Ydh„+—", g,M, +6g2M2+ —",,g,M, ],
pz '=h„[ —3Tr(3Y„YtY„Yt+Y„YtdYzY„)—Y~d Yd Tr(3Yd Ytd+Y, Yt) —15Yt Y„Tr(Y„Yt)

—6Y„Y„Y„Y„—2Yd Yd YzYd —4Yd Yd Y„Y„+[16g3+~4g, ]Tr(Y„Y„)+12g2Yt Y„

+ 2g Yt Y 16g +8g~ + 136g~ + 15g +g g + 2743g

+Y„[—6Tr(6h„Yt Y„Yt+h„YdYd Y„+hdY„Y„Ytd )
—18Y„Y„Tr(h„Y„)

YdYdTr—(6hdYd+2h, Y, )
—12Y„h„Tr(Y„Y„) YdhdTr(6Yd—Yd+2Y, Y, )

—6Y„Y„Y„h„—8Y„h„Y„Y„—4Yd Yd Yd hd 4Yd hd Yd Yd —2Yd Yd Y"„h„—4Yd hd Y„Y„—
+ [32g3+ —,'g 3 ]Tr(h„Y„)+[6g2+—', g, ]Y„h„+—', g 3 Ydhd

—[32g3M3+ —,'g&M, ]Tr(Y„Y„)—[12g2M2+~4g fM, ]Y„Y„——', g fM, Yd Yd+ —",g3M3

16g3g2(M3+M2) zvzg3g f(M3+M3) 30g2M2 2g2g3(M2+M ) 5466g M

p~"=hd [Tr(3YdYd+Y, Y, )+5YdYd+Y„Y„——",g3
—3g2 —

—,', g, ]

+Yz [Tr(6hd Yd+2h, Y, )+4Ydhd+2Y„h„+ —",g3M3+6g2M2+ —,",g,M, ],
pz '=hd [

—3 Tr(3YdYdYdYd+Y„Yd Yd Y„+Y,Y,Y,Y, )
—3Y„Y„Tr(Y„Y„)

5YdYdTr(3YdYd—+Y,Y, ) 6YdYdYdYd —2Y—„Y„Y„Y„—4Y„Y„YdYd+[16g3 ——', g, ]Tr(Y&Yd )

+—,'g1Tr(Y, Y, )+—', g1Y„Y„+[12g2+—,'g1]Yd Yd ——",g3+8g3gz+ —', g3g1+ —",g2+g2g1+ —'"g1}
+Yd [

—6Tr(6hdYdYdYd+h„Yd Yd Yt+hd Y„Y„Yd+2h,Y,Y,Y, }—6Y„Y„Tr(h„Yt)

6YdYdTr(3hdYd+—h, Y, }—6Y„h„Tr(Y„Y„} 4YdhdTr(3YdYd+—Y,Y, )

6Y~YdYdhd 8YdhdYd Yd 4YuhuYuYu 4YuYuYuhu 4YuhuY~Yd 2YuYuYdhd

+ [32g3 ——', g1]Tr(hd Yd )+ —",g1 Tr(h, Y, )+—,'g, Y„h„+[6g2+ —', g1]Ydhd

(4.17)

(4.18)

(4.19)

(4.20)
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—[32g3M, ——', g)M, ]Tr(Yd Yd )——",g,M, Tr(Y, Y, ) —[12g2M2+ —', g,M, ]Y„Yd——', g,M, Y„Y„

9 g 3 3 16g 3g 2 (M, +M2 )
—", g—3g,(M3 +M, )

—30g 2M 2
—2g 2g, (M2 +M, )

——",,
' g,M, j

(()}h"=h,[Tr(3YdYd+Y, Yt)+5Y,Y, —3g2 ——', g1 j+Y, [Tr(6hd Yd+2h, Y, )+4Yth, +6g2M2+ —",g,M, j,
pz '=h, [

—3 Tr(3Yd Yd Yd Yd +Y„YdYd Y„+Y,Y,Y,Y, )
—5Y,Y,Tr(3Yd Yd+ Y,Yt ) —6Y,Y,Y,Y,

+ [16g,——', g)]Tr(Y„Yd )+—', g)Tr(Y, Y, )+ [12g2 ——', g, ]Y,Y, + —",g2+ —', g2g, + —", g, j

+Y, [
—6Tr(6hd Yd YdYd+h„YdYdY„+hd Y„Y„Yd+2h,Y,Y,Y, )

—4Y,h, Tr(3Yd Yd+Y, Y, )

—6YtY,Tr(3hd Ydt+h, Yt) —6YtY,Yth, —8Y,h, YtY, +[32g3 ——', g)]Tr(hd Yd }

+ —",g) Tr(h, Y, )+ [6g2+ —', g1]Y,h, —[32g3M3 ——', g 1M(]Tr(Yd Yd )
—

—",g)M) Tr(Y, Y, )

—12g2M2 Y,Y, —30g2M2 ——",g2g)(M) +M2) 54g4M—
1 j .

(4.21)

(4.22)

(4.23)

d—8=
dt

1

(16 }

(()}(2I'=B[Tr(3Y„Y„+3YdYd+Y, Y, )
—3g2 ——', g) j+p[Tr(6h„Y„+6hd Yd+2h, Y, )+6g2M2+ —', g)M)j,

p(H)=B [
—3Tr(3Y„Y„Y„Y„+3YdYdYdYd+2Y„YdYdY„+Y,Y,Y,Y, )+[16g3+~4g, ]Tr(Y„Y„)

+[16g3 5g, ]Tr(Yd Yz)+ —', g) Tr(Y, Y, }+—",g2+ —', g,g2+ —",,'g, j

+(u[ —12Tr(3h„Y„Y„Y"„+3hdYd Yd Yd+h„Yd Yd Y„+hdY„Y„Yd+h,Y,Y,Y, }+[32g3+—', g1]Tr(h„Y„)

+ [32g3 ——', g) ]Tr(hd Yd )+ —",g) Tr(h, Y, ) —[32g3M3+ —,'g)M, ]Tr(Y„Y„")

—[32g3M3 ——', g,M, ]Tr(Yd Y„)——",g 1M, Tr(Y, Y, )
—30g2M2 ——",g,g2(M, +M2 ) ——",,'g, M, j .

(4.24)

(4.25)

(4.26)

Finally, we turn to the P functions for the scalar (mass) terms of the (m )J type in the MSSM. It is convenient to

define the quantities

These are again 3 X 3 matrices in family space. One should note that there is no universally agreed-upon convention for
the sign of the gaugino masses in these equations, because of the freedom to rotate the phases of the gaugino mass terms

in the Lagrangian.
The MSSM also contains one scalar (mass) of the type b'i, which from (2.15)—(2.17) satisfies the two-loop renormal-

ization group equation

and

eV=mH —mH +Tr[m& —mL —2m„+md+m, ) (4.27)

eV'=Tr[ (3mH —+m&}Y„Y„+4Y„m„Y„+(3mH—m&)YdYd —2Ydmd Yd+(mH +mL)Y, Y, —2Y,m, Y, ]

+ [ 2g2+ 1()g 1 ][mH ™Hd T ( rLm) j + [ )g3+ pg2+ 3()g 1 1™g)

and

—[ —",g3+ 15g ] ]Tr(m„)+ [—,'g3+ —,', g, ]Tr(md )+—', g, Tr(m, ) . (4.28)

(T1=—,'g)[3(mH +mH )+Tr[m&+3mL+8m„+2md+6m, ] j

cr2=g& ImH +mH +Tr[3m&+ mL ] j

o3 =g 3 Tr [2m& +m„+ md ] .

Then from the results of Secs. II and III, we obtain for each of the P functions in the standard form

d 1 12 (1) + (2)
2 m (16 2)2 m

the following results:

=6Tr[(mH +m& }Y„Y„+Y„m„Y„+h„h„]—6g2IM2I —', g(IM) I
+—',g)~

(4.29)

(4.30)
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= —6Tr[6(m&~ +m~&)Yt Y„YtY„+6Ytm„Y„Y„Y„+(mH+mH +m~)Y„Y„YdYd+Y„m„Y„YdYd
H Q

+Y„Y„mgYd Yd+ Y'„Y„Ydmd Yd+6h'„h„Y'„Y„+6h„'Y„Y'„h„+hdhdY'„Y„+Yd Ydh'. h.+hd Yd Y'.h

+Ytdhdht Y„]+[32g~3+ —,'g, ]Tr[(mH +m& )Y„Y„+Y„m„Y„+h„h„]

+32g 3 [ 2I M3 I
~Tr[Yt Y„]—M3 Tr[Y„h„]—M3 Tr[h„Y„]j

+—,'g f [2IM& I Tr[Y„Y„]—M f Tr[Y„h„]—M&Tr[h„Y„]j+—', g, 4'

+33g~ IMpl'+ —",gag f(1M~I'+ IM) I'+«[M(M f ]}+—",,'g ( IMMI'+3g~~p+ 35g)~g, (4.31)

p"'& =Tr[6(mH +m&)YdYd+6YdmdYd+2(mz +mL )Y,Y, +2Y,m, Y, +6hdhd+2h, h, ]
mH d d

d

(4.32)

p' ', = 6T—r[6(mH +m&)YdYdYdYd+6YdmdYdYdYd+(mH +mH +m&)Y„Y„YdYd+Y„m„Y„YdYd

+Y„Y„m&YdYd+Y„Y„YdmdYd+2(mz +mL )Y,Y,Y,Y, +2Y,m, Y,Y,Y, +6hdhdYdYd

+6hdt Yd Ydt hd +ht h„YdYd +Yt Y„hd hd +ht Y„Ytdhd +Yt h„hdt Yd +2hth, YtY, +2h tY,Yth, ]

+ [32g3 ——', g, ]Tr[(mH +m& )Yd Yd+Ydm„Yd+hdhd ]

+32g3 [2 IM3 I'Tr[ Yd Yd ] M3 T—r[Ydhd ] M3T—r[hd Yd ] j

—4g f [2IM, I
~Tr[Ytd Yd ] M,'Tr—[Ytdhd ] M, Tr[—hdYd ] j

+ —",g, [Tr[(mH +mL )Y,Y, +Y,m, Y, +hth, ]+2IM, I
Tr[YtY, ]—M, Tr[h, Y, ]—M', Tr[Y,h, ] j

—-', g )&'+33g~ IMp I'+ —5sg@f(IMMI'+ IM) I'+«[MiMf ]}+—",,'g i IMi I'+3gp~p+-', g (~) . (4 33}

The p functions for m&, mL, m„, md, m, are of course 3 X 3 matrices:

p"& =(m&+2mH )Y„Y„+(m&+2mH )Yd Yd+[Y„Y„+YdYd]m&+2Y„m„Y„

(4.34)

2 2 t f t' 2 4 f 2 f f f 2—(2mg+8mH }YdYdYdYd 4YdmdYdYd—Yd 4YdYdmg—YdYd 4YdYdYdm—dYd 2YdYdYd—Ydmg

—[(m&+4mz )Y„Y„+2Y„m„Y„+Y„Y„m&]Tr(3YtY„)

—[(m&+4mH )YdYd+2Ydmd Yd+Yd Ydm&]Tr(3Yd Yd+Y, Y, }—6Y„Y„Tr(m&Y„Y„+Y„m„Y„)

YdYdTr(6m&Y—dYd+6YdmdYd+2mL Y,Y, +2Y,m, Y, )

—4[YfY„hth„+h„h„Y„Y„+Yth„htY„+htY„Y„h„j

4[YdYdhdh—d+hdhdYdYd+YdhdhdYd+hd Yd Ydhd j
—h„h„Tr[6Y„Y„]—Y„Y„Tr[6h„h„]

—h„Y„Tr[6Y„h„]—Y„h„Tr[6h„Y„]—hdhd Tr[6Yd Yd+2Y, Y, ]—Yd Yd Tr[6hdhd+2hth, ]

hdYdTr[6Ydhd+—2Y,h, ]—Ydhd Tr[6hd Yd+2h, Y, ]

+—,'g f [(2m&+4mH )Yt Y„+4Ytm„Y„+2Y„Y„m&+4hth„—4M, ht Y„—4M', Yth„+8IM, I~Yt Y„

+(m&+2mH }YdYd+2YdmdYd+YdYdm&+2hdhd 2M&hdYd —2M—
& Ydhd+4IM& I YdYd j

+2Ydmd Yd+2h„h„+2hdhd ——",g3 IM3I —6gz IMz I

—
—,', g f IM, I'+-,'g', z,

P'
&
= —(2m&+ 8mH }Y„Y„Y„Y„—4Y„m„Y„Y„Y„—4Y„Y„m&Y„Y„—4Y„Y„Y„m„Y„—2Yt Y„YtY„m&

Q Q

+—', gf&' ——",'g43IM3I'+32g~3gp~(IM3I'+ IMMI'+«[M~M3 ]}+—,",gag f(IM3I'+ IMg I'+«[M)M3 ])

+33g~ 1M~I'+-', gg f(IM~I'+ IM~ I'+«[M~M) l}+—",,'g& IM& I'+ —",g3o 3+3gpop+ gag]o ],
P",' =(mL+2mH )YtY, +2Y,m, Y, +Y,Y,mL+2h, h, —6gPMzl ——5g& IM& I

——5gf4,

(4.35)

(4.36)
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P',' = —(2mL +8m~ )Y,Y,Y,Y, —4Y,m, Y,Y,Y, —4Y,Y,mr Y,Y, —4Y,Y,Y,m, Y, —2Y,Y,Y,Y,mL

—[(mi +4mH )Y,Y, +2Y,m, Y, +Y,Y,mi ]Tr(3Yd Yd+Y, Y, ) Y—,Y,Tr[6m&Y&Yd+6Ydmd Yd

+2ml Y,Y, +2Y,m, Y, ]
—4[Y,Y,h, h, +h, h, Y,Y, +Y,h, h, Y, +h, Y,Y,h, l

ht—h, Tr[6Yd Yd+2Y, Y, ] Y,—Y,Tr[6h~zhd +2h, h, ]

—h~Y, Tr[6Ydhd+2Y, h, ]
—Y,h, Tr[6hd Yd+2h, Y, ]

+—', g, [(ml +2mH }Y,Y, +2Y,m, Y, +Y~Y,mL +2h, h, —2M &h, Y, —2M
&

Y~h, +4IM, I Y,Y, ]

(4.37)

(4.38)

—(2m'„+4mH +4mH )Y„YdYdY„—4Y„m&Yd Y„Y„4Y„Y—dmdY„Y„4Y„Y—dYdm&Y„
ll

—2Y„Y~Yd Ytm„—[(m„+4mH )Y„Y„+2Y„m&Y„+Y„Ytm„]Tr[6Y„Y„]
—12Y„Y„Tr[m&Y„Y„+Y„m'„Y„]—4[h„ht Y„Y~+ Y„Yth„ht +h„Yt Y„h't +Y„hth„Y~ l

4[h„hd Y—
d Y„+Y„Ydhdh„+h„YdYd h„+Y„hd hd Y„]

—12[h„h„Tr[Y"„Y„]+Y„Y„Tr[h„h„]+h„Y"„Tr[htY„]+Y„htTr[Y~h„]]

+[6gz —
—,'g~ ][(m„+2mH )Y„Y„+2Y„m&Y~ +Y„Ytm~ +2h„h~ }

+ 12g p [2 M) I Y,Y„—M f h„Y„—M, Y„h"„]—-', g', j 2IM, I'Y„Y~ —M 1* h„Yt —M, Y„ht ]

—'g +' —'"g3IM31 +—'"g3g (IM3l + IM I +Re[M, M*])+ '4"g, IM, I~+ "g~o + "g~g

p"& =(2™d+4mH )YdYd+4Ydm&Yd+2YdYdmd+4hdhd —",g3 IM3 I —,', gf IM~ I
+ —', g f &,

p &
= —(2md+8mH )Y„YdY&Yd 4Y~m&Y„Y—„Yd 4YdYdmdY—dY„4YdYdY„—m Y —2Y Y Y„Y m

(2) 2 2 t f 2 f t f 2 f f 2 f f t 2

(4.39)

(4.40)

—(2md ™H+4mH )YqY„Y„Yd—4Ydm& Y„Y„Yz 4Yd Y„m„Y—„Yd —4Yd Y„Y„m&Yd

2YdY"„Y„Yd—md —[(md+4mH )Yd Yd+2Ydm&Yd+YdYdm&)Tr(6YdYd+2Y, Y, )

4Y„YdTr(—3m& Y„Y„+3Yd md Yd +mL Y,Y, +Y,m, Y, )

4[hdhdYdYd—+YdYdhdhd+hdYdYdhd+YdhdhdYd ]

4[h„h„Y„Yd—+YdY„h„hd+hdY„Y„h„+Ydh„h„Y„l 4hdhdTr(3Y—„Yd+Y,Y, )

4YdYdTr(3hzh—d+h, h, ) 4hd YdTr(3hd Y—
d +h, Y, ) 4Ydhd Tr(3Ydh—d+ Y~h, )

+ [6g& +—', g f ] [(md +2mH )Yd Yd +2Ydm& Yd +Yd Ydmd +2hdhd ]

+12g~ [21M~ I'YdYd M~ hdYd M~Y—dhd ]+—', g)—[2IM, I'Yd Yd M', h„Y„M—, Ydhd ]+—', g—, S'

—
—,'gi+'+33g~lM~I'+ —",golgi(1M~I'+IMMI'+ReIM&Mf 1}+—",,'gtlM&I'+3g2~2+ glo1,

p",' =(2m~ +4mH )Y„Y„+4Y„m&Y„+2Y„Y„m„+4h„h, —",g3 IM3I —",,g f IMq I
—', gf&

M
tl

P',' = —(2m„+ 8mH }Y„Y„Y„Yt—4Y„m&Y„Y„Yt—4Y„Y„m„Y„Y„—4Y„Y„Y„m&Y„—2Y„Y„Y„Y„m„
mu 0

—',"g3 IM3 I'+ —",,'g~ )(IM3 I'+ IM) I'+«[M)M3 ]}+—",,'g ) IM) I'+ —",g 3~3+ —,', g ) ~ ), (4.41)

P",'=(2m +4m )Y,Y, +4Y,m Y, +2Y,Y,m, +4h, h, ——",g~IM~I +—'g 1
e

P' '= —(2m +8m )Y,Y,Y,Y, —4Y,m Y~Y,Y~ —4Y,Y,m, Y,Y, —4Y,Y,Y,ml Y, —2Y,Y~Y,Y,m,
Hl d

—[(m, +4mH }Y,Y, +2Y,mi Y, +Y,Y,m, ]Tr[6YdYd+2Y, Y, ]

—4Y,YtTr[3m& Y~dY~+3YdmdYd+mL Y~Y, +Y,m, Y, ]

4[h h Y Y +Y Y~h h +h Y Y h +Y h h Y 1 4h, h, Tr[3Y&Y&+Y,Y, ]

(4.42)
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—4Y,YtTr[3hzhz+h, h, ]—4h, YtTr[3h&Y&+h, Y, ]—4Y,h, Tr[3Y&hz+Y, h, ]

+ [6g2 ——', g i ] I (m, +2mIt )Y,Yt+2Y,mi Yt+Y,Ytmz +2h, ht ]

+12gi[2lMil Y,Yt Mph, Yt MzY, h, ]

——"g'[2IM, I'Y,Y, M—, h, Y, —M, Y,ht]+ —"g'4'+ '"'g', IM, I'+ "g—'cr (4.43)

V. CONCLUSION

In this paper, we have presented the two-loop renor-
malization group equations for all couplings in a general
softly broken supersymmetric model, and in particular
for the MSSM. If the sparticles predicted by the MSSM
are found and their spectrum is determined with
some accuracy (for example, at an e+e collider [33)),
these results may be useful in discriminating between
various candidate organizing principles for the soft
supersymmetry-breaking terms at some very high input
scale. One can run the parameters down to low energies
to predict the masses of the sparticle spectrum and other
features of low-energy phenomenology in terms of what
may turn out to be only a few input parameters. The
masses of the sparticles depend primarily on just those
soft supersymmetry-breaking couplings whose P func-
tions have been given to two loops here. We find that the
two-loop P functions generally make a difference of
several percent (compared to the one-loop predictions)
for the sparticle masses, although it is quite difFerent to
make meaningful estimates of the size of the two-loop
corrections without committing to a specific model. At
the same level of accuracy, one must also be careful to
take into account threshold effects as well as the distinc-
tion between running masses and pole masses. In exten-
sions of the MSSM which have a large nonminimal parti-
cle content above the electroweak scale, the two-loop
corrections and threshold efFects are potentially much
larger.

Note added. Since the original version of this paper ap-
peared, the P functions of Sec. II have been calculated by
Yamada [34] using superfield techniques, and by Jack and
Jones [35] working directly in DRED. Our results
agreed with theirs except for discrepancies in the two-
loop P function (2.20) for scalar masses of the (m )J type,

I

namely the coefficient of the last term proportional to
5;g C(i){Tr[S(r)m ]—C(G)MM ] and a possible
dependence on the unphysical mass of the e scalar. As
emphasized in [35], one should properly allow the e sca-
lars to have masses and mass counterterms in the com-
ponent field approach to DRED, and the result given
there is correct. However, one can treat the subtractions
in DR in such a way that the two-loop P functions do not
depend on the unphysical e scalar mass, and so that the
expressions relating the pole masses to the running
masses of the scalars also do not depend on the e scalar
masses. (This is related to the prescription used in [35]
by a simple coupling constant redefinition for the scalar
masses, of the type mentioned there. ) The corrected re-
sults we have given here correspond to this prescription,
and we are now in agreement with the authors of [34] and
[35], to whom we are grateful for consultations. The
subtleties involved will be reported on elsewhere. The re-
sults in the special case of the MSSM have also been
corrected accordingly.
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