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Radiative corrections to quark-quark-Reggeon vertex in /CD
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One loop corrections to the coupling of the Reggeised gluon to quarks are calculated in /CD.
Combining this result with the known corrections to the gluon-gluon-Reggeon vertex, we check
the self-consistency of the representation of the amplitudes with gluon quantum numbers and the
negative signature in the t channel in terms of the Regge pole contribution.

PACS number(s): 11.55.Jy, 12.38.Bx

I. INTRODUCTION

It has been known for a long time [1] that, in the lead-
ing logarithmic approximation (LLA) for the Regge re-
gion, the total cross section o~~~t+ in the non-Abelian
SU(N) gauge theories grows at large c.m. system (c.m.s.)
energies +s:

LLA
tot

s '
ln8

where

g
2

(up ———Nln2 .
7r2

(2)

'Permanent address: Budker Institute for Nuclear Physics
and Novosibirsk State University, Novosibirsk, Russia. Elec-
tronic address: Fadin Inp. nsk. su

t Electronic address: 39022::Fiore, Quartarolo
tElectronic address: Fiore, Quartarolo OSs.unical. it

Therefore the Froissart bound crt, t & c ln 8 is violated
in the LLA. The reason for this is the violation of the
8-channel unitarity constraints for scattering amplitudes
in the LLA.

The behavior (1) of the total cross section is deter-
mined by the position of the most right singularity in
the complex momentum plane in the solution of the in-
tegral equation for t-channel partial waves with vacuum
quantum numbers [1]. In order to find out the region in
which the LLA can be applied, radiative corrections to
the equation's kernel must be calculated. The calcula-
tion of these corrections was started by Lipatov and one
of the authors (V.F.) in Ref. [2], where the calculation
program was presented. The program makes strong use
of the gluon Reggeization proven in the LLA [1. As a
necessary step in this program one needs to calcu ate one
loop corrections to the particle-particle-Reggeon (PPR)
vertices. Here the Reggeon is the Reggeized gluon and
its trajectory in the LLA is given by

j(t) = 1+(u(t),

gt dk
~(t) = N

16ms k2(q —Ic)2
' t= —q (3)

The infrared divergence in the gluon trajectory (3) is can-
celed by the divergences in real gluon emission, so that
the integral equation for the t-channel partial waves with
vacuum quantum numbers [1] is free of singularities. In
order to remove the infrared divergences at intermediate
steps we use the dimensional regularization of Feynman
integrals:

d2+~p

(2m) (2~) +' e=D —4,

where D is the space-time dimension (D = 4 for the
physical case). Then we get

~(t) —g2N ( t) 2
—2

(4~) g I'(D —3)
(5)

In the case of pure gluodynamics one loop corrections
to the gluon-gluon-Reggeon (GGR), as well as to the
Reggeon-Reggeon-gluon vertices, were calculated by Li-
patov and one of the authors (V.F.) [3, 4].

In the case of real QCD there is a quark contribution
to the vertices; the quark loop contribution to the GGR
vertex was calculated in Ref. [5]. In addition to that, in
the real QCD an extra (compared to the pure gluody-
namics case) vertex appears: the quark-quark-Reggeon
(QQR) vertex. The existence of this vertex allows us to
check the validity of the assumption that the high energy
behavior of amplitudes with gluon quantum numbers in
the t channel and negative signature is governed by the
Regge pole contribution not only in the LLA, but beyond
it as well. According to this assumption the amplitude

A'H'
A&& of a process A+ B ~ A'+ B' takes the factorized
form

S ( 8 ~(t) t' —s l
~(t)

+I&-t)
(6)
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Here Ps is the projection operator into the octet color
state with negative signature and i is the color index of
the Reggeized gluon with the trajectory j(t) = 1 + w(t),
given by Eq. (3) in the lowest order of the perturbation
theory. For the PPR vertex I'&,& in the helicity basis we

get, to lowest order,

I"„,„=g(A'iT'iA)b „, „, ,

where (A'iT'iA) represents the matrix element of the
group generator in the corresponding representation [i.e.,
fundamental for quarks T; = t; = ~2 and adjoint for glu-
ons (T;) &

—— i f; s—] and Ag is the helicity of particle A.
We assume that the polarization states of the scattered
particles are obtained &om those of the initial particles
by rotation around the axis orthogonal to the scattering
plane. From Eq. (6) we may observe that the behavior of
the three types of amplitudes (gluon-gluon, quark-quark,
and quark-gluon elastic scattering amplitudes) is deter-

mined by two vertices GGR and QQR; therefore, one of
the amplitudes can be expressed in terms of the others,
thus giving a nontrivial test of the validity of representa-
tion (6).

Contrary to Eq. (7), in higher orders the PPR vertex
I" can contain another spin structure. Because of parity
conservation it can be written in the form

r„,„=g(x'iT*ix) [s„„,„,(1+r„"„')+ a,„,„,r„'„'],
(8)

if relative phases of states with opposite helicity are cho-
sen appropriately [see Refs. [4, 5] for gluons and Eq. (36)
below for quarks]. Here I'(+) and I'( ) respectively stand
for helicity-conserving and -nonconserving loop contribu-
tions to the vertex.

One loop corrections to the GGR vertex were calcu-
lated in Refs. [3—5]. The contribution of the gluon loop
can be written in the form (8) with

(+) , (-t)-. — r (2 ——,) r'( —, —1)
r~~(gluon loop) = Ng

(4x) ~

D') &D ) 7 1
x D —3 3 —— —2 ——2 + 1

2) ( 2 ) 4 4(D —1)

(),(—t) —.—' r (3 ——,) r' (—, —1)
r~~(g u loop) = Ng n

( (

where Q is the logarithmic derivative of the I' function:

For the quark loop contribution we have, in turn [5],

r&&(quark loop) = ~ ) V+
('-) 2g ~ (f)

(4x) ~

(12)

where

(~) ( D ) ' dzz(1 —z)V' =-I
i

2- —
i2) -2-2

fm' —tz(1 —x)

f
dz dx e(1 —z —z ) / (3 —D) ( D~ z», (1 —*,—*,)t)

(2 —zg —z2) +
i

2 ——
) m —tz~xt) jfD —tXyX2f f

(13)

and

(y) f D) ' ' dzgdx28(1 —xq —x2)zqz2(1 zl x2)V''=ri3 ——it D2)
m,f —tXQX2

(14)

For massless quarks the two vertices become, respectively

[5).

r&&(quark loop) = ~ (—t) &(+) ,r (2 ——,) r' (—,)

(4~) ~

(15)

r&(&(quark loop) =— ,'(-t)- '
(4vr) '

r (3 ——,) I '
(—, —1)

r(D)
In this paper we calculate the QQR vertex in the one
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loop approximation and check the validity of describing
amplitudes in terms of the Regge pole contribution, i.e.,
representation (6). In Sec. II we find the QQR vertex by
calculating the quark-quark scattering amplitude. Com-
bining the result obtained with the one for the GGR ver-
tex, Eqs. (8)—(14), and the Regge trajectory (5), we get,
with the help of Eq. (6), a prediction for the quark-gluon
scattering amplitude. In Sec. III we perform an indepen-
dent calculation of this amplitude and check the consis-
tency of the approach by comparing the result we arrive
at with the predicted one. Some conclusions are illus-
trated in Sec. IV.

II. QUARK-QUARK-REGGEON VERTEX

We will extract radiative corrections to the QQR ver-
tex from the amplitude of the quark-quark elastic scat-
tering. The calculation can be carried out through usual
methods starting from the Feynman diagrams for the
quark-quark scattering. However, for our purposes it
is more convenient to use the method based on the t-
channel unitarity relation. This method was used in
Refs. [3—5] to calculate analogous corrections to the GGR

FIG. l. Amplitude of the elastic scattering process A+
B ~ A'+ B' with the two particle intermediate state in the
t channel.

vertex. Here its application allows us to demonstrate
the factorization property of scattering amplitudes in the
most economic way.

From the t-channel unitarity point of view, it is nat-
ural to decompose an amplitude according to intermedi-
ate states in the t channel. In the one loop approxima-
tion we need to consider the two particle intermediate
state in the t channel. We will schematically represent
in Fig. 1 the amplitude of the elastic scattering process
A(p~)+B(p~) ~ A'(pg )+B'(p~ ) with the two particle
intermediate state in the t channel and use the notation

s=(pA+pB) &= (pA pB')', e=pA pA' =pB' pB =pc' pc t =92

2 — 2 2 — 2
BA = (pA +pc), uA = (pA —pc'), sB = (pB + pc') ) uB = (pB —pc)

p~ and p~~ being the momenta of the two intermediate particles.
Instead of calculating the t-channel discontinuities using 2w6(p —m ) for the intermediate particle line, we will

calculate the contribution of diagram in Fig. 1 using full Feynman propagators for intermediate particles [3, 5]:

g a ) -„d pc& p~ 6' '(p~+ &
—p~ )&~c &ac

(2z)~i(p~~ —m~~+ is) (p~~, —m~~+ ie)

Here the sum runs over kinds of intermediate particles,
their polarization, color, and fiavor states. As already
mentioned in the Introduction, the space-time dimension
D is not equal to 4, so that we can use the dimensional
regularization for removing both in&ared and ultravio-
let divergences [4]. The numerical coefficient pcs~ de-
pends on the kind of intermediate state in the t channel,
which can be a gluon-gluon or quark-antiquark state: in
the erst case g~~ ——

2 because of the identity of glu-
ons, while in the second one gag ———1 because of Fermi
statistics. An arbitrary polynomial in t could be added
to the result of integration in Eq. (18) because it does not
change the t-channel discontinuity, but such terms would
have a wrong asymptotic behavior incompatible with the
renormalizability of the theory (cf. [1,4]). Nevertheless,
for massive quarks, some uncertainty still remains. We

can add to the right-hand side (RHS) of Eq. (18) terms
with the pole structure in t. In the case of pure gluo-
dynamics such terms were absent in our regularization
scheme because of a lack of appropriate values with mass
dimensions. Evidently, these terms are connected with
renormalization and will be considered at the end of this
section.

A. Contribution of the quark-antiquark
intermediate state

Let us first consider the siinpler case of the quark-
antiquark pair in the t channel. In this case the ampli-
tudes Az+z+ and Agz, in Eq. (18) are the quark-quark
scattering amplitudes taken in Born approximation. For
such amplitudes we get
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where the second term contributes only for scattering of
identical particles.

We are interested in the radiative correction to the
QQR vertex when the Reggeon is a Reggeized gluon;
therefore, one needs to project the amplitude (19) into
the octet color state. First, we use the completeness rela-
tion for the generators of the fundamental representation
of SU(K),

1 1t'Bt's+ b Ph~s = -h sbP~,2N 2

and obtain

N' —St'pt's ——— t'st'—p+ h shp~ .
2N2

Successively, introducing the definition

(2O)

(21)

~s AAB = (A'IT'IA)(&'IT'I&) (As)AB (22)

which will be used in the following, and using the result
(21) we have

(As)AB u(pA')W"u(pA) I l u(pB') Yp&(pB)
A'B' p g

«)
4B „&g'~+ &(pB')T &(pA) I I

&(pA )y&u(pB) .
N qu)

(23)

In order to apply the dispersion approach, it is con-
venient [4, 5] to decompose the amplitudes AAA&+ and

ABz, entering Eq. (18) into the sum of two terms which
are schematically shown in Fig. 2:

FIG. 3. Contributions to the amplitude of Fig. 1, com-
ing from the product of (a) asymptotic-asymptotic parts,
(b) asymptotic-nonasymptotic parts, (c) nonasymptotic-
asymptotic parts, and (d) nonasymptotic-nonasymptotic
parts.

we are interested in the radiative corrections to the QQR
for the Reggeized gluons, i.e., for the case of negative sig-
nature; therefore, only diagrams in Figs. 3(a)—3(c) can
contribute. The asymptotic contributions take the form

As" = u(pA ) u(pA) &(pc )p'A&(pc)(
( )

A c (2gz) p'B

AC S

(25)

AA"c =A"Ac (~)+A"Ac (na) (24) and

and the analogous expression for ABB&+. The first term
on the RHS of Eq. (24) contains the asymptotic contri-
bution for the Regge kinematics, sA —uA )) t, while
the nonasymptotic part contains the remaining ampli-
tude terms. When performing the decomposition (24) on
the RHS of (18), we are left with four contributions to
AAABB, corresponding to the diagrams in Fig. 3. Only the
6rst three of them are important; instead the contribu-
tion of diagram (d) can be disregarded. In fact, the essen-
tial values of variables sA and sB are small (sA sB t)
for the contribution of this diagram. Consequently, only
transverse [with respect to the (pA, pB) plane] compo-
nents of momenta pc and pc can be taken in the prop-
agators of intermediate particles, which means that inte-
grals over 8A and 8~ are factorized and can be evaluated
by residues; as a result, the contribution of the diagram
in Fig. 3(d) is purely imaginary in the Regge region and
corresponds to positive signature partial waves [4]. Here

(as) (2g') SA
u(p&)pB&(p~ )u(pB )—u(pB) .

S

(26)

ii(PA ) u(PA) = 4,~„, ,

ii(PB )—"u(PB) = 4,i, ,

where AA is the helicity of particle A. It is assumed
that the polarization states of the scattered particles are
obtained &om the ones of the initial particles by rotation
around the axis orthogonal to the scattering plane. That
implies

We always take a very large value for s (in contrast to sA
and 8~, which are integration variables and can be small
as well as large); therefore, we have, in the helicity basis,

(. oi p'xpp'„= exp
I
irio

I
pp, ri =, —

Ip x p)
(28)

v-v~
+ ! na ~]

FIG. 2. Decomposition of the elastic scattering amplitude
in two parts, asymptotic and nonasymptotic, respectively.

where p and p' are, respectively, the polarization wave

functions for initial and scattered particles and 8 is the
scattering angle.

Let us note that if we write the asymptotic contribu-

tion (As
'

)A& [see Eq. (25)] in the helicity basis for
particles A and A' using the first of Eqs. (27), we arrive
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at the same expression as for the process in which A and
A' are gluons [5].

Taking into account the asymptotic parts (25) and (26)
and decomposition (24), from Eq. (23) we obtain the fol-

lowing projections for the nonasymptotic parts into the
octet color state:

Eqs. (20)—(22) of [5]],

( )~
A'B' 22 '

I
&s'

I
=6~.,~ .6~,~ I 1»PB).&,'.'(q)

JAB ' ( t j f
(32)

&
A'C" PV

= g' u(pA )y"u(pA) u(pC )p.u(pC)
) AC t

+ -(p )~" (p.) -(p )~. (p )
6AC

N

(29)

t' (n~) I&
CB' PV

=g' 6(pC)~"u(pC), &(pB)~ &(pB)

pv pv + (PAPB + PBPA)g"V g~ + (31)

has been used and J means transverse to the (pA, pB)
plane. We neglect terms containing u(pAt)pAu(pA) or
u(pBt)p'Bu(pB) because they are proportional to the cor-
responding masses and therefore cannot give a contribu-
tion of order s/t to the amplitude (18).

Inserting Eqs. (25) and (26) into Eq. (18) we get,
for the contribution of the diagram in Fig. 3(a) [cf.

6CB p t+ ~ u(pB )~"u(pC) u(pC)~. u(pB)
tCB

(30)

where the decomposition

where the summation is performed over quark Bavors and

(f) i d p tr [&"g+ m j)p"(p'+ q+ mt)]
2 (2m) B (p2 —m2~ + is) [(p + q)

2 —m2f + is]

4r (2 ——,j
( gl vq—+ qpqv)

(4~) ~

X fdzz(1 —z)
(33)

[m2~ —q2z(1 —z)]

Here the calculations practically coincide with those of
Ref. [5] because, as we previously noted, the asymptotic

contribution (As( 'l)AAcc [and (As( 'l)BBcc as well] in the
helicity basis for particles A and A' (correspondingly B
and B') coincides with that of the case considered in
Ref. [5], where particles A and A' (B and B') are gluons.

The contribution of the diagram in Fig. 3(b) is ex-

pressed by the product (A( 'l)AAcc x (A(" l)ccBB. Using
Eqs. (25) and (30) and keeping only terms of order s we

find

&s = 6&~,&„, N
"u(pB —)V„(pBtq)u(pB) t(

(b) g 8Pg

(34)

where

dip q" (y'+ q'+ mB)p„{y'+ mB)p„
(2s') (p —mB + is)[(p+ q)2 —mB + is][(pB —p) + is]

' (35)

The integrals appearing in Eq. (35), as well as all the integrals appearing in Eq. (],8), have been classified and
calculated long ago [6] and are presented in the Appendix. Let us accept that, by definitjon, states with opposite
helicity are connected by the relation

p X p
p xp

which, in the helicity basis, leads to

~(pA )u(pA) = 2mA4, A iv t4, —A„, ~

With such a definition we obtain

(36)

(37)

, u(pB )Vp(pB q)u(pB) =
4~ ~ 0 [mB —z(1 —z)t]

D —1 2 . 5 —D
+(D —t)z(1 —T) — mtt —itt tmttv' —t,

)
.

) D —3 ' ~'D —3 (38)

Let us pay attention to the fact that the contribution given by Eqs. (34) and (36) does not depend on the nature of
particle A.

Finally the contribution (As' )AB of the diagram in Fig. 3(c) can be obtained from Eqs. (34) and (38) by the
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substitution A ++ B. Summing up the three contributions and comparing the sum A( l + A(~~ + A('i with the
factorized form (6), where the vertices are defined through Eq. (8), we find

r&&(qq state) = I'
l

2 ——
l

—2)(+) g2 ( D i ' dxx(1 —x)
(4 )' i 2& l y

' [ ~-*('-*)']' '

t
l

+ (D —3)x(l —x)
l

—m2&
1 ' dx ( 1 (D —1)

2N s [m2 —x(1 —x)t] ' (D 3 ~ (D —3)

r&&(qq state) =(—) ,g2 r (3 ——,j (5 D)- dz
mph t-

(4z)
—. 2X (D —3) 0 (m x(l x)t]

—— (40)

We expect that for massless quarks only the helicity-conserving part of the vertex survives and in fact in this case
Eqs. (39) and (40) reduce to

I'qq(qq state)l, p =(+) g' -, t D) r'( —,j r (3- —,j r'( —, —ll t'

( t) ~ ' —2I'l2 ——
l g + ' 2+

(4 )-' i 2r r(D)» r(D-2)
~ 2(——2) )

(41)

r&&(qq state)
l

—p = 0 .(—)

Here nf is the number of quark Bavors.

(42)

B. Contribution of the two gluon intermediate state

Now let us consider the contribution of the two gluon intermediate state in the t channel to the QQR vertex. The
general lines of consideration are the same as before, but now we need to take the quark-gluon scattering amplitude
in the Born approximation for the amplitudes A+&&+ and AgP& in Eq. (18). Again, as in the quark contribution case,
we are interested only in parts of the amplitudes which correspond to the octet color state in the t channel, because
our Reggeon is the Reggeized gluon. Moreover, we need to keep only the F-type color octet for intermediate gluons,
because only this color state survives in the Regge asymptotic regime. Consequently the asymptotic contribution
A( 'l in the decomposition (24) can contain only this color state, which is, therefore, the only state that contributes
to the essential diagrams in Figs. 3(a)—3(c).

This part of the quark-gluon scattering amplitude A&+&+ can be written as (cf. Ref. [5])

(A )&& ( g ) —
( ) ty PA pc'+m&p p SA+pc™&y

2
i u~ —m~ s~ ™~

t+—[(pc+pc') c'ec+ 2/c(ec q) —2/c (ecq)] u(pA) . (43)

In contrast to Ref. [5], here gluons are intermediate particles, so we do not fix their gauge. Instead we write the
asymptotic parts of the amplitudes in a forxn similar to the one used in Ref. [4] for the gluon-gluon scattering
amplitude. The possibility of such a choice comes Rom the fact that the high energy behavior of both amplitudes is
determined by the t-channel exchange of a gluon which Reggeizes. In the helicity basis [see Eq. (27)] we have

(
~'C"I

(as) 2 ACT,
A8 = g bp„g„,ec e&r..(pc, pc', p~)

AC
(44)

(
CB'

(as) 2 yg gAs g 4s,A c c r~o (pc, pc pa)C'B

with

(s~ —u~) f21'
(pc, pc, p~) = g ——2

I

—+,
l
p~qt it s~ —m2&p

+2I -+ . I p~q +2l
( t u~ —m'„) (s~ —m~

1
C7 CT

u~ —m~ j, l»p~

(45)

(46)
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and

9=pc' pc ~

2 2
sA (pA +pc) ) uA = (pA pc') (47)

I
It is vrorth to note that the tensor F can be considered as the generalization of the corresponding tensor used in
Ref. [4], for the gluon-gluon scattering amplitude, to the case for which p2A

——pA2, ——m2A g 0.
In correspondence to the form we choose for the asymptotic term, the nonasymptotic contribution A(" ), taking

into account Eq. (27), becomes

I &s = ec ecu(pA'))t (pc, pc'pA pa)u(pA)
(na) ( g) en' n-

Ac 2
(48)

CB'
(tg( )l(

) C'B

where

( g ) en n'—
2

eC ec u(pB' )X~'cr(pC'& pC i pB& pA)u(pB) (49)

&a»& ..(Jc+Jc)'
gc)Pc'iPA)PB) =

l

7'— + 2g
s ) t

~
t

(PA-q) l
sA —mA

(pA —q)» pcs w dew
2 2 2

uA mA ) uA mA SA mA

Let us pay attention to the fact that the nonasymptotic parts (48) and (49), as well as the whole amplitude (43),
do not turn into zero under the substitution ec ~ pc (eci ~ pc~ ), but become proportional to the scalar product
ec pc (ecpc), i.e., they turn into zero for transverse polarization vectors ec (ec) only. It is well known that such
properties of /CD amplitudes lead to the necessity of introducing the Faddeev-Popov ghosts in covariant gauges.
But, contrary to the nonasymptotic parts, gauge invariance properties of the asymptotic parts (44) and (45) of the
amplitudes on the mass shell pzc = pzc, ——0 are the same as in quantum electrodynamics: these parts turn into zero
under the substitution ec ~ pc (ec~ ~ pc~ ) independent of the value ec~ (ec ), due to the properties of the tensor

(pc, pc, pA) on the mass shell pc = pc, ——0,
I

I'ua' (pc) pc') pA) pC = I'cro' (pC) pC'& pA) pC& = 0

The gauge invariance properties discussed above enable us to use the Feynman summation over polarization states of
intermediate gluons,

) e(&)e'(&)— (52)

without introducing the Faddeev-Popov ghosts, when we calculate the t-channel discontinuities of the contributions
of the diagrams in Figs. 3(a)—3(c). It is easy to see that an addition of extra terms, containing k„or k„, where k is
a gluon momentum, to the RHS of Eq. (52) does not change the discontinuities, which are therefore gauge invariant,
as they should be. We will use the Feynman summation (52) for calculating the whole contribution of diagrams of
Figs. 3(a)—3(c). According to the discussion at the beginning of Sec. II, a gauge dependence can appear here only in
terms connected with the renormalization, which will be considered at the end of the section.

In the case of the diagram in Fig. 3(a) we need to calculate the product of the asymptotic parts (44) and (45). The
essential region of integration in Eq. (18) for large s and fixed t in this case is determined by the relations

p ~ p ) f + 8A ~ ttA + 8, f + SB ~ %LB + 8 .
S

In this region, from Eq. (46), we find

(53)

I

(pc, pc, pA) I'. (pc, pc, pa)

(D —4) 4 168
(uA sA) (uB sa) + 2 (sAsa + uAuB) +

2 ( 1 1 ) ( 1 1

(sA —mA uA —mA) (sa —ma ua —ma)
1 1 ) qua —ma sa —mal

(sA mA sa —ma uA —mA uB —ma) 5 sA ™A uA A™)

t ) gsa —ma ua —ma) g t )
(54)
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(55)

As to be expected, this expression difFers from the corresponding one of Ref. [4] only by mass terms, as well as I
does.

The integrals appearing in Eq. (18), after substitution of Eqs. (44), (45), and (54), are presented in the Appendix.
By means of these integrals one can give the contribution of the diagram in Fig. 3(a) the form

x'a' ~&4
bg„p„,bp ), ,

—a(s, t) + b a(mA, t) + b,a(mB, t)
AB (4~)f ' " ' t

Here a(t) is the contribution for the massless case (it is the same as in Ref. [4]):

r(2 ——,) r'( —, -1)
(-t) --'r(D —2)

( D) (D ) 1 4
+27(

~

3 ——
~

—4y
~

——2
~
+ 21i/J(1) +2) (2 ) 2(D —1) D —4

where Q(z) is defined in Eq. (11), while ha(m2, t) is mass dependent and becomes zero at m = 0:

( Db
&a(m', &) = I'

~

3 ——
~

dxgdz28(1 —zg —z2)2)
t(1 —x,)' ( 1

X D D

( [x~m2 —z2(1 —zy —z2)t] ' [(—t) (1 —z] —z2)]

2m'xl
D

[z', m' —z, (1 —z, —z, t)]

(56)

(57)

The essential point in Eq. (50) is the separation of dependences on mA and mB. Such separation is a vital necessity
for the interpretation of the amplitude in terms of the Regge pole contribution [see Eq. (6)].

Let us evaluate the contribution of the diagram in Fig. 3(b). It is expressed in terms of the integral (18), where we

need to use the amplitudes (44) and (49). The essential region of integration in Eq. (18) for this case is

@~r P~, ~8B ~~~ ~t gg ~~~r2 2 (58)

In this region &om Eqs. (46) and (50) we obtain
I

(PC, PC, PA)u(PB)y (PC, PC, PB PA)u(PB)

(, ) t
2

mB —(2mB —&)—P'A l
sB —m2B s )

2 (
(

mB —(2mB —t) —
I

—(D —2)
I 2 +S(A ') I(c

uB —m2B ( s ) (uB —mB

4 +C'S A I(APC' 0 WAS C~ +CPA+ 2 + 2uB —m& sB —mB

Pc
sB —mB)

(59)

An important property of this expression is its independence on mA. Remembering that the tensors I' (pc, pc, pA)
for the cases when particles A and A' are gluons or quarks diHer only by mass terms, we conclude that the contribution
of the diagram in Fig. 3(b) does not depend on the nature of particles A, A if it is written in the helicity state basis
for these particles. With the help of the Appendix, where integrals appearing in Eq. (18) after substituting Eqs. (44),
(49), and (59) are presented, and using the relation

u (PB') (@BdA S AS B8u (PB) = u (» ) [(& —4mB) SA +»mB] u (PB) (60)

which is a result of a simple algebra, we obtain for this contribution

2s g ~1 (3 —
2 ) dxqdx28 (1 —x) —x2)

(4s) ' «[z,m2B —x2(1 —xq —x2)t]

x —
~

—2mBxy — [mBxy —x2 (1 —x) —x2) t]
~

+ mB x) —
~

——1
~

xy u(pB) . (61)D-4 ' ) . P
The contribution of the diagram in Fig. 3(c) can be obtained from Eq. (61) by the substitution A ~ B, A' ~ B' The.

total contribution of the two gluon intermediate state in the t channel to the asymptotic of the quark-quark scattering
amplitude with the octet color state and negative signature in the t channel is given by the sum A( ~ + A( ~ + A(').
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Comparing it with the representation (6), we are once more convinced that the Regge trajectory ur in the lowest order
is given by Eq. (5) and find the two gluon intermediate state contribution to the quark-quark-Reggeon vertex. For
the helicity conserving part of this contribution [see Eq. (8)], performing the decomposition

rqq = rqq l-.= +~rqq(+) (+) (+)

with the help of Eqs. (27) and (37) we obtain

g2N r (2 ——,) r' (—, —1) I
I'qq (gg state) ] o —p

—— o (D —3) Q l
3 ——

l

(4 )- (-t)'--r(D-2)
(D l 1 2 7

-20l —-2 I+0(I) +(2 y 4(D —1) D —4 4

(62)

(63)

and

Al'g& (gg state) = I'
~

g ——
~ J detdasg (1 —et —es)(+) g2N ( D))

(47r) '

zi (D —4) ) ( [zimq zz (1 zi z2) t]
—

g

p
[
—z2 (1 —zi —z2) t] ' )

For the helicity nonconserving part we have

mzq
l
2zi+ (D —2)(D —3) &'4 l

p 0

[z',mq' —z, (1 —z, —z2) t]'- —.
(64)

(—) . g2N ( D t dzidz28 (1 —zi —z2) fD
I'qq (gg state) = i —I'

l
3 ——

l
mqg —& zg — ——1 x

(4~)- p () [z2imq2 —z2 (1 —zi —zz) t]s
(65)

It vanishes in the zero mass limit, as it should.

C. Renormalization of the QQR vertex

It was explained at the beginning of this section that
we can add a terxn with the pole structure in t to the
RHS of Eq. (18) without changing the t-channel discon-

tinuity and without spoiling the renormalizability of the
theory. That means we can add an expression which is

equal to the Born amplitude with some constant coef-
ficient. In principle, we could put on the helicity con-

serving part of the QQR vertex some condition (of the

type of I'qq l, „g= 0) which would be a definition of
the renormalized coupling constant. But it is useful to
have a possibility to express the QQR vertex in terms
of the coupling constant in commonly used renormaliza-
tion schemes, such as the modified minixnal subtraction
(MS) scheme. In order to have such a possibility we need
to connect our results to those which are obtained by
the usual approach, in terms of Feynman diagrams. In
the diagramxnatic approach the terms under discussion
may come &om quark-gluon vertices and gluon polariza-
tion operator at t = 0 and kom self-energy insertions
into external quark legs. It is easy to observe that the
first two contributions in the Feynman gauge are taken

A Feynman gauge did appear here because we have used the
Feynman summation over polarization states of intermediate
gluons (52) for calculating the contributions of Figs. 3(a)—3(c).
As explained after Eq. (52), a gauge dependence appears in
terms connected with the renormalisation (and in these terms
only).

into account properly in Eqs. (32),(34) and (55),(61), re-
spectively. So, we need only to consider the self-energy
insertions into external quark legs. It xneans that in the
one loop approximation we need to add to the helicity
conserving part of the QQR vertex the value

rqq(self-energy) =-i+) &~(A
(66)

where ZQ is the mass operator of the quark

xl (68)

The total one loop correction to the helicity conserving
part of the QQR vertex is given by the sum

I'qq ——I'qq(qq state) + I'qq(gg state)(+) (+) (+)

+rqq(self-energy),(+) (69)

where the first term on the RHS is given by Eq. (39), the

z ( -)
2N

d+k p" (y' —g+ mq) p„
(2n')ai (k2+ is) [(& k)z m2q+ is]

(67)

An elementary calculation gives
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second by Eq. (62), and the third by Eq. (68). For the
helicity nonconserving part we have only contributions of
the first two types, which are given by Eqs. (40) and (65)
correspondingly.

In all the above formulas we used the nonrenormalized
coupling constant g. Therefore expression (69) for D -+ 4
contains singularities coming from ultraviolet as well as
in&ared divergences of Feynman integrals. Let us note
here that the helicity nonconserving part of the vertex
does not contain the ultraviolet divergences. We can re-
move the ultraviolet divergences expressing g in terms of
the renormalized coupling constant, for example, in the
MS scheme:

4 —D (11 2 ( g„g=g V
' I+~ —~ ——~y I

& (4~) ~ (D —4)

D —4(
x 1+

~

ln ——4(1)
~

+''') (&o)
2 i 4x )

where g„ is the renormalized coupling constant at the
normalization point p and Q(z) has been already defined
[see Eq. (11)].

III. CHECK OF THE
APPROACH CONSISTENCY

Now we have both the gluon-gluon-Reggeon vertex
I'&& and quark-quark-Reggeon vertex I'& in the one

loop approximation. The 6rst of them was calculated
by using the gluon-gluon scattering amplitude as a tool
and the second via the quark-quark scattering amplitude.
The process of quark-gluon scattering has not been con-
sidered up to now. But the Reggeon contribution to
this amplitude [see Eq. (6)] is expressed in terms of the
GGR vertices and QQR vertices and the gluon trajectory
1 + a (t), which is given in the one loop approximation
by the formula (5). It allows us to check the validity
of representation (6) for the high energy behavior of the
amplitudes with gluon quantum numbers in the t channel
and negative signature.

It can be done by calculating the quark-gluon scat-
tering amplitude and comparing the results of calcula-
tion with the expression given by formula (6) in terms
of the known trajectory 1+ (d (t) and vertices I'p& and

I'&&. But really we need not perform any new calcu-
lation. The method of calculations used for gluon-gluon
and quark-quark scattering amplitudes allows us to check
the validity of the expression (6) simply by keeping an

eye on the calculations we performed. Our starting point
in calculating any amplitude is Eq. (18). In each case we

have two gluon and quark-antiquark intermediate states
in the t channel. An essential step in the calculation is
the decomposition of the amplitude entering in the in-

tegrand of Eq. (18) into the sum (24) (see Fig. 2) of
asymptotic and nonasymptotic parts. An important fact
is that a product of nonasymptotic parts in the integrand
in Eq. (18) cannot give a contribution of order s to an
amplitude with gluon quantum numbers in the t chan-
nel and negative signature which we are interested in, so
we are left with contributions presented schematically in

Figs. 3(a)—3(c).

The next important fact is that the asymptotic parts
of the amplitudes (Asi

'
)z& and (As 'l)g&, can be cho-

sen in a factorized form. Of course, this fact is strictly
related to the case in which the high energy behavior of
the amplitudes is determined by gluon exchange in the
t channel. We choose the asymptotic parts for the case
of a quark-antiquark intermediate state (CC') in the t
channel in the form

x'e'
A8 =

] ~%A A~I & jpC' ~& pC 71

in the helicity basis for particles A and A', independently
of whether they are gluons [see Eqs. (17) and (13) of
Ref. [5]] or quarks [see Eqs. (25) and (27) of this paper].
Therefore, in this intermediate channel the contribution
of the diagram in Fig. 3(a) does not depend on the kind of
particles A, A' and 8, 8' [see Eq. (32)]. For the same rea-
son the contribution of the diagram in Fig. 3(b) [Fig. 3(c)]
depends only on the kind of the particles 8, 8' (A, A').
Taking into account that these diagrams contribute only
to the vertices I'&&, and I'&&, correspondingly, we con-
clude that the contribution of the quark-antiquark inter-
mediate state in the t channel to an amplitude of any of
the processes under consideration can be put in the form
of Eq. (6), where the vertices I'&+&, (I'g&, ) do not depend
on the kind of particles 8, 8' (A, A').

For the case of the two gluon intermediate state
the conclusion is the same, although the properties of
the asymptotic contributions are slightly changed. We
choose these contributions in the form of Eqs. (44)—(46)
and here the dependence on the kind of the particles A, A'

(8,8') enters through the masses of these particles. 2

Of course in the Regge asymptotic limit for the am-
plitude A&+g (Ag&+), which means for s~ u~ )) t
(s~ u~ )) t), this dependence becomes negligible, but
we need to integrate over sg (u~) in Eq. (18). There-
fore we choose these asymptotic contributions in such a
form which conserves the analytic properties of the exact
amplitudes.

An essential property of asymptotic parts (44) and (45)
is that the contribution of the diagram in Fig. 3(a), being
calculated in terms of these parts, is presented in the form
of Eq. (55), where the dependences on the masses mA and
m~ are separated. Therefore, all the dependence on the
kind of particles A, A' (8,8') coming from this contribu-
tion is included into the vertices I' f&, (I'RB&, ). The same
is true for the case of the contributions of the diagrams
in Figs. 3(b) and 3(c) as well, because the contribution of
the diagram in Fig. 3(b) [Fig. 3(c)] depends only on the
kind of particles 8, 8' (A, A') [see Eq. (61)],just as in the
case of the quark-antiquark intermediate state. Conse-
quently we come to the same conclusion as for this case.
Since the contributions of the quark-antiquark and two
gluons intermediate states enter into the PPR vertices
additively, it means that the high energy behavior of all
QCD elastic scattering amplitudes with gluon quantum
numbers in the t channel and negative signature are pre-
sented by the Regge pole contribution (6).

Let us note that, on the contrary, the dependence on pA
——

m~ is negligible in Eq. (66).
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IV. CONCLUSIONS

We calculated one loop corrections to the quark-quark-
Reggeon vertex in the /CD, where the Reggeon is a
Reggeized gluon. Taking into account this vertex to-
gether with the gluon-gluon-Reggeon vertex calculated
before, we get Regge pole contributions to gluon and
quark elastic scattering processes. Since nonlogarithmic
terms of these contributions to the amplitudes of the
three processes (gluon-gluon, quark-quark, and quark-
gluon elastic scattering) are expressed in terms of the
two vertices, these amplitudes have to satisfy nontrivial
relations if the Regge pole only contributes to the large
8 behavior of the amplitudes with gluon quantum num-
bers and negative signature in the t channel. We have
checked that these relations are satisfied; i.e., the repre-
sentation (6) of these amplitudes in terms of the Regge
pole contribution is applicable beyond the leading loga-
rithmic approximation for the Regge region. The results
obtained are needed for the next step in the calculation
program [2] for corrections to the LLA: calculation of two

loop corrections to the gluon-Regge trajectory. In the
two loop approximation a part of the corrections to the
trajectory comes &om two particle intermediate states in
the two channels. The calculation of this part can be
performed by using the results presented. It will be done
in a subsequent publication.

APPENDIX

All integrals appearing in Eq. (18) were classified
and calculated earlier by 'tHooft and Veltman [6]. We
present them here in our notation for the reader's con-
venience only.

Let us first consider the case of a quark-antiquark in-
termediate state. To obtain the contribution of the dia-
grams in Figs. 3(a) and 3(b) we need the integrals

~

~

d p
Igg ———i

(p' —m' + ie) [(p + q)
2 —m2 + ie]

D ( Di dx=+& I' 2 ——
2 ) p [m' —z(1 —z)t]'

(A1)

(p2 —m' + ie) [(p+ q)2 —m2 + ie]
qP= —Iqg,
2

(A2)
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(p2 —m'+ ie) [(p+ q)2 —m2+ ie]

D&t dz=7r~l' 2 ——
2 J p [m' —z(1 —z)t]'

g"" m2 —z(1 —z)t
x q"q"z

2 —D

and

(A3)

~

~ ~ ~

dDp
Iq3~ ———i

(p —m + ie) [(p + q) —m + ie] [(pa —p) + ie]

P(2 D) 1 dz
7r 2 2

[(m2 —z(1 —z) t]
(A4)

d Jp"
(p2 —m' + ie) [(p + q)' —m + ie] [(pa —p) + ie]

( 2 ) [p& (D 4)zq&]
2(D —3) p [m2 z(I z) t]

(A5)

d pp"p
(p2 —m + ie) [(p + q) —m + ie] [(pa —p) + ie]

m I'(2 ——) dx
2 D 2 D 3 p [m2 —z(1 —z)t]

(2papa —(D —4)z(paq" + q"pa)

+(D —4)(D —3)z q„q" + (D —3)g""[m —z(1 —z)t]), (A6)

where q = p~ —p~ ——p~ —p~ and t = q
Let us now consider the case of two gluon intermediate state. To get the contribution of the diagram in Fig. 3(a),

in addition to the integrals Igq, I&&, and I&&, we need
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I

D

2 I

D

2 I

dp~

2 ~ IIG3g ———Z

(k2+ iE) [(k+ q)2+ ie] [(p~ —k)2 —m2+ ie]
1 1

= — —:r~a——~f f
(k' + ie) [(k + q)' + ie] [(p~ —k)' —m' + ie]

o f Dlt ' '
dp2= —x ~ I'

I
3 ——

I (zgp~ —z2q"),
2 J p p

G3
dDkk~kv

(k2 + ie) [(k + q)
2 + is] [(pgy

—k) —m + is]f
~P2 „„.. a""

(zip~ —»q") (za'a —»q )—2) p p ps f 4 —D
G3

where

R~s ——m z~ —z2(1 —zy —z2)t,

(A7)

(A8)

(A9)

(Alo)

and integrals I~s~, I&s&, and I&s& which are obtained from Eqs. (A7)—(A9) by replacing p~ and q with pg and —q,
respectively.

We also have to consider the more complicated integral

d k

(k + ie) [(k + q) + ie] [(k + p~) 2 —m& + ie] [(k —p~) 2 —m& + ie]
'

which in the asymptotic region

s = (pg + p~) )) t mg —m~
2 2

can be written as the sum of three terms:

IGo = Io + &a + &~

Here Io is IGo in the massless case

(A11)

(A12)

(A13)

where Q(z) = &(') and I2 ——Iq2 (m = 0). EB is given by
r'(~)

z ~r(3 —~2)
' du

CLZ—8 p VL p
(A14)

and L~ can be obtained Rom L~ by substituting m~ with m~.
Finally, substitution p~ ~ —p~ = —(p~ + q) in Eq. (All) leads to the last integral we need: it can be obtained

from IG~ simply by changing s with u = —s. At last, in calculating the contribution of the diagram in Fig 3(b) in.
the case of two gluon intermediate state we meet again the integrals IG3~, IG3&, and IG3g.
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