PHYSICAL REVIEW D

VOLUME 50, NUMBER 1

1 JULY 1994
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We present a detailed computation of the fully exclusive cross section of p+p— W™ +y+X with
X =0 and 1 jet in the framework of the factorization theorem and dimensional regularization. Order ag
and photon bremsstrahlung contributions are discussed in the MS mass factorization scheme. The re-
sulting expressions are ready to be implemented numerically using Monte Carlo techniques to compute
single and double differential cross sections and correlations between outgoing pairs of particles.
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L. INTRODUCTION

Ever since Mikaelian’s discovery of a zero in the ampli-
tude of the partonic subprocess ¢ +§— W +y [1], radia-
tive production of W bosons has been discussed as a way
of testing the validity of the electroweak theory. The
study of differential distributions in p+p—>W+y+X
may be the best way to place bounds on the magnitude of
the magnetic dipole and electric quadrupole moments of
the W boson. Deviations from the standard model could
show up as a shift of the photon distributions near the
dip that is a reflection of the partonic zero. The QCD
corrections to the reaction p +p— W +7y +X and its de-
viations from the standard model have been studied in
[2-5] and other references therein. These papers have
been mainly devoted to the analysis of single photon dis-
tributions, photon— W-boson pair mass correlations, and
charge lepton-photon pseudorapidity correlations, and
they either neglect or approximate the photon brems-
strahlung contributions.

When computing the photon inclusive process in [2]
and [3], all the singularities associated with a jet emitted
in a collinear or a soft region of phase space were regular-
ized by analytically performing all the integrations asso-
ciated with the jet and the W boson in n space-time di-
mensions. Although the numerical advantage of this pro-
cedure is obvious—one is left with only photon variables
to be integrated over numerically—the predictive power
of the whole computation is limited by the fact that one
loses information about the energies and angles of the jet
and the W boson.

In the present work we redo the exact first order calcu-
lation reported in [2] in an exclusive fashion. We present
analytical results for the integrands needed in the compu-
tation of physical observables related to any of the outgo-
ing particles in the reactions p+p—W?'t+y and
p+p—W*+y+jet. Using these results we will extend
the studies of the electroweak and QCD sectors of the
standard model by providing a complete set of single and
double differential distributions and correlations includ-
ing the W boson and, when applicable, the jet. Devia-
tions of the experimental data from the theoretical pre-
dictions could not only mean new physics in the elec-
troweak sector, but would also probe the QCD behavior

0556-2821/94/50(1)/226(25)/$06.00 50

and the underlying photon bremsstrahlung processes. In
particular, an inadequate photon bremsstrahlung approx-
imation would also result in deviations from the predict-
ed photon single and double differential distributions and
correlations.

The method that we employ for computing exclusive
cross sections is based on the one used by Mele, Nason,
and Ridolfi in the context of Z° pair production and pro-
duction of heavy quarks [6]. This method allows for con-
trol of all soft and initial (final) state collinear singular re-
gions of phase space in the framework of dimensional
regularization and the factorization theorem.

We consider three different scenarios: (1) the two-body
inclusive production of W™ and v, (2) the exclusive pro-
duction of W™, v and one jet, and (3) the exclusive pro-
duction of W' and y accompanied by zero jets. In all
three cases we take into account exact O(ag) QCD con-
tributions in the modified minimal subtraction (MS)
mass factorization scheme. Contributions arising from
photon-quark and photon-gluon fragmentation functions
(generically called “photon bremsstrahlung contribu-
tions”’) are also included in our discussion.

In Sec. II, we present a detailed review of the process
p+p—W*'+y+X for X=0,1 jet in the framework of
the parton model and the factorization theorem. In Sec.
III we show how the cancellation of singularities is per-
formed in an exclusive fashion in each of the hard
scattering channels of our process in the framework of n-
dimensional regularization. Section IV is devoted to the
definition of the three experimental scenarios and their
corresponding cuts. We end our study in Sec. V with a
discussion of the numerical implementation of the several
expressions for the cross sections, together with a listing
of the relevant formulas.

Results for total, single and double differential cross
sections and correlations between pairs of outgoing parti-
cles are given in a separate paper [7].

II. THE PROCESS p+p — W +y +X,
THE PARTON MODEL, AND THE
FACTORIZATION THEOREM

A. Introduction

We are considering the hadronic processes given by
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pHpo>Wh+y 2.1

and
pHo—>Wht+y+iet . (2.2)
J

X DQIDQZ

1 1 1
= Zk fo dulfo du2f0 du;3 D, (u,)D;(u3)D i (u3)

L)

where ¥ y is a sum over sets X of physical particles in-
tegrated over their phase space. 3, ;; denotes sums over
partons i,j,k (by partons we mean quarks, antiquarks,
gluons, and photons). ¥, is a sum over sets x of outgo-
ing partons integrated over their phase space. In n-
dimensional space-time DQ; and DQ, are generically
given by

dn—l .
DO, = Q;

=, (2.4)
2m)" =120,

where Q; is an n-momentum vector with space com-
ponents Q; and time component Q; ,,. >.D%**/DQ,DQ,
formally denotes the “bare” partonic two-body inclusive
differential cross section, which can be directly computed
using perturbation theory in the standard model. D, (u)
for A=p,p are the bare partonic densities. The bare
fragmentation function D, (u) gives the photon momen-
tum fraction density when a parton of type k and
momentum g fragments into a photon of momentum ugq
and any number of hadrons. After renormalization has
J

D¥*? ..
2 m[l(pl )](pz)—)W(Ql )k(Qz)x]

X

= 2

a,b,c,xa,xb,xc

Do Q,
X ? DQ]DQ2 a(vlpl)b(vzpz)ﬁW(Ql e [ vs

? DQ,DQ,
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In what follows we will omit the charge index “+”
when referring to the W+ boson. In the framework of
the parton model we can formally write the hadronic
two-body inclusive differential cross section as

2_P
D7g i(u1P1 )](uzpz)ﬂW(Q])k

& ]x‘ ] , (2.3)
L]
f

been performed the bare partonic cross sections in (2.3)
contain soft and collinear singularities coming from vir-
tual corrections as well as integration over phase space of
nonempty sets of outgoing partons x. Cancellation of
soft singularities will occur after addition of the soft pole
terms in the virtual corrections with the soft pole terms
in the corresponding emission processes. By virtue of the
factorization theorem [8] the bare partonic densities and
the bare fragmentation function are defined to contain
singularities that cancel against the remaining collinear
singularities in the bare partonic cross sections so that
the hadronic cross section on the left-hand side (LHS) of
(2.3) is a finite quantity. This procedure is implemented
at a specific mass factorization scale M. We will define
this scale to equal the renormalization scale u. To avoid
complicating the subsequent formulas this scale depen-
dence is not explicitly written, except where necessary for
the discussion. According to the factorization theorem
we can rewrite the singular bare partonic two-body in-
clusive cross section in terms of nonsingular ‘“hard
scattering cross sections”:

1 1 1 x x x
fO dvlfo dv2f0 dvyd,f(v))dy) (0,)d;l (v3)

Yil> 2.5)

where EyDza /DQ,DQ, denotes a two-body inclusive hard scattering differential cross section.

d:,-"(v) denotes the splitting function of parton i into a parton a and a set of partons x, with a carrying a momentum

fraction v of its parent parton i. These

splitting  functions

factorize the collinear singularities

contained in the bare partonic cross section 3, D%0f/DQ,DQ, and they can be exactly computed order by order in
perturbation theory. In this way (2.5) is solved perturbatively for the hard scattering cross sections EyDza /DQ,DQ,.
Using (2.5) in (2.3) we can rewrite the hadronic two-body inclusive differential cross section in terms of only non-

singular quantities:

D%

% D_Q,D—Qz[p(Pl P(Py)—WI(Q,)¥(Q,)X]

1 1 1
= % fo d'Tlfo drzfo df&fap("'x)fbﬁ(’rz)fyc(’f;

Do
'2 50,00,

a(m P )b(1,Py)—>WI(Q,)c [% x (2.6)
3
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The parton densities f,,(7),f,;(7) and the fragmenta-
tion function f, () are defined by

fpn=3 [laud | |D,w),
_ 1,1 x| 7
Ty =3 Jdu_dpp |~ D), 2.7)
Xp»

T

>

Fren=3 ['dutp  (wd
xc,k T u
and are obtained by fitting data of deep inelastic scatter-
ing to results of perturbation theory at a given mass fac-
torization scale M. At present there are not enough data
available to fit the photon fragmentation functions so one
has to rely upon an approximation, for example, the so-
called leading-log approximation [9,10].
In the computation of hadronic quantities we use (2.6)
with a,bE€{q,q,8} and cE{q,7,g,7} where ¢, g, and g
denote quark, antiquark, and gluon, respectively. The

J

DZO'H Y
—_— (PP(Py)—>W(Q)7(Q,)X
2 | DQ,DQ, [p(P)P(P, 0,)y(Q,)X]
_ ! 1 D%
_fod'rlfodfz lfqp(ﬁ)fﬁ(rz) 0,0,
2
+ Do

DQ,DQ,

photon () is treated in a dual way: it is a hadron, i.e., an
observable final state particle, and it is also a parton of
our Lagrangian. In our one-body inclusive computation
in [3] we only considered contributions from f,, and
neglected f . for c €{q,7,g}. In the present work we in-
clude the four contributions keeping terms up to
O(agaay ), where ag, a, and ay are the strong, elec-
tromagnetic, and electroweak fine structure constants.

B. Contributions from f

The leading photon-photon splitting function is given
by d.{,yl (7/u)=8(1—7/u), i.e., when no partons are emit-
ted from the photon. This leading order splitting func-
tion can be identified with the bare fragmentation func-
tion D, (u) when zero hadrons are fragmented from the
photon. Using this in (2.7) we obtain the leading contri-

bution to the photon-photon fragmentation function:
fyy(m)=8(1—1). (2.8)

Setting ¢ =7 in (2.6) and keeping hard scattering contri-
butions up to O(agaay, ) we obtain

[q(T P )g(1,Py)—>WI(Q)y(Q,)]

[q(m1P1)g(12Py)—W(Q,)y(Q,)g]

DZ
LT () 55 4T P B (TP = W(Q )y (Q2)g]

+fgp(71 )f@(fz)

Do
DQ,DQ,

[8(7 P )G (1P ) > WI(Q)y(Q,)g ]+ (geg) ;. (2.9

Note that the lowest order hard scattering cross section is always equal to the corresponding lowest order bare partonic
cross section, as we will verify in Secs. IIF, II G, and IT H.

C. Contributions from f,, and f__

Setting ¢ =g and ¢ =q in (2.6) we obtain, for these contributions,

DZO'H vq
— (P )p(P,)—>WI(Q,) )X
2 | DQ,DQ, (p(P,)p(P, 01)7(Qy)X]
= [ldr, [ dry [ dm om0 f o) yalr 2T | g(r,P g Py ) W(Q,) L
0"'107'2073 ap\T1) 5\ T2 ”qT3DQ,DQ2q11g 262 19 7_3

2

D 0,
+fgp(71)fqﬁ(72)fyq(r3)—b—aga 22

T3

g(7,P)q(m,P,)—W(Q,)q ‘ ] : (2.10)

and
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D% H

1q
D0,DC, (p(P)P(P)—>W(Q,)y(Q;)X]

2

g('TlPI )q(szz )—>W(Q1 )q

o
ST

=[ dﬁf dfzf drs [fgp(Tl)f—(Tz)fyq(ﬁ D0, DQ

-I-fap('rl)fgﬁ(‘rz)fﬁ (Tlpl )g(szz)—’W(Ql)q

(1)) ————— Do
*"DQ,DQ,

D. Contributions from f .

Setting ¢ =g in (2.6) we have
78

2 _H
Do [g(P,)F(Py)— W(Q,)y(Q)X]

; DQ,DQ,

+(g7q) (2.12)

_ 1 1 Do
= [ dn [ dn,[ dr, [f,l,,(ﬁ)f@(rz)fnm)DQ1DQ2 q(1\P)G(m,Py) > W(Q,)g | —

T3

In B, C, and D sums over flavors of quarks q and antiquarks g satisfying the electric charge conservation for produc-
tion of W™ are implicit. For a more detailed discussion on the way we treat this issue, see Sec. IV of [3]. The contribu-
tions from C and D will be referred to as “photon bremsstrahlung contributions.”

E. The incoming hard scattering channels

We can now regroup all terms in B, C, and D according to three partonic channels in the incoming hard scattering
state:

D%cH “
m‘ [p(P)B(Py)—>WI(Q,)y(Q,)X]
1 1
:fod‘rlfodfz fqp(‘r])f@(‘rz 'DQ DQ [q(‘rlPl q(72P2)——>W(Q1)Y(Q2)]
+D—20[q(TP )g(1,P5)—>W(Q,)y(Q,)g]
DQ,DQ, 11 2 1 2
1 Do
+f0 dTJVg(T3)“DQ1DQ2
X |g(m P )g(1yPy)>W(Q)g |—— +(q<—>ij)y, (2.13)
DZO'H q8
m [p(P))B(P,)—>WI(Q)¥(Q,)X]

[q(7\P|)g(T,P;)—>W(Q,)y(Q,)q]

_f dﬁf dr, ’f,,p(mfgp(fz)DQ DO,

t [T T o [8(TiPa (1P —>W(Q,)y(Q;)q ]

)fqﬁ(TZ DQ DQ

q(1P,)g(1,P,)—>WI(Q,)q

=)
S

(2.14)

1 1 1
+fod1'lf0d‘rzfod'r3 fqp(Tl)fgp(TZ)f‘yq(Tﬁi DQ DQ

F fep! Tl)f (T2 f yq(T3)—————18(7\P)q(7,P,)—>W(Q)q

DQ DQ
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&9

DZH
Z [P(P)B(Py)— W(Q,)y(Q;)X]

DQ,DQ,

=[ar [ dn s

e (TS 35(T2) DQ DQ2

%

D2

B0 po- 8 TPVT(1:P)—>W(Q,)r(Q,)7)

(T () DQ,DQ, S0 no (TP 1g (TP —>WI(Q,)y(Q,)7]
+[ dededT T (T)f (1) o |g(7,P )G (1,P,)— W(Q))] L
1 2 31 e (1 2 q3DQ1DQ2 1 21 3
D2 Qz
+f‘7 (Tl)fgp(Tz)f DQ DO, q(m\P)g(1,P))>W(Q))g s l
(2.15)
F. Factorization in the ¢g channel
Let us write (2.5) for i =¢, j=gand k=y:
D2 P
—_— 3G (py)>WI(Q)y(Q,)x
EDQ,DQZ[ (P1)q(pr)—>WI(Q,)y(Q,)x]
D%
:ab”zx ) f dvlf dvzf dv3d,,q v,)d bq(vz)dyc u3)2 DQ Do, a(v,p;)b(vyp,)—>WI(Q,)c —3 vt
1T Rg e
(2.16)
We will solve (2.16) at O(aay/) and O(agaay) so only x={ } and x ={g} contribute on the LHS. By constraining
the sums on the RHS so that x, Ux, Ux, Uy Cx we obtain, at O(a%),
D%® D% PO
DQ,DO, o no 4P a(p)—>WI(Q,)y(Q,)]= DQ,DO, o o 14P1)g(py)—>W(Q,)y(Q,)] 2.17)
and, at O(ay),
D) D
————[9(p)g(p) > W(Q )Y (Q)]+————[q(p)q(p,) > W(Q,)¥(Q,)
DO, DO, [4(p)g(p, 0,)7(@,)] DQ,DQ, (9(p,)q(py Q2,)v(Q,)g]
D’ Do’
—DQIDQ [9(p1)q(py)—W(Q,)y(Q,)]+ _DQ—DQ_[ q(p)g(py)—>W(Q,)y(Q,)g]
ag 1 _ DZO,(O) _
o do @0 Pul0) 55 S5 19001 (p2) > W(Q1 7(02)]
as r1, = D%
+——— ) dvP_(v) g (y, W (Q,) 2.18)
27z Jo DQDQ[plqu_’ (@v(Qy)],
and the corresponding equations for p,;<»p,. In deriving P, ;(V)=P;(v)—€K;(v) (2.20)
(2.17) and (2.18) we have used the splitting functions
dl(v)=8,8(1—v), with
Loy e 22
digh(v)= pys SICICD (2.19) € €
me and €=(4—n)/2. The running strong fine structure con-
stant is ag=g2(u)/47. In the MS mass factorization
g‘(v =— 2—Pﬁ(v )8,z » scheme K;;(v)=0 for all relevant i,j in this and the fol-
mE

and the definition

lowing two subsections.
For i=j=¢q(q) we have
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P (v)= P_ (w)=Cp |[(14+v?) {—

+%8(v—1)}
0

=C |(1402)

with

f ool

1 _ %, f(v)
— ]vof(v)—fo C —
+f dv f(”) f(l , o (2.23)

where 0 <v, <1 and the color factor is given by Cp =%

L ] +[%+2ln(1—v0)]8(1—v)’
1=v |y,

(2.22)

[
G. Factorization in the gg channel

Setting i =q, j =g, and k =gq in (2.5) and again keeping
terms up to O(agaay ) we can only have x ={ }, thus
constraining the sums on the RHS to x,Ux,
Ux,Uy={ }. We obtain, at O(ay),

DZ (§))
T [q(p,)g(py)—>W(Q,)g(Q,)]

In an analogous way, setting i =q, j=¢, and k=g in Do, D@,
(2.5), we obtain DZG'P(I)
D2 =W[Q(P1)8(P2)—’W(Ql)q(Qz)] . @22y
W[q(pl)q(pZ)_)W(Ql)g(QZ)] 7%
! 2 . Resetting k= in (2.5) we can now only have x ={q},
_ Do _ thus constraining the sums on the RHS to
DQ,DQ, [9(p)7(p2)—>W(Q1)g(Q,)] . (2.24) x,Ux,Ux,Uy={q}. We obtain, at O(ay),
J
D2V D2 P
DO,DO, [q(.vl>g<pz)—>W(Q1)7/(Q2>q]—DQ DO, [9(p1)g(py)—>WI(Q,)v(Q,)q]
ag 1 D2 (0)
+— dP_(v) (p)gop,) > W(Q,)y(Q,)
277gf0 DO,DQ, lg(p1)g(vpy)—W(Q,)y(Q,)]
dv P o : 2.26
— , 2
2776f v Vq(v)DQ DO, q(p,)g(p,)>W(Q,)q (2.26)
I
and the corresponding equations for p;<>p,. The follow-  where €, = — is the charge of the outgoing quark ¢ on

ing splitting functions have been used when deriving
(2.26):

the LHS of (2.26), in units of e, and a=e*(u)/4m is the
running electromagnetic fine structure constant.

d,}q|(v)=— As P (v)5.. H. Factorization in the gg channel
g 2m€ % bq (2.27) Analogously to the previous case, setting i=g, j=g,
: and k=g, 7 in (2.5) and keeping up to O(asaay ), we ob-
dm(u)——z—P ()8 tain
TE
. DZ (1) _ _
with D0, Do, 8PP~ W(Q)7(0,)]
P (p)= 2 F1—v) it
- v)————2 ) D2 P _ _
(2.28) =m[g(p1)q(pz)—>W(Q1)q(Q2)] (2.29)
e plt—v)?
Prg0)=(2,) v ’ and
|
D015 070y — WY@ )7]= 20 (o0, )7(py)— ()Y (Qy)
D, Dg, [8P17p2)—>W(Q)y(Q, q]—DQIDQ2 (8(P1)q(p2)—W(Q,)y(Q,)7]
D2
+; dv P, (U)Ww(vpl)q(Pz)*W(Ql y(@2,)]

+Lflva (W) —————
2mE O

Qz

gp)g(p)—>WI(Q,)g |— ] , (2.30)

DQ DQ
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qipy) w* alpy)

qpy) Y a2 ! Gips

MU= W

and the corresponding equations for p;<»p,.
(2.30) we have used the splitting functions

In deriving

dgg*w):—zgpqg(u)aaq ,
(2.31)
@(p)=—-%*p
d)l(v) 275Pﬁ(v)8@ s
with
_ v+ (1—v)?
qu(v)——z' )
sl (1—v)?
Pﬁ(v)——(eq) ’ , (2.32)
where 2, = —2 is the charge fraction of the outgoing anti-

quark g on the LHS of (2.30), in units of e.
III. EXCLUSIVE CANCELLATION OF SINGULARITIES

A, Introduction

In order to compute the hard scattering cross sections
required in (2.13)-(2.15) using (2.17), (2.18), (2.24)-(2.26),
(2.29) and (2.30), we first need the bare partonic cross sec-
tions D20¥/DQ,DQ, on the RHS of these equations
evaluated in n =4 —2¢ space-time dimensions.

When computing phase space integrations of outgoing
massless particles, singularities appear in regions of phase
space where one of these particles is collinear to any oth-
er massless on-shell parton or where one of the outgoing
massless gauge bosons is soft. Since we are tagging the
outgoing photon, we do not have to worry about singu-
larities associated with integration over the photon’s
phase space.

With this in mind we will classify the two- to three-
body Feynman amplitudes according to the way the out-
going massless particle g, g, or g which is integrated over
is attached to the rest of the legs of the diagram. In Fig.
1 we have decomposed the two- to three-body Feynman
amplitude for the partonic reaction ¢ +g—W+y+g
into three pieces: M9~ "1e=MT + M +Mf{{.

The labels g near the solid vertices at the end of the in-
coming quark and antiquark legs in the amplitude M{f
mean that these vertices do not contain the outgoing

QEpy)

2ip2) Y
MU= Wyq

S. MENDOZA AND J. SMITH

FIG. 1. Decomposition of the two- to
! three-body Feynman amplitude in the ¢g chan-
nel.
i
gluon. Arrows show the direction of the fermionic

charge and the W™ charge. The momenta p; and p, are
always incoming. The shaded blobs denote the inclusion
of all possible Feynman diagrams (except for the men-
tioned constraints in M{§.) If we integrate the squared
matrix element over the phase space of the outgomg
gluon summed over physical polarizations, the 3 |M f” |
and 3 |M{Z|? pieces of the squared matrix element have
collinear and soft singularities while the interference term
(SM{M}5+c.c.) has only soft singularities. Other
pieces of the squared matrix element have no singulari-
ties.

For the partonic reaction ¢ +g— W +vy+g we have
M®E=Wri=ME+ M + M, as shown in Fig. 2. In this
case, only the 3|MJ|*> and 3|M{f|*> pieces of the
squared matrix element have collinear singularities, with
no soft singularities in this channel.

In Fig. 3 we show the analogous decomposition for the
partonic  reaction g+g—-W+y+g ME—Wre
=M§7+M§I+M§f. As in the previous case, only the
S IM§7|? and 3 |M§7|* pieces of the squared matrix ele-
ment have collinear singularities and no soft singularities
are present in this channel.

We will develop the above decompositions in more de-
tail for each channel in Secs. III B, IIT C, and III D.

The 2- to (2+1)-body partonic differential cross sec-
tion for the W+vy +X production process is defined in n
dimensions of phase space by

dob )= N 5 DQ DQ,Dk, - - - Dk,(2m)"
X8"py+p,—Q—Qr—ky - —k;)
X3 IM|*, 3.1

where we have averaged over N possible incoming states
of different polarizations and colors and the sum on the
RHS is over polarizations and colors of all particles. Q,
and Q, are the n-momenta of the W™ boson and the pho-
ton, respectively. The variables in (3.1) are defined in the
following way:

FIG. 2. Decomposition of the two- to
three-body Feynman amplitude in the gg chan-
nel.

M
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2y w* 2y

\%%@

Ttp:) ¥ qlp2) Gip2)

ME W M My
s=2p,'p, ,
1 Q"2
DQ,= - e
22m)" 70 /1Q, 1P+ M},
xd|Q1|d9n_2(61(01, ce6,.5)),
(3.2)
D "=3q
0=~ )n_l ————1Q,I" %d|Q,|
Xdﬂn—Z(Q2(¢l’ e b)),
Dk, =Dk=————|k|~3
227)"

Xd|kldQ, _,(k(, ..., 0,_) .

The angle differentials in (3.2) are generically given by
dQ, _,play, ...

, @, _,))=d cosa,sin" *a, - -

Xd cosa, _ysin’a, _;da, _,
(3.3)

To account for the experimental cuts on the outgoing
particles that define the experimental scenario under con-
sideration, we have to include on the RHS of (3.1) an ex-
tra factor of C(Q,,0Q,,k,,...,k;). These cuts may be
expressed in a covariant way in terms of ® step functions,
as we will see in more detail in Sec. IV. In the rest of this
section and the following sections we omit the charge in-
dex “*” when referring to the W+ boson.

B. The g7 channel

The two- to two-body total partonic cross section for
the reaction gg— Wy may be written in the following
way:

DZO_P
fDQ.DQzW[q% 7(p2)—W(Q1)Y(Q,)]

1

4N2 > ®(B(s))<l>
Xf_ld cosf, sin 20, 3 IMTP7(s,b)|2  (3.4)
with
N.=3,
— 226 4_77' 1 1—2¢
= Ti—e T
(3.5)
B(s)=1—p(s),
M2
pls)= Y

FIG. 3. Decomposition of the two- to
three-body Feynman amplitude in the gg chan-
nel.

The only independent invariants in the squared matrix
elements in (3.4) are s and

b zzpl-Q2=§3(s )(1+4cosé,) . (3.6)

The rest of the invariants may be expressed in terms of b
and s as

2p,Q,=s—b,
2P2'Q1=b+M%V ’
2,0, =s—Mjp—b,
20,0, =s—Mj, .

(3.7

In (3.4) we chose the (n —1)th axis to be the one point-
ing in the direction of p,. The integration over the angles
6y ...,0,_, has been performed because there is no
dependence on them in the two- to two-body squared ma-
trix element. To account for the experimental cuts on the
outgoing particles we implicitly include an extra factor of
C(Q,,2,,0) on the RHS of (3.4). In (3.5) and subsequent
equations the unprimed variables refer to variables in the
center of mass system of the incoming partons.

To obtain the two- to three-body partonic cross section
for the reaction gg— Wyg we define a primed reference
frame in the Wy center of mass system such that the n-
momenta are given by

P1=pP1,0(1,0,...,0,0,1),
P>=Dp30(1,0,...,0,sinn’,cosn’) ,
=ko(1,0,...

—io| | Qio

,0,siny’,cosy’) ,
(3.8)

., sinBsin6; cosb ,

b

sin@}cos63,cosb)

=Qil(1,...,

—sinfisiné; cosb; ,

—sin#] cos@), —cos6}) .

The two- to three-body total partonic cross section in the
qq channel may thus be written as



234 S. MENDOZA AND J. SMITH 50

DZUP
JP0.DQ, 5515 atpap:)— W(Q1)7(Q: )¢

11 , T(1—€) s!7¢ pi ae [ ,
= (4m) T dx @ —x )72 1—p?)~¢
N2 2s( ) T(—2¢) 27 fpm x O(sx N(1—x) f~1dy( y°)
xflld cosd) sin 240} [ "0} sin 20, 3 [M*75(s,a,5,¢,d)|* , (3.9)
T
where , Vs | 1+x+(1—x)y
Pl,O—T ———‘/T— ’
y=cosy , 3 X
— .10 -
o=(1—x)p, o =(1— )ﬁ G310 , Vs |1+x—(1—x)y
0 X)P1,0 X 5 P20 4 Vx >
We implicitly include on the RHS of (3.9) the factor Vex e
C(Q,,0,,k). We have chosen as independent invariants Qo= X 1+ ,
’ 2 sx
s and
Vsx M;, Vix
a=2p,-k=>(1—x)1-y), 0,0=1Q="% 1-—X |="Zpsx), (.13
2 ’ 2 sx 2
b=2p;-Q,=2p],|Q}l(1+cos8)) , , 8x
cosp =1— 2 2.2
c=2k-Q, (I+x)"—(1—x)%y
(3.11)
=2k |Q}|(1+siny’ sinf] cosb; +cosy’ cosb) , cosy’ = 1=x+y(d+x)
I+x+y(1—x) "’
d=2p,-Q, Ve
k=25 1—x
=2p} o|Q}|(1+siny’ sin6) cosd; +cosy’ cosb)), Ty v
so we have the dependent invariants Looking at (3.9) it is clear that the soft divergences will
2p,-Q,=s—a—b , be present in those pieces of squared matrix element that
contain a factor (1—x) ™2, while the collinear divergences
2p,'Q=Mp+a+b—c, will be due to factors of (1—y)~! or (14+y)”! in the
. a2 squared matrix element. The squared matrix element for
20,°Q,=b+td—c=sx =My , (3120 the 47 channel can be written as
—e— M2 — _ _ _
2Q‘-k—s MW b—d , 2|qu—>Wyg|2=2tM?Z|2+EIM%IZ

J=q¢— 2 —_ — — :E— — _ _
2p,-k=s—Mp+c—a—b—d 2(1 x)(1+y) . + [ MEME* +c.c. | +remain .

All invariants can now be expressed in terms of s, x, y, (3.14)
cosf}, and cos; by solving for all the necessary quanti-
ties in the primed reference frame: The type Ia matrix element (see Fig. 1) can be written as

Mla[q(pl’ll’}\'])q(pblz)*’W(Q] )V(Qz)g(k,C,}L)]

[(2pf —KyPluy (p1)]a
2pl'k

=T}, €5(k)M(q(p,—k,1},a)q(py, 1) —>W(Q,)y(Q,)],  (3.15)

where I, 1,, and [} are quark color indices, A, is the quark polarization index, ¢ and A are the outgoing gluon color and
polarization indices, @ and p are Lorentz indices, and gg is the renormalized strong coupling constant. Other indices
have been omitted because they are not necessary in what follows. The partial squared matrix element is given by

g}

2 kR CrRE, 3 M[q(p,—k,a)q(py)—>W(Qy(Qy)IM*[q(p, —k,a')g(py) > W(Q)y(Q,)] .
1

q9,1a

S M=

(3.16)

The Ib partial squared matrix element may be written in a similar fashion:
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2

SIMAP= 2

CrRE\ S Mlq(p)q(p,—k,B)—W(Q,)¥(Q,)IM*[q(p1)q(p, —k,B)—>W(Q,)¥(Q,)] .

(3.17)

The repeated indices on the RHS of (3.16) and (3.17) are contracted and the sum is over quark (anthuark) colors and
polarizations as well as W and y polarizations. In the g7 center of mass frame, the tensors R "_"Ia and R?? 7.1 Can be writ-

aa’'

1

-y
—x #i 2(l—x)k]

b

8B (3.18)

ten as
2—n 1+y 1+y
aa’ — __ . A + —
qula 4P| k { 2 +2(1_x) K ‘1 1
2—n 1—y 1
BB = _ . —_ + —_
Regw=—4p2k 70[ 2 2= ¥ 1—

In deriving (3.18) we have summed over physical gluon
polarizations in the covariant gauge, where we may write

n—2 & kpkp +k k
Ppp,(k)E 2 (k)e (k)__gpp +—— ’
e k-k
(3.19)

where if k =(kg,k) then k =(ky, —k). The factors p,-k
and p,-k in front of the RHS of (3.18) will cancel similar
factors in the denominators of the RHS of (3.16)
and (3.17), respectively, leaving the type Ia and Ib
squared matrix elements with singular terms proportional
to  (1—x)"X(1—y)7!, (A-x)""1—-y)7', and

J

1
oflg(p))q(p)) > Wygl=—57-(4

4N? 2s I'(1—2¢)

- 1+
2 k}
X

2(1—x)

[
(1—x)"2(1+y)7, (1—x)"W1+yp)~!, respectively, i..,
both terms will contribute to the soft and collinear singu-
larities. In a similar way the remain in (3.14) can be
shown to have no collinear or soft singularities while the
interference term M, M{, has only a soft singularity. It
is thus convenient to define the nonsingular function F q

F9(s,x,y,c0801,0,)=4(p,-k)p,-k) S |MHA—=Wre2
(3.20)

so that we can now rewrite the two- to three-body total
partonic cross section in (3.9) as

1 )E 2 F(l E) S —1-e
21

—x)" 172 —y2y-1—¢ 1 e —2ep
Xfp(s)dqusx)(1 x) Ef_ldy(l y9) 6f__ldcosglsm 0}

X foﬂde'z sin~2¢@,F%(s,x,y,c0s6},65) .

Now that the singular factors in x and y have been isolat-
ed we can rewrite them as distributions for € <0:

— _1"26~__L _ —2€ — _1_
(1—x) 2‘E(l xq) 7 €8(1 x)+‘1_x LO

—ZE[M +0(&),
l—x xg
(290)"¢
(1—p2)~1=em — -—yo—[S(l—y)+8(1+y)]
1|1 1] 1
*3 [l—y Lo+2 [l+y y0+0(6)’
(3.22)

with £(2)=7?/6. We have introduced the definitions

(3.21)
l
1 1 _ f(x)
fp(s)dxf(x)l——l_x }xo—fp(s)d I—x
+f dx f(x) f(l)
1 1 _ 1=y, ()
f_ldyf(y)‘—l_y ’,O—f_l ay i
(3.23)
1 fy)—=f(1)
+f,_y0dy =y
1 1 _ fy)
Lol Pt

~ty, (y)—f(—1)
+f_1 dy 14y .
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The parameters x, and y, are arbitrary as long as they
satisfy the conditions p(s)<x,<1 and 0<y,=2. The
symbol ~ in (3.22) means that the equality only holds un-
der an integration over x ranging from p(s) to 1 for the
first expression in (3.22) and under an integration over y
ranging from —1 to 1 for the second expression. When x
and y are not integrated over their whole range care has
to be taken when defining x, and y, so as not to intro-
duce unphysical dependences into the quantities we want
to compute. We will discuss this in more detail in Sec.

.

Uqﬁ(ﬁnite) 4N2 2s

—2 7104 “‘f desxl L

1—x
x [

1 1 _ 1 s ' ¢ qxg |2
P — €—2
= ————(4 — - | =
7 gaeol) 4N? 2s( ) I(l1—e) 27 2 |y,
Xfl dx ®(sx) 1 —2€ In(l=x)
pls) I=x |x, 1—x

1 e L(1—e) s '€

__4 _ 7
4N? 25( ) T(1—2¢) 27 2

P
qu(soft)

where
F9AE)(s x,cos))

gsoft '
FAA5oM (5 cos6

=F%(s,x,y=11,c0s6/,0)) ,
_ (3.26)
)=F%(s,x =1,y,c0s6},03) .

To compute the quantities in (3.26) we first note that the
following relations hold for y =1:

p1—k=xp,
K=(1—x)p,

Using these relations in (3.16)-(3.18) and noting that in
the limit y —1 (—1) only [M#|? (|M§Z|?) contributes to
F% in (3.20) we obtain the covariant expression

(3.27)

1+x2—e(1—x)?

F9aeolt)(s x cosf))=8sg2Cy

X3 IMA=WY(xs,xb)|? .
(3.28)

We implicitly include in (3.28) an overall factor of
C(Q,,0,,(1—x)p;). An analogous computation yields

1+x?—e(1—x)?
X

F93'7)(s x,cos@;)=8s5g2Cp

X 3 IMA=Wr(xs,b7)> . (3.29)

In the latter we implicitly include an overall factor of
C(Q,,Q0,,(1—x)p,). The collinear limits of F¥ have
thus been reduced to two- to two-body squared matrix
elements. We checked that the same expressions for the
collinear limits of F¥ are obtained when the sum of gluon

],
l—y Yo
€

i L _
] 'f d cosf)sin 29| F97°1* (s x ,cosh)) ,
x —1
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Iv.
Using (3.22) and (3.23) in (3.21), we write the O(ayg)
two- to three-body cross section as

o"Vlg(pg(py)—Wrg]
— P
~0q§(ﬁnite)+0q§(col+)+0qq(col )+ qq( soft)+0(6
(3.24)
with

1

1+y

flld cos@',fode’quq(s,x,y,cos@'l,e'z) ,

(3.25)

(l—xo ) T 2€( s)f d cos@ sin 29| F99'°V(5 cos@) ,

f
polarizations is taken in the axial gauge.

Now we obtain the soft residues of each of the contrib-
uting terms in the squared matrix element:

lim 4(p,k)(py k) 3 M2
=4sg2Cp(1+y 2 S [MA=Wr(s,p%o0)|?

lim 4(p,k)(py k) 3, IME I

=4sgiCp(1—y )2 S |MA—=WV(s,b*M)|?
lim 4(p, -k )(p ) |3 MEM S +c.c.
=8sgiCr(1—pH) 3 [IMA=H7(s, b2 . (3.30)

After summing the above three contributions we obtain

FA5oM (s cos0)=16sg2Cr 3, IM T~ W¥(s,b%M)|2

(3.3D
This contribution contains an implicit factor of
C(Q,0,,0). Note that the dependence on y cancels

after all terms in (3.30) are added together. We have
checked that the same result is obtained if the gluon po-
larization sum is taken in the axial gauge. In (3.28),
(3.29), and (3.31) we define
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bt=b(s,x,y =1,c0s0))= i/3( sx )(1+cosby) , Note that in the soft limit the variable cosf) is equivalent
2 to cosf, of a two- to two-body kinematics.
- - ry— SX . Noting that the squared matrix elements in
=b(s,x,y=—1,co86)) == 14+cosf}), (3.32 g q
b (5,25 coséy) 2 Blsx )1+ cos6y),  (3.32) (3.28)-(3.31) are of the two- to two-body type we can

o s , now rewrite the soft and collinear terms in a more con-
b*"=b(s,x=1,y,cos0])= EB(S )(1+cos6}) . venient way:

a
P s
o =—2C,
qq(soft) T F

—2V— L34 2m1—x0) ]+ 2 105 +2102(1—x()
3 "

+21In(1—x0) In—>+26(2)—4 |0 (g (p,)q(py) > W¥ ],
U

Qa 2 —
P = s rt 2 1 2u” 2 1 2y | In(1—x)
_ =—— dx |Cp(1+ + 1+ — i —2(1+ —_—
qu(col+) 21T€ p(sj X F( X ) l—x xo ECF ln{s 0 ( X ) l—x xo 2(1 X ) 1~x xO
+x —1]| |0 Qq(xp,)g(p,)—>Wy], (3.33)
P - as 1 2 1
9 ggcol—) Py pmdx Cr(1+x7) 1—x %o
2 -
+eCy |In 12 L14+x2) L | —p(14x2) | I0l=x)
syg I—x |x, 1—x %,
+x—1||d9q(p,)q(xpy)—>Wy] .
In the previous formulas we neglected terms of O(€) and we used
—lyg—In@4mle| 1 1 s 3 1 s 3. s
V=-— E ——-—— 5 -= |+ S-S —1 . 3.34
¢ 2¢* 2 n”Z 2 + 4 In o 4 lnﬂz 6(2)+2 (3.34)

We also made the replacement g2 =4magu’.
The O(ayg) corrections to the two- to two-body partonic cross section for gg— Wy were computed in [2] and they
are given by

a
" Vlg(p))g(py) > Wy 1=—>Cpo"la(p 13 (ps) > Wy 12V

11 , @ Qs 1 (2(s =M} —b)—b)(2F (s,b)—F,(s,b))
Wi B(s)C}y g —N.C [ _ d cosd; vy
XC(Q;,0,,0), (3.35)
where
F\(s,b)=F(—b,—(s—M%—b),s,M}) ,
F,(s,b)=F(—(s—M%—b),—b,s,M%) , (3.36)
Comr GF 172
w— w ‘/E )

and Gy is the Fermi coupling constant, b was defined in (3.6), and F(¢,,t, s,M ,2,,) was defined in (3.7) of [2].
Using (3.24), (3.25), (3.33), and (3.35) in the RHS of (2.18) we can write the O(ag) hard scattering cross section on the
LHS of (2.18) after performing an integration over Q@ and Q,:
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cVq(p)g(p)—>Wyl+o'V[q(p,)g(p,)—>Wyg]

0" Vlqlp)g(py)— Wy ]+

_ P P
O ggttnite) T 9 ggisoty T

+ azﬁ(col )

aS 1 —_
2 dv P _ (0)
2m€ fo v qq(v)or

2u?
Yo

— P 2
—oqq(ﬁnite)—k 1+x4)n

a 1 A
P S f
O ™ C dx |(
a@qsv)  op F pls)

X {oQg(xp)g(p,))—>Wy]l+o®

where we have defined the soft-plus-virtual contributions
+0"Vq(p)g(py) > W]

3 % 421021 —x)+21n(1
2 22

— P
O 4q(sv) = 9 gg(soft)

Qg
= _CF
o

1 1

2
N 25 (s)Ciy

Dlg(p))g(p)—>Wyl+—

(2(s—M}—b

q(col+)

——} —2(1+x2)
x0

xo)ln

)—b)(2F (s,b)

Ag | R _
T J v Pyyv)0Vlg(up)7(p2)— Wy ]

[9(p1)g(vpy)—>Wy]

1 In(1—x)

1—x 1—x

+x—-l]

X0

lg(p))q(xp,)—>Wyl}, (3.37)

~+2£(2)—

As
7 NeCr

—F,(s,b))

1
X d cosé
I : s—M},

0,,0,,0) (3.38)

Summarizing all the contributions in the incoming ¢g partonic channel, we have

D*cH “

DQ,DQ,

1 1
=f0d7,fod72 [fqp(ﬂ)f@(v'z)

[Dpo,DQ, 3
X

Dig(p)g(p,)—>Wyl+o'V[q(p

1 D
+f0 deyg(T)fDQquZT

with p,=7,P,, p,=7,P,, and q, =Q, /7. Since there are
no singularities left all the necessary squared matrix ele-
ments in (3.39) can now be safely evaluated in n =4 di-
mensions. On the RHS of (3.39) we still need the squared
matrix elements

2 IMq7—>Wy(s’b)'2(0)

7
——2—‘7TN .Cha(2(s—M%—b)—b)?

sMy —b(s—M% —b)+L(s —M})?
b(s—M% —b)(s —M3)?

2 |Mq<7—+Wg(s,B)|2(l)

b2+ (s—M2% —b)2+2sM3
=287N,CpChag —r ¥
b(s—M2%—b)

(3.40)

o'Yq(p)g(py)—>Wy]

Dg(py)—>Wyg]

20,(1)

l¢(p)g(py)—W(Q,)g(q;)]

+(g<q)
1Dg e i

(3.39)

where b=b /7. The integrand of the last term in (3.39)
carries an implicit factor of C(Q,7q,,(1—7)g,). In
(3.38) and (3.40) the invariant b is evaluated in the
unprimed frame as defined in (3.6).

The expressmn for 3 |M%—%7¢|2 in n =4 needed when
evaluating qu (fmite) 1S t0O long to be presented here, but it
may be obtained upon request. We note here that y; is
never needed in n#4 dimensions: we obtained the can-
cellation of singularities before fully computing any
squared matrix element where we had to explicitly evalu-
ate ys and whatever remained after this cancellation
could be safely computed in n =4 dimensions.

Since we have integral expressions of all quantities on
the RHS of (3.39) in terms of the variables x, y, 6}, and 6,
which define all the independent invariants of the system,
we can compute these integrals using numerical Monte
Carlo techniques and make a histogram of any physical
variable of interest that can be expressed in terms of these
invariants. We will reexamine these issues in more detail
in Secs. IV and V.



C. The gg channel

In this channel the singularities are not both of initial
state (type I), as in the case of the ¢ channel, but we have
now one piece in the initial state (type I) and another in
the final state (type II), as shown in Fig. 2. In this case it
is thus more convenient to integrate each term separately
and write for the total partonic cross section in this chan-
nel

oflq(p,)g(py)—>Wyql=0c""q(p,)g(p,)—>Wyq]
+aP M q(p,)g(py)—>Wyq]
+5"q(p,)g(py)) > Wyq],
(3.41)
]
o B 1 1
o®lq(p,)g(p))>Wyq]l=— 5o (4

8N2Cp(1—e) 2s
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where the first two terms on the RHS of (3.41) contain
only the partial squared matrix elements 3|M{|* and
S |M%|% respectively, while the third term contains
3 |M % |? and all interference terms of the squared matrix
element. If the gluon and the photon are summed over
physical polarizations only, then the third term on the
RHS of (3.41) is free of singularities while the first two
terms contain only collinear singularities.

If we define the same kinematics in o}, 5, as we did
with the gg channel, the collinear pieces of integrand con-
tain a factor (1+y)~ . To isolate the singularity in this
term it is therefore enough to define the nonsingular

function
F{(s,x,y,cos61,605)=—2p,-k 3 IME|*, (3.42)

so that the first term on the RHS of (3.41) may be written

)2 '(l—e) s~ ¢
r(1—2e) =

— ) 2€ — )€ —1—€
Xfp(s)dx<1>(sx)(1 x) f_ldy(l »)"(1+y)

x [ _lld cos; sin =26, [ ovd 6, sin " 20,F (s, x,y,cos0},65) . (3.43)
We now rewrite the factor (1+y )~ !¢ as a distribution:
- 0 1
1+y)~1-e . .
(1+y) ‘ T4y +0(€) (3.44)
Using (3.44) in (3.43) we can write the corresponding contribution to the O(ag) two- to three-body partonic cross sec-
tion as
UP’I“)[Q(Pl)g(Pz)—’WYQ] qg ﬁnlte+aqg col—+0(€) ’ (345)
where
oPl = 1 - ,
qg’ﬁ“ite—_gj\/czTZ (4) 4f de(sx)f dy 1+y f dcosG f d0,F{(s,x,y,cos6},6;) ,
e (3.46)
anI 1— = _1._.___1_ )5_2_1~ s 1
90T 8N2Cp(1—e¢) 25 I(l—e) 7 €
X fl dx ®(sx )(l—x)‘kf1 d cos@ sin 20 F ") (s,x,cos0}) ,
p(s) -1
[
and where now, in the gg center of mass frame,
F{E")(s,x,c080)) =F#(s,x,y = —1,c0s6},6,) . 2—n (1=y)
? 1 ? Yy Y2 R;t; =—4p2-k Yo 5 _x)_zy_ pz
(3.47)
To compute the limit on the RHS of (3.47) we write, as e — o
we did in (3.16) and (3.1, [=x)1=y) =11k
2 aa
2
-—C RZ®
= M| (2p, k2 F 1 —(1—x)(1+y)p1” ) (3.49)

X 3 Mlq(p)g(p,—k,a)>W(Q,)y(Q,)]
XM*[q(p,)q(p,—k,a')>W(Q,)y(Q,)],
(3.48)

From the above equation it is now clear that there will be
no soft quark singularity coming from the type Ia
squared matrix element. Using (3.49), (3.47), and (3.42)
we obtain
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- . 2x(1—x)—1+e€ The latter expression contains an implicit factor of
Fvycm ) ,x, 0 )=2 2 p P
f (s,x,0056,)=2¢5Cy C(Q,,0,,(1—x)p,) to account for experimental cuts.
x aq—Wy -2 ' Usipg (3.50) in.(3.46) we can rewrite the collinear contri-
3 |M (xs,67)] (3.50) bution [neglecting terms of O(¢€)]

J

2u?

Yo

aS 1
obl i =—— dx

_ In
9ol 27€ ¥ pls)

x(1—x)—3+e [x(1—x)—1]+In(1—x)

x(1—x)[1—2In(1—x)] ] ' q(p;)g(xp,) > Wy] . (3.51)

To treat the type II term on the RHS of (3.41) it is convenient to rotate the reference frame so that in the Wy center
of mass frame we have

P1=p1,0(1,0,...,0,siny’,cosy’)

P2=P1,0(1,0,. —siny’,cosy’) ,

k'=ky(1,0,...,0,0,1), (3.52)
T ’ QII,O . e ' ' . ’ ’ ’

Q= |Q1| , —singsing,cosd;, —singjcosg,, —cosd; | ,

Qi
05 =1Q}l(1, ..., singsing; cosd},sing| cosds,cosd])
We can thus write, for the two- to three-body integral,

D2gP1 1 1 ey D(1—e) s'7°€

- Il A 2—2€
J po\p0, 55755~ DQ,Dg, [4\P18P2) = W(2)r(Q)e]= 8N2C,(1—e) R T e e BT

X [ 'dz d(s[1+B(s)z— DI(1—2)' "2 [ dy(1—y?)~¢
0 -1
1 2y [T g0 s —2eq! 2
XfH]dU(I v?) fo d¢ysin *¢5 S M (s,a,b,c,d)|*,

(3.53)
[
with c=2k-Q,=2ky|Q}l(1—cose)) , (3.55)
cosy’ = 1% —y(l+x) , d=2p,-Q,
I+x—y(1—x) Q11+
=2p} [ siny’sing] cos¢;, —cosy’ cosd;)
b =cosd, , (3.54) P2,01Q1 X'sing cosg; X' cosgy
x—1 The rest of the invariants and variables remain as defined
z=1+=—7—. in (3.11)-(3.13). To isolate the singularity in the type II
Bls) squared matrix element it is enough to define
The explicit form of the invariants in the squared matrix
element in terms of the new integration angles is given as F(s,2,y,0,65)=—2k-Q, S M 12 (3.56)
b=2p,-Q,
so that now the second term on the RHS of (3.41) may be
=2p}|Q}[(1—siny'sing] cosp; —cosy’ cos}) , written
J
P _ 1 1 L, T—e) s—¢ 22 1 _ . |ar |
“lglp)gp))>Wyql=—————(47)¢ — —
e (pe) = Wra )= = e 1= 2 4 im0 7 Ta—e) 16r? ©)
X foldz[z( 1—2z)]172[1+(z—1)B(s )]Ef_lldy( 1=yh)
1 —€ —1—€e T 341 : —2€ 4t ’
Xf_ldv(l-{-v) (1—v) fo dgysin 2@, F % (s,2,,0,85) . (3.57)

—1—e€

We rewrite the factor (1—v) as a distribution
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—€

v
O §(1—p)+ |t
€

1— —1—e_ _ _*
(1—v) 1=

+0(€)

Yo

with 0 <v, <2, so that (3.57) may be rewritten as

o™ Mg (p1)g(py) > Wrql=0 g e+ o bt +O(E)

(3.58)

(3.59)

] JTd¢:FH(s,2,p,0,45) ,
v UO 0

€ (3.60)
D(s)B%(s)

r

where
PII —
O gg.finite N2C 25 ( 4m)” 4B(S)f de dyf dU[l
oPl 1 ( 1 s ¢m
Tag.colt T gNIC (1—e) 25 o 7 e
[ dz[z(1—-z)]'2‘[1+(z—1)B(s)]‘f_lldy(l—yz)_‘Fff‘“’”’(s,z,y) :
and

F?f(cow)(s’z’y):Fff(s,z,y,v= 1,43) .

The type II squared matrix element is given by
2

3 Mg = — L Rae,
(2kQ2 )2 98,

(3.61)

X X Mlq(p,)g(p,)—>W(Q,)q(Q;, +k,a)]
XM*[q(p,)g(p,)>WI(Q,)q(Q,+k,a")],

(3.62)

with e, the charge of the outgoing quark. In the gg

where we have summed over physical polarizations of the
outgoing photon in the covariant gauge. Again we note
that there will be no singularities in the soft quark limit,
that is, when z— 1. For the collinear limit of F{§f we ob-
tain

1+(1—z)*—ez?
2
2eq--————————z

Ft)(s,2,y)=—

b
> ME—W | —

center of mass frame we have ey
2—n _ (1—z)(1+v) with
qg II_ —4k- Q2 l 2 - 2z QZ
- [H_ﬂ:?)(ilﬂ K H——b(s z,y,v=1)= —B(s)z(l—y). (3.65)
z
+ (1=2)(1—v) |= o Remember that (3.64) has an implicit factor of
22 2, . C(Q,,0,,(1—2)Q,/z). Using (3.64) in (3.60) we can
rewrite the collinear contribution [neglecting terms of
(3.63) O(e)]
J
2 2
A —— d 21+(1 z) +ep? 1+(1— 2u® 1+(z—1)8(s) || _
O gg,col+ fo z e, . In P n —_—zz(l—z)zﬁz(s) z
x [ DQ,DQ ——2 4(p)g(py)—W(Q,)gq Q2 .

In (3.66) we made the replacement e2=4mrau?¢

tion,

(3.66)

Using (3.41), (3.45), (3.46), (3.51), (3.59), (3.60), and (3.66) in (2.26) we obtain, for the O(cag) hard scattering cross sec-
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c'Vq(p,)g(py) > Wygl=oh et f dx ;+[x2+(1-—x)2] ln(l—x)—% 1+In —?}% H
X0 q(p,)q(xpy)— Wy 1+ 0l i
+—2q7;’équ01dz lz— 1———”“2_2)2 In —i;‘f +In Ht—i—)} } }
X J DQ\Das % a(p ey~ W(Q1)q(ay )
+5"q(p,)g(py)—>Wyq] (3.67)
with g, =Q, /7. We have thus canceled all singularities and we can now summarize for ali the contributions in the in-

coming gg partonic channel:

DZO'H 4

1 1
= fo dTlfo d7'2 {fqp(Tl)fgﬁ(TZ)

2 (1)

[p(P)P(Py))—WI(Q,)y(Q,)X

o Vg(p1)g(p2) = Wrql+ [ 7 fyy(7)

D —
X [ DQ\Das 55 % —1a(p1)g(p2) = W(Q1)g(a)] | +(peoPimioomapioops) |

with p, =7,P,,p, =7,P,. In (3.67) and (3.68) we need the

squared matrix element
2 Inga Wq(S,BHZ(”
st +(s—M}—b)y—2bM},

=27N,CpCha B :
FEwes s(s—M2 —b)

(3.69)

where b=b /7. (3.69) carries an implicit factor of
C(Q,,7q,,(1—7)g,). The pieces of squared matrix ele-
ment needed in the last term in (3.67) are too long to be
presented here but they may be obtained upon request.

D. The gg channel

The treatment of this channel is analogous to the gg
channel. We can again decompose the partonic cross sec-
tion as

(3.68)

oflg(p))q(p))—>Wygl=c"[g(p,)q(p,)—>Wrq]

oPg(p)g(p,)—>Wyq]

+5°g(p g (p) Wyl ,
(3.70)

where the nonsingular term &”[g(p,)g(p,)— Wygq] con-
tains all interference pieces of the squared matrix element
and also |[M§%|%. The other terms in (3.70) are decom-
posed as follows:

O.P,I(l)[ +o bl

89, col++0(6) ’

(3.71)

g(p)g(p)—>Wrgl= gq ﬁmte

P,II

o1 [g(p1)g(p) > Wrygl=o gt Fogicy, +Ole),

with
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P 1 -4 7

T~ " gNIC, 25 L am) f dx Blsx) I i ] f d cost [ "d6;Ff(s,x,y,c086},6;) ,
s

agfcoH:; p(s)dx x(1—x)—1+ei{ln o [x(l—x)—%]-Hn(l—x)+x(1—x)[l-21n(1—x)]]l

X Oq(xp))g(p)—>Wr],

(3.72)
P11 — 1 1 —4 1 1 1 1 T R ,
T~ " gNC, 25 L 4r) B(s)fodzf_ldyf_ldvll_v vofo d¢,F§i(s,z,y,0,83) ,
I a1+ (1—2) 1+(1—2) 2u? 1+(z—1)8Gs) || _
T gg,col+ ImE dz ¢ z + z In Svg in z4(1—2z)*Bx(s) z

D2 (1) Q2
X [ DQ1DQ, 5o (8P 1T lpy)—~ WiQT | 7 | |-
In (3.72) we used the nonsingular functions
Ff(s,x,y,c080,05)=—2p, -k 3 |MfI|*,
(3.73)

F§i(s,2,p,0,45)=—2k-Q, 3 IMfJ|* .

Using (3.70)-(3.72) in (2.30) we obtain the cancellation of all singularities in this channel:

aVig(p,)q(p,)—>Wyq]

1 2u?
— _PI L7y o2 1 -
qu,ﬁ.mﬁ 27 Pmd L+ [x2+(1 x)][ln(l x)= |1+n e H
Xo(q(xp,)q(py)—> Wyl +ob
a o, | [1+0—2)? 2p? 1+(z—1)B(s)
+2 eqfodz[z z ] In sV, *tin z¥(1—2z)*Bs)

xJ DQIDqZDQ—D—[gw,>q<pz>—+W<Q1)q<qz N+5"18(pa(P,) > WYT] -
(3.74)

We can now summarize all contributions in the incoming gg partonic channel:

&g

JDpo,pg, 3 (p(P)B(Py)—W(Q,)y(Q,)X]
X

D%H
DQ,DQ,

1 1
= fO dTl fO dT2 [fgp('rl)ffﬁ(f2) 0'(1)[g(pl )17(172)—>W7¢7]

D2 (1) _ _
+ [ drf g0 [ DQIqup—QT"I—,q—Z[gm>q<p2>—»W<Q1>q<q2>]

+(poP,ToTp 1D, | » (3.75)
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with p, =P, p,=7,P,, and ¢, =Q, /7. In (3.74) and
(3.75) we still need the squared matrix element:

E |Mg§-«>Wq(s’z;)l2(ll
s2+b?—2s—M}—b)M},

=2%7N,CrChay
sb

(3.76)

with b=b /7. The comments after (3.69) apply here too.

IV. THE THREE SCENARIOS AND THE
EXPERIMENTAL CUTS

A. Two-body inclusive production of W and y

In this scenario (“two-body inclusive scenario”) one
does not tag the outgoing jet, so it will include events
with zero and one outgoing jet. We may define this
scenario requiring the following conditions for the outgo-
ing particles:

|cosGY|, |cosOy | <cos(67),

P.,Py>P

Ry ,>R™, 4.1)

(Rjet,y <R _)=(s(jet,y) <s7) 5

(Rjet,W<R _)=(s(jet,W) <Si) y

where we call 6; the angle between the incoming proton
axis and the axis of the outgoing particle i; P,; is the
transverse momentum of particle i. R, ; is the cone size
between a pair of outgoing particles: R
=\/(A,-’j77* )2+(A,-,j¢)2 with the pseudorapidity

ij

n*=11n[(1+cosh)/(1—cosh)]

and ¢ the azimuthal angle; s ;e ) =Eje /E is the “sha-
dowing ratio” between the untagged jet and the W boson.
The last two conditions in (4.1) discard events where the
jet is too close to the W or the photon is at the same time
of comparable energy so that it would “shadow” one of
the two tagged particles, making it undetectable. For
this purpose we check the cone size Rje; , (Rje, ) and if
this is less than R~ we keep the event only when s )
(S(jet, w)) s less than s ~, setting the differential cross sec-
tion to zero otherwise. The quantities 6, Pt~ , R, and
s~ are constants related to the acceptance and resolution
of the detector. All the quantities are defined in the
proton-antiproton center of mass frame.

B. Production of W™ and y with one jet

Here one detects three outgoing particles, namely W™,
7, and one jet. We call this the “one-jet scenario” and we
define it by imposing the conditions

|cosey|, lcosOy |, |cosf)jel| <cos(87),

P, ,Py,P

oy >P,,

t jet
Ry ,>R ",
R

R

4.2)

jet,y >R~

jel’,,,,>R“ .

C. Production of W™ and y with zero jets

In this scenario (“‘zero-jet scenario”) we select events
where the W™ and y are detected but no outgoing jet is
detected. This includes two- to two-body events and two-
to three-body events where the outgoing jet has a small
angle with respect to the beam, a small transverse
momentum, or it is “shadowed” by the photon or the W
so that it remains undetected. We may define this
scenario requiring the following conditions for the outgo-
ing particles:

icos@rl,]cosewl <cos(607),

P, Py>P

RW,7>R— ,

(Rjer,y <R )= (S(iet, ) <5 ) >

(Rje, w <R =S, w) <S5 )
[lcosBie| >cos(67)] or (P, <P, ) .
D. General remarks

We note that the second and third scenarios are com-
plementary, in the sense that an event in the first scenario
falls in either of the last two. In other words, we may ob-
tain the histograms of the zero-jet production scenario by
subtracting the histograms of the one-jet scenario from
the corresponding histograms for the two-body inclusive
scenario.

To implement the three experimental cut functions
C(Q,,0Q,,k) which define each of the scenarios in A, B,
and C all quantities involved in the above conditions have
to be defined in terms of the partonic invariants that are
used in the integrands of the corresponding cross section
formulas. In the proton-antiproton center of mass frame
we have

P,-Q,+Py
E=1Q2 2'Qs

Y VE ’
_ P-Q,—P,-Q,
cosf, = — —————— |
Pi-Q,+tP,-0Q,
4.4)
_ Py-Q,+Py-Q
EW— \/‘E b
_ Py-Q,—Py-Q,
cosly = )
V/(P\-Q,+P,-Q,}—SMj},
_ P,-k+P,-k
jet_—\/—g-“ ’
Pl k—PZ k
cosf.,, = —
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P, and P, represent the proton and antiproton momenta,
respectively; they must be appropriately expressed in
terms of the incoming parton momenta p,,p, and their
momentum fractions 7,7, in all the cross section formu-

V'S =V/2P,-P, is the proton-antiproton center of
mass energy. Q,, Q,, and k are the momenta of the W
boson, the photon, and the jet, respectively. The rest of
the quantities needed can be computed using the ones in
(4.4).

When we replaced the divergent factors (1—x)
(1£y)~17¢€ and (1—v)~ '~ €in Sec. III with distributions,
the resulting equations remained valid as long as the vari-
ables x, y, and v were integrated over their whole range.
The energy of the outgoing jet in the incoming parton-
parton center of mass frame is linearly related to the vari-
able x [see (3.10)], so it is in principle not a physical quan-
tity unless x <x,, in which case the symbol ~ can be re-
placed by = in the corresponding distribution in (3.22).
Similarly, the angle between the outgoing jet and the
beam in the parton-parton frame is related to y and the
angle between the outgoing jet and the photon is related
to v, so these quantities are not physical either, unless the
variables y and v fall inside the range where we can re-
place ~ with = in the corresponding distributions.

According to the above observations we should not
have any trouble in the two-body inclusive and in the
zero-jet scenarios, since in these cases the outgoing jet is
not being tagged so the unphysical variables are not “ob-
served,” but they are rather integrated over their whole
range. However, in the one-jet scenario, the energy and
angles of the jet are observed and these are directly relat-
ed to the variables x, y, and v. According to the way we
defined the one-jet scenario in (4.2), the outgoing jet is
never allowed to be soft or collinear to the beams or the
outgoing photon so the subtraction of divergences will
never be active. With this in mind we can easily choose
the parameters x, y,, and v,y in Monte Carl simulation in
such a way that the sampled ranges of x, y, and v always
fall inside the regions where ~ may be replaced with =
in (3.22), (3.44), and (3.58). To accomplish this we can
just take xo=1 and y,=v,=0. The experimental cut
function C(Q,,0,,k) will accordingly set to zero all the
terms containing ill defined logarithms.

—1-—2¢
b

V. THE NUMERICAL IMPLEMENTATION

finite when the soft or collinear limits are approached.
However, when we produce histograms of single or dou-
ble differential cross sections it is necessary to split the
second terms on the RHS of these definitions into two
parts, as we will explain next. For the case of the x in-
tegration we have

d [(x) f(l

fx) ldx——f“) . (5.1)
1—x

1__

The first term on the RHS of (5.1) is naturally made into
a histogram using two- to three-body kinematics. The
soft pieces that resulted from the expansion in (3.22) were
added to other two- to two-body contributions in order to
cancel singularities, so the remaining pieces are naturally
made into histograms using two- to two-body kinematics.
This means that in order to keep consistency in our com-
putation we have to make the second term on the RHS of
(5.1) a histogram, which is the term that compensates for
the soft singular terms in (3.22), using two- to two-body
kinematics as well. It is thus clear that a consistent way
of making histograms cannot be achieved in a simple way
without splitting the LHS of (5.1). In doing so we intro-
duce logarithmic singularities in each of the terms on the
RHS of (5.1) that cancel each other only after summing
both contributions bin by bin. To control the numerical
cancellations we introduce small adimensional cuts A,
Ay, and A, in the lower or upper limits of the corre-
sponding integrals. A first order estimate of the error in-
troduced by the cuts along with the requirement of good
numerical convergence will help us find the best values
for these parameters.

In what follows we will rewrite the partonic hard
scattering cross sections for each channel taking into ac-
count the A parameters introduced above. The contribu-
tion of each of these terms to the hadronic cross section
is obtained after multiplying by the corresponding experi-
mental cut function, convoluting with parton densities
(see Sec. II), and adding the corresponding ‘“‘inverted
channels” (i.e., the ones obtained by interchange of the
incoming partons.) Numerical results for each of these
hadronic contributions are presented in the following pa-
per [7].

For the ¢gg hard channel cross section needed in (3.39)
we have

Born
Uq =0 aq +0'qq(sv)+0'h+alb+0'14

When numerically implementing the “generalized +oP nite) T O ez orems) T T zterror) (5.2)
plus” distributions defined in (3.23) to compute total “ “ e
cross sections, the second terms on the RHS of (3.23) are where
J
01a=0p11t0n2 0,3,
Op=0p,1T0p 203,
P —
O ggtinite) O£, T 01,1207 0113001116 F 01106 F0 1130 53
1052101022210 523.105, 1,605,226t 0s23T0,3,
aqﬁ(error) = O 1a,error + O 1b,error + af, 1,error,a + af, 1,error,b + af,z,error,a + af,z,error,b + Uf,error ’

and
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Born — (0)

e [9(p1)q(p)—>WY]
=C,B(s) [ 'd cos6, 3 |1MT"7(s,b)”

1=, qq, f dx B(sx) X)f_lldcosollz|Mq‘7_’W7’(xs,xb+)|2(0),

olayzE—Cq;’l fpt:)dxﬂ(ix) 11t);2 In —iﬁ% —2In(1—x) f_lldcose’lz)M‘ﬁ"w”(xs,xb“L)IZ(O)
Ura,si—cflfxlo_“dx@ 11%);2 In %ﬁ? —2In(1—x) f_lldcose’lziM‘ﬁﬁWV(xs,xb*)lZ(O),
O g error = qzq’le In —i}ﬂfoi +2—21nA,

Xai B(s")(1+ 2)f d cosf) S MW (x5, xb )20 } =1+O(A§1nAx),

C,
— gt 1, Blsx) . 1 . T W 2
o1 =2 fpmdx———x (1 x)fﬁldcos(?lzIM‘” Y(xs,b7)[*O,

C_ x 2 2
— gg.1 ¥, Blsx) [ 1+x 2u® 1 , W o
=— d 1 -~ — aq—Wy
O1b,2 ) fp(s) x= 1= n > 2In(1—x) f_ldcost912|M (xs,b 7)*
_ Can pr-ax, Blsx) | 1+x? 2 | , Wy 1120
3= T, fxo dx———x T || > —2In(1—x f—1d cost| 3 M (xs,b )"0,
_ 2
Ulb,errorE ‘12‘1,1 Ax In %‘ff“ +2—21HAX
0
3 | Bisx) 5 1 ) W o ' ,
X o [+ )f‘ld cosf) 3, IM@="7(xs,b 7)) x:1+0(Ax na,) ,
—Xx 2 ~
014=2C_ B(s)in ¢ (ln —i}‘l-f— —In[(1—x4)A] flld cos8 3, M= Wr(s,p%)|20)
X 0 -
2 o (sx) 1 1 Pk S .,
Or11,a= S fp(s B f *y_ f~1d 00591f0 dO0yF%(s,x,y,c0861,63) ,
C
— 44,2 B(SX) 1 1 S T o
af,l,z,a_ s fp(s f —‘}’0 __ f-’d COSOI f() dOZqu(s,x,)’ycosol,ez) y
C x
— _ 44! Yo o . Blsx) | 1+x?* , W PP
Of1,3a= —~4——ln —A_y fp(s)dx—lt; f dcost 3 IMA=WY(xs,xbT)|*0,
_ 2 (sx) AF%(s,x,y,co0s0},65)
of,l,error,a qq A fp( B f d COSs Olf d92 ay 1+0(A§) s
S y=
Ca, (sx
O 116= ‘;q’ fp(s f—l+y f d cosd; f d6,F%(s,x,y,co086},05) ,
Can (sx ) 1*“)'0
Tf1.20% 4;‘1 fp(S) B f~1+A f dcose’f F%(s,x,y,c0s6},03) ,
C _ x
_ 1 Yo 0 (sx) 1—+—x -
Tfr1,36= 7 ZI 1 K; f dx—Bl_—x f dcosty 3 IMTA= W (xs,b~ )20
_ %o Blsx) 1 Crm. | OF¥(s,x,y,cos61,65) R
O f,1,error,b— y p(s)dx—l__—; f_ld coselfo do, P y:-1+0(Ay) ,
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C _ _
0 a1a=—22 f T 1y [ dcost, [ Tag;F s x,p,c0561,0%)
C _ _
0 220= "s‘”f B‘S")fl L d f_‘ldcose'lfo”de'zpqq(s,x,y,cose;,o;),
C _ 1-
O prsa=— @l Yo f d Blsx) 1+x f dcos() S | |M%~W7(xs,xb )20
4 A, [ 1—x
C _ dF%(s,x,y,c0s0},6,)
— ,2 (sx) , T , ' XY, 1Y,
Uf,Z,error,az— # Ay B f d elf doZ F:) +0(Af’)
N 0 y y=1
C
_ 12 (sx) i
O ot p= 'Zq fo B f—1+y0 f d cosb f d6,F%(s,x,y,c0s6},65) ,
C_ 1+y
T f220= B(SX) f—H—AO f dcose’f d6,F¥(s,x,y,cos6},0)) ,
C_ 1—
gf“bz-——ﬂiln Yo f dxBlsx) 1+x? f dcosf) 3 IMA=Pr(xs,b )20,
4 |, Y Tix
Blsx) p1 L pr, ., | OF%(s,x,p,c0s6},65) )
O s rerronb= nyO dx—l-:;f_ld coselfo de, 5 y=_1+0(Ay)
_ 1—x¢ 1 ’ W oft[2(0)
af,az_chﬁ,lﬁ(s)ln A, f—ld costy 3, M4 H7(s, b)Y,
1
O ¢ error = A -—
f,erro f [ ] Yo 1+y
Xf_lld cos9'1foﬂdGQ%[B(sx)F‘ﬁ(s,x,y,cos9'1,9'2)] _l+O(A§) ,

_ 1 DZO.(I) _
O gg(brems) — fo deyg(T)fDQlDQzFQ—IDTz[q(Pl )g(py)—W(Q,)g(q,)]
2(1)
b ]
s, —
;

The invariant b in the unprimed frame was defined in (3.6). In (5.4) appropriate experimental cut functions are implicit
in each of the corresponding integrands. We have introduced the constants

=Cpqs8() [ |7 f (1) [ 'd cos6, 3 | % (5.4)

_ 111
@1 4N2 25 16m? 0 T
_ 1 1 1
Cqﬁ,z_ 4ch 2s 2104 ° (5.5)
-1 11
93,37 4N? 2s 167 °
Now we rewrite the hard scattering cross section for the gg channel needed in (3.68):
- Leol 4 P,II ILcol | ~P
aqg g ﬁmte+a Ot oy qg, ﬁmte-*_alqgc0 +Uqg +aqg(brems)+aqg(enor)
(5.6)
where
PI 1 I I
O g, fnite = T gg, 1,1 T Ogg,r.2F Tgg,1,3
PII  _— I 1l I
Ogafnite =0 gg, 1,1 T Tgg r2H04g 13 5 5.7

— I 11
T gg(error) — 7 gg,error + O gg,error >

and
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Ohe == qg3f dxﬁ(sx)f Lty d f dco Blf dO0yF§(s,x,y,cos6},6,) ,
l+y0
1 —_— ’ ’ ’ ’
T e f 2= ng,3fp(s)dx B(XS)f71+Aydy—1+y f~1d coselfo dO0,F{¢(s,x,y,c0s0',6;) ,
C y 1 _
ol — S Yo Blsx) . o2 ! , —w —12(0)
Tig =" In a, fpmdx—x [x2+(1 x)]f'ldCOSGIZIM‘” (xs,b )|
1
. _ 1 1 7., | OFf(s,x,y,co0s6,0;) 5
b= Cops [ | dx Blsx) [ d cost [ T, . iy o),
o =Con [ ax B e (1202 In1 =)= 141
481 . x )] |In(1—x) n
Xf dcosG'z |M"‘7“’W7(xs,b“)?2(°),
qgfl‘— qg3BS)f dzf dyf
qgf2“‘ ngSBs)f dzf dyfx v ﬂd¢'2Fff(s,z,y,v,¢'2),
T 2(D)
ol 3 =—Cpq®ln ] s)fd f dyE{ng—»Wq 5,20 ’
oF#(s,z,y,v,¢3)
qgerror-cqgjiABs)f dzf d f d¢2 v _1+0(A3)’

ol = 1+(1—z) 2u’ 1+(z—1)B(s)
a.28BLs fdl z [ln sUg in z2(1—2)*B%s)
b 2(1)
gg—Wg |, 1L
Xf dyz |M S, ]' ,
ol =5"q(p)g(p,)—>Wygq],
DZO.(I)
T gg(brems) = f de-yq fDQ quW[ (pl)g(pl)"’W(Ql)q(qQ_)]
b 2(1)
1 1
—cqgﬂs)fodffqufodcosel2 ’M%We 5= ]

The comments after (5.4) are also valid here. In (5.8) we have introduced the constants

SRER I B
@17 N2 25 16m%
11 1
C,,= - ,
®27 §N2Cp 25 3272
C B S S

>

qu3 SNZCF 2s 28 4

c -1 1.1
94 8N2Cp 2s 167

Finally, the hard scattering cross section in the gg channel needed in (3.75) may be rewritten

_ _PI Leol 4 P11 11, col P
g agi,ﬁnxte+a“ +ag3ﬁmte+a_ +& +0 +o

gg(brems) ggl(error)

where

(5.8)

(5.10)
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Ulg)ﬁlﬁmte gq £ 1+qu £ 2+agq f£:37
Oghinie =11 T 0.2t T 10
Ugﬁ(error)=a;§,error ;Iﬁ,error ’

and

1 l_yo 1 1 ’ , a ' ot
aza’f,IE—Cqu de(sx)fl dny dcoself”dezqu(s,x,y,cosel,ez),

0;7f2 qg,3f dx B(sx)f dy—f d cos 9'f d0,Ff(s,x,y,cos0},63) ,
C y

I = _ 98! 20 Blsx) . RY) ’ qG— Wy +)20

Cws= "y Mg fp(s)d x2+(1—x2] ' d cost; 3 M@= (xs,xb )|
) oF§4(s,x,y,cos0},65)

0L eoror=Cag 3y f desx)f dcost; [ "d6; o y=1+0(A§),

o= Blsx) (g2 ey L2

ohel=C,, fmd x (FHE =] fIn(l=x) =3 —on | £

Xfl d cosf; Y, IM‘ﬁ_’W”(xs,xb*'HZ(o’,
qufl g3ﬁ(s f de dyf ( ’ yy)U7¢'2) ’
1 1 v 1 T ’ 77 '
Ogra=—CogBs) [ dz [ dyfl_v dor— [ Td4;Fif(s,2.9,0,0)) ,
4 $ o)A (5.12)
oh 3 =—Coafrn —’B( f dz '———( ’f dy’ S |me—"a s, 1 ,
OFff(s,2,y,v,65)
O ervor=Cag, 380 B(s)f dzf dyf de), » U=1+O(A3),
t 2(1)

Mool o A2 14+(1—2)? 2u? 14+(z—1)B(s) 1 gowg|. o1
020 =Cp i, B(s)f dz [ — In 0, +1n __—zz(l—z)zﬁz(s) f_ldyz M S, )
5 =0"18(p1)q(p)—>Wrq],

_ DZO'(“ _ _
9 gonems= [, 47,27 [ DO Dar 55 18 (p1)a(p2) — W(Q1)7(42)]

2(1)

T

1 _
ng,ﬁ(s)fold'rfﬁ(r)fodcoselz ‘ng—»wa s

The comments after (5.4) are also valid here.
All the above terms will contribute in the two-body inclusive scenario and in the zero-jet scenario. However, in the
one-jet scenario, as we mentioned in Sec. IV D, by setting x,=1 and y, =v,=0 we are left only with the contributions

— II =P
O'qq_a'/‘,lylya"*’o'f’l’l’b 5 O'q 9./ 1+0’ f1+ ag gq gqf 1'{‘0'g21.f1‘|‘0'g‘7 . (5.13)
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