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The key quantity of the heavy quark theory is the quark mass mq. Since quarks are unobservable
one can suggest different deanitions of mg. One of the most popular choices is the pole quark mass
routinely used in perturbative calculations and in some analyses based on heavy quark expansions.
We show that no precise de6nition of the pole mass can be given in the full theory once nonperturba-
tive effects are included. Any de6nition of this quantity suffers from an intrinsic uncertainty of order
AqoD/mq. This fact is succinctly described by the existence of an infrared renormalon generating
a factorial divergence in the high-order coefFicients of the a, series; the corresponding singularity
in the Borel plane is situated at 2rr/b. A peculiar feature is that this renormalon is not associated
with the matrix element of a local operator. The diR'erence A = MH& —m

' can still be de6ned
by heavy quark effective theory, but only at the price of introducing an explicit dependence on a
normalization point y, : A(p). Fortunately the pole mass mq(0) per se does uot appear in calculable
observable quantities.

PACS number(s): 12.39.Hg, 12.38.Aw, 12.38.1,g, 13.20.He

I. INTRODUCTION

Significant progress has been achieved recently in the
quantitative treatment of the decays of heavy Havor
hadrons by employing expansions in powers of 1/mq,
where mq denotes the heavy quark mass. Exclusive
transitions between two heavy Havor hadrons are con-
veniently dealt with by using the spin-flavor symmetry
of heavy quarks [1] (see also Ref. [2]); the formalism of
heavy quark effective theory (HQET) [3, 4] incorporates
this symmetry concisely at the Lagrangian level. Inclu-
sive decays, on the other hand, nonleptonic, semileptonic,
or radiative transitions to any type of the final state, can
be treated directly in QCD [5—10] via Wilson's operator
product expansion [11].

The key parameter in most aspects of heavy quark
physics is obviously "the heavy quark mass. " There are
no problems in defining this quantity within purely per-
turbative calculations. At this level one choice turns out
to be particularly convenient: it is the so-called pole mass
of the heavy quark, defined as the position of the pole in
the quark propagator in perturbation theory. This quan-
tity, introduced in QCD in the 1970s (see, e.g. , Ref. [12]),
is well defined in each finite order of perturbation theory;
unlike many other definitions, it is introduced in a gauge
invariant way. This convenient feature has made it very
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popular. Important results of perturbative calculations
such as the total semileptonic widths (including radiative
corrections) are routinely expressed in terms of the pole
mass (see, e.g. , [13]).

In this paper we exhibit an important drawback in the
concept of a pole mass that becomes apparent as soon as
one addresses leading nonperturbative corrections to or-
der 1/rnq. The problem arises, of course, because the
pole mass is sensitive to large distance dynamics, al-

though this fact is not obviously seen in the standard
perturbative calculations, and the corresponding treat-
ment requires special care. It had actually been noted
before that marrying full QCD with the notion of the
pole mass faces subtle diKculties [14].

Our main assertions will be threefold.

(A) In&ared contributions lead to an intrinsic uncer-

tainty in the pole mass of order AqgD, i.e. , an eÃect
of relative weight 1/rnq. Perturbation theory itself pro-
duces clear evidence for this nonperturbative correction
to m '. The signal is the peculiar factorial growth of the
high order terms in the n, expansion corresponding to a
renormalon [15, 16] residing at 2rr/b in the Borel plane,
where 6 is the first coeKcient in the Gell-Mann —Low func-

tion, b = (11N /3) —(2'/3). The physical reason lying
behind this linear effect is just the "Coulomb" energy of
the heavy quark.

A subtle point is that in&ared-renormalon effects can
usually be associated with the expectation values of some
local operators [16, 17] of the corresponding dimension.
This general pattern is not realized in the case of the pole
mass for the reasons which will be clarified below.

(B) The heavy quark expansion (HQE) yields for di-

rectly observable quantities such as the total semileptonic
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width of the heavy Bavor hadron decay:

I'(B w X„+1+ vi)

tive series for the heavy quark mass is discussed; Sec. IV
is devoted to the infrared renormalon contribution to the
mass; Sec. V demonstrates that the pole mass does not
appear in directly observable quantities, such as, say, the
total widths; finally in Sec. VI we discuss the running of
A and sumxnarize our results.

where for definiteness we consider B meson decay and
the coefficient c is c = 1 + 0(a, ). In the total semilep-
tonic width nonperturbative effects of order I/mq are
absent (see Refs. [7, 9]), and the corrections start &om

I/mq2 (the factor (2M~) reflects the relativistic nor-
malization of the state ~B)). While the pole mass is useful
within purely perturbative calculations, it makes no sense
to employ it in such an analysis that aims for an accuracy
O(AqcD/mq) or even 0(A&cD/mq), simply because it
cannot be unambiguously defined at order A@CD/mq.

(C) There is a profound theoretical difFerence between
the pole mass and the total semileptonic width: calcu-
lation of the latter can be formulated as an operator-
product-expansion- (OPE-) based procedure, ensuring
factorization of the large and small distance contribu-
tions; the pole mass, however, cannot be treated in such
a way.

On the other hand, and fortunately, there is no need
to use the pole mass in these inclusive transition rates.
Careful analysis shows that contrary to popular opinion
it is the running mass m(p) with p » AqcD that natu-
rally enters. The properly defined running mass includes
only the effects of xnomenta higher than p; therefore if p,
is chosen sufficiently high there is no in&ared uncertainty
in m(p). In particular, the parameter most relevant to
the inclusive heavy quark decays is m(mq). In other
problems it may turn out that the running mass nor-
malized at a different point enters; each particular case
requires its own careful analysis. It is important, how-
ever, that this normalization point never goes down to
a typical hadronic scale if one wishes to avoid the corre-
sponding in&ared uncertainty in the Wilson coefficients.
We stress here that the normalization point p does not
necessarily coincide with the off shellness of the heavy
quark inside the heavy hadron.

Certainly, the definition of the running mass m(p) de-
pends both on the scheme and the gauge used —an obvi-
ous inconvenience. In this respect, however, the running
mass does not differ, as a matter of principle, &om the
running gauge coupling constant a, (p) where an explicit
scheme and gauge dependence first exnerges on the third-
loop level. The essential difference is that for m(p) this
dependence manifests itself already at the one-loop level;
the observables, however, are independent.

Correspondingly, any consistent definition of the pa-
rameter A must explicitly introduce the normalization
point p, so that A is actually running, A(p), although
the running law is somewhat unconventional, see Eqs.
(17) and (53).

The remainder of this paper will be organized as fol-
lows. In Sec. II we restate the general procedure of
separating off the in&ared effects within Wilson's OPE
and the relation between the in&ared renormalons and
nonperturbative condensates; in Sec. III the perturba-

II. SEPARATION OF THE INFRARED EFFECTS
WITHIN WILSON'S OPE

In this section we remind the reader of a crucial prop-
erty of the operator product expansion [17—19]: it pro-
vides us with a systematic separation of infrared and ul-

traviolet contributions. This brief excursion into stan-
dard OPE applications will allow us to reveal a basic
difFerence in how in&ared effects enter in the pole mass
and, say, into correlation functions at large moxnentum
transfer.

As an example let us consider the correlation function
of vector currents:

II„„=(q„q„—q'g„.) II

=i d ze'~* OT j„zj„0 0, (2)

where

ip =A'p0

with g being a massless quark field. To avoid "external"
logarithms which are irrelevant for the problem under
discussion one usually deals with a modified quantity de-
fined as

II = —4z Q (d/dQ )II, Q = —q .

The one- and two-loop graphs determining II in pertur-
bation theory are depicted in Fig. 1. The well-known
calculation of these diagrams yields

.(Q')
(4)

a) b)

FIG. 1. Feynman diagrams for II„„in Eq. (2). Solid lines
denote the quark q, dashed lines gluons.

The virtual xnomenta saturating the corresponding loop
integrals are of order Q, and if Q2 is chosen to be large the
characteristic virtual momenta are also large. The result
(4) then represents the short-distance contribution.

The fact that Eq. (4) is correct in perturbative /CD
does not mean, however, that it is correct in the full
theory. Indeed, in deriving Eq. (4) one integrates over
all gluon momenta k, including the doxnain of small k
where k is the xnomentum Bowing through the gluon line
in Fig. 1(b). Of course, this domain gives a relatively
small contribution to the integral; nevertheless this con-
tribution is definitely wrong since for small k the Green
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functions are strongly modified by nonperturbative ef-
fects and have nothing to do with the perturbative prop-
agators one uses in obtaining Eq. (4).

The emergence of nonperturbative corrections can ac-
tually be inferred &om perturbation theory per se if one
recalls the presence of the Landau singularity in the run-
ning coupling constant in the infrared domain (for @CD).
This is the essence of the concept of infrared renormalons
[15, 16]. The phenomenon is quite simple and manifests
itself in the behavior of the high order terms in the a, ex-
pansion. The relevant diagrams are those where a chain
of loops has been inserted into the gluon Green function
(Fig 2). . This chain is equivalent to replacing the fixed
coupling by the running coupling constant a, (k~) in the
integrand and integrating it over with some weight func-
tion; the latter is given by the remaining propagators in
the diagram. This weight function is such that the in-
tegral over d4k converges in the ultraviolet domain. To
illustrate how this works let us use, following Ref. [20],
a simplified expression for II:

, k'a, (k')
renorm Q (k2 Q2)3 (5)

(k2)
a.(Q')

1 —[ba, (Q )/4'] ln(Q /k )
'

where b is the 6rst coefficient in the Gell-Mann —Low func-
tion, and expanding in a, (Q2) we get the whole series in
a, (Q2). Namely,

This expression coincides with the original one in the
limits k « Q and k2 &) Q relevant to the infrared
and ultraviolet renormalons, respectively. At k2 &) Q
the original integrand contains an extral lnk2/Q2 which
is omitted in Eq. (5).

The integral in Eq. (5) is saturated at k2 Q2; to get
the main contribution one substitutes a, (Q2) for a, (k2)
and finds the standard two-loop result for II. If, how-
ever, we are interested in high orders in a, (Q ) the tails
at k « Q2 and k &) Q become important. The con-
tribution of these tails have the form

Q2

IliR = Q k dk a, (k )
0

and

dk2
llvv =Q', a.(k'),

Q2

where the subscripts are self-evident. Substituting the
running gauge coupling

a (Q2) )- fba. (Q')1l k If» Q'l
4

(Q2) ) - (r'b (Q')
l( (8)

and

).( ba, (Q2)i dk2Q2 f'k2
4s- ) &. k' ( Q')

rr

(9)
n

The 6rst expression corresponds to the in&ared renor-
malon while the second one refers to the ultraviolet renor-
malon. The factorial growth of the coefficients is ex-
plicit in both cases. There are two difFerences, how-

ever. The ultraviolet renormalon is represented by the
sign-alternating series, in distinction to IIyR. The sec-
ond difference is the n dependence of the coefficients in
front of n!(ba, /47r)"+ In th.e infrared renormalon this
coefficient is 2 !"+l, compared to 1 in the ultraviolet
renormalon. These differences result in the fact that the
positions of the singularities in the Borel plane (to be
denoted b) are at

8x - 4m
biR = —,bvv = ——

b
'

b
(10)

In what follows we will not consider the ultraviolet renor-
malon, as well as other sources of the singularities in the
Borel plane, for instance, instanton —anti-instanton pairs
(see, e.g. , [21]) producing a singularity at b = 4x.

The occurrence of the factorial in IIgR is correlated
with the fact that at large n the integral is saturated not
at the large scale k Q~ but, instead, at parametrically
low scale k2 Q2 exp( —n). Therefore, when n becomes
large one encounters the Landau singularity, and, in an
indirect way, comes to the realization that in the in&ared
domain the gluon Green function cannot coincide with
the perturbative expression.

The factorial growth of the coefficients points to the
fact that one cannot, as a matter of principle, in6nitely
increase the accuracy of the perturbative approximation
by including higher and higher terms in the series: start-
ing from some order the absolute size of the corrections
increases again. The best one can achieve is to truncate
the series at an optimal value of n ensuring the best pos-
sible approximation. It is not difficult to check that the
error introduced by this truncation is of the order of

87r ) Aq~D

ba(Q) Q

FIG. 2. "Bubbles" in the gluon Green function giving rise
to the infrared renormalon in II„„.

Since the series is not Borel summable, it is in principle
impossible to achieve a better accuracy within the frame-
work of perturbation theory. All one can conclude is that
there must be a nonperturbative effect of the form (11).

It is well known that this problem does not mean that
one has to abandon hope for establishing theoretical con-
trol over the terms of this order of magnitude. The way
out is provided by a consistent use of Wilson's OPE pro-
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cedure. First one introduces a xnomentuxn scale p such
that momenta above p can be treated perturbatively. All

loop momenta are classified according to whether they
exceed p, or lie below it. The integration over the in-
&ared domain below p is then explicitly excluded from
the perturbative calculation and one finds

(12)

The fact that the subtracted term in this particular case
is proportional to p4 is not accidental, of course: it can be
anticipated &om Eq. (11) and it will be clarified shortly.
This result automatically follows &om the explicit calcu-
lation, provided that the scale p, is introduced without
breaking the gauge invariance of the theory (in practice
however this may turn out to be a technically highly non-
trivial exercise). Excluding the domain k & p, &om the
perturbative calculation does not mean that we just lose
this contribution. Within the Wilson OPE the contribu-
tion of this in&ared domain reenters through the vacuum
expectation value

where G = G„„ is the gluon field strength tensor, and
the operator G in the right-hand side is normalized at p
(i.e., by definition this vacuum expectation value includes
all virtual momenta below y,). The vacuum expectation
value (o.,G2) has the form

(a,G ) = const x AqgD+ const x o., (p )p, (14)

and in the full expression II&„q + AII the dependence
on the auxiliary parameter p cancels. The requirement
that the dependence on p cancels in the end dictates that
p must appear in II&„t as p, since no gauge invariant
operator of lower dimension exists.

Let us emphasize that the normalization point p should
be high enough to ensure the applicability of perturbative
calculations above p, , i.e.,

On the other hand, it is desirable to have this parameter
as small as possible, so that the corresponding terms will
represent insignificant corrections in Eqs. (12) and (14).
If this wish can be satisfied there is no need to carefully
work out details of how to introduce p explicitly. In par-
ticular, in Eq. (14) the term with Ac4 cD should be much

larger than that with p,4. In other words, the numerical
values of the condensates are assumed to be much larger
than their perturbative parts for some p, belonging to
the window discussed above. This is what is called the
practical version of OPE —powers of p, do not show up
explicitly then, although, of course, the conceptual ne-
cessity of having p should be always kept in mind (p is
certainly kept in logarithms in the practical version of
OPE). It is fortunate for applications of /CD that the
practical version of OPE works well in the vast majority
of instances; this could not have been anticipated a pri-

ori. Otherwise, all calculations based on OPE would be
much less useful since it would be mandatory to explicitly
construct the procedure of introducing p.

What then happens with the infrared renorxnalon
within Wilson's procedure? If one defines the perturba-
tive part with the in&ared cutoff at the point p, , the fac-
torial growth of the coefficients in the perturbative series
in a, stops starting from some value of n, n ln(Q2/p ),
since the integral "wants" to be saturated in the doxnain
Ic ( p and this domain is now simply eliminated &om
the perturbative sector. The price one has to pay is the
introduction of a new, nonperturbative parameter, the
gluon condensate. Once it is introduced, however, the
perturbation theory is amended, the eKects oc Q

4 be-
come tractable and this accuracy is legitimate. If nec-

essary, one goes a step further. Of course, corrections
of higher order in Q

2 require the introduction of new
higher-dimensional condensates.

Let us emphasize that the actual uncertainty due to
the in&ared renormalon, Eq. (11), should by no means
be equated with the contribution &om the gluon conden-
sate. It is true that they are of the same order in the
parameter AqcD/Q and the in&ared renormalon antici-
pates the appearance of the gluon condensate; the gluon
condensate contribution, however, is much larger numer-
ically, and this is the reason why the practical version of
OPE is so successful. One can interpret this fact in terms
of extremely strong distortions of the Green functions in
the infrared domain [17]. In other words the modifica-
tions (compared to smoothly extrapolated perturbative
Green functions) are not just of the order of unity but
are much larger numerically.

The discussion above makes it clear that in principle
perturbation theory already signals the emergence of a
nonperturbative correction in II of order A4qcD/Q4. A

hint is provided by the simplest diagram of Fig. 1(b). If
we introduce p and calculate the graph of Fig. 1(b) ac-
cording to the Wilson procedure we discover a correction
n, p,4. In combination with the general fact of strong dis-
tortion of the Green functions in the in&ared domain this
a,p4 correction triggers the rest of the machinery which
eventually leads to the nonperturbative gluon condensate
contribution in II.

The lessons one can draw &om this rather standard
procedure [17—19] are quite evident: although it is impos-
sible to actually calculate nonperturbative contributions
by analyzing the behavior of perturbation theory for a
particular quantity, the fact that nonperturbative contri-
butions exist and their particular form can be inferred.
Moreover, one can find out what kind of nonperturbative
terms are to be expected in a twofold way: by studying
low order perturbative graphs within the Wilson proce-
dure and by inspecting high orders of perturbation theory
as they are generated by the in&ared renormalon.

Below we will use both lines of reasoning to show that
the "pole mass" of heavy quarks, if treated in the context
of problems where we intend to include nolperturbative
effects, contains a piece of the order of Aq~o which must
be considered as an intrinsic uncertainty. Unlike the stan-
dard case, however, this piece is not related to any ma-
trix element of a local gauge invariant operator. There-
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fore, one cannot amend the perturbation theory based on

m in the manner it is usually done. This happens due
to the fact that the notion of the "pole mass" by itself is
ill de6ned. Explicit evaluation of the diagram of Fig. 3 yields

III. PERTURBATIVE CORRECTIONS TO mq

Following the general strategy outlined above we start
our analysis of the pole mass with the simplest pertur-
bative graph of Fig. 3. Instead of a straightforward cal-
culation of this graph we follow the Wilson procedure
and introduce, 6rst of all, the normalization point p such
that the domain of virtual momenta Ic & p is discarded.
Thus, we are going to calculate an analogue of II~„q in
Eq. (12).

As already mentioned, separating the in&ared and ul-
traviolet domains would in general require a rather so-
phisticated machinery. Fortunately, the situation sim-
pli6es in this particular case because the diagram of Fig.
3 is the same as in /ED. In /ED we can just introduce
a "photon mass" A, which, on the one hand, preserves
Ward identities associated with current conservation, and
on the other, suppresses the contribution of all virtual
momenta below A. In this way, the in&ared domain is
automatically discarded. The photon mass A is to be
identified with the normalization point p, cf. Eq. (12).
The procedure of introducing p suggested here cannot be
extended to higher loops. It is quite satisfactory, how-
ever, for our more limited purpose, namely, to establish
the presence of a correction of order 1/mq in the pole
mass.

Accordingly we use the following expression for the
gluon propagator:

s ( k„k„) 1 Mo2.( ) = - '
l g.- -

& k,
"

l k, ~, M2
'
»)

Here ( is the gauge fixing parameter and the term
Mo2/(Mo2 —k2) ensures ultraviolet regularization (Mo is
the ultraviolet cutofF). We have introduced it to be safe
in the ultraviolet regime, although it will play no role
in what follows. Since we are interested in the infrared
domain we further assume that

FIG. 3. One-loop diagram for the mass renormalization.
Thick line denotes the heavy quark.

The corresponding computation can, of course, be found
in any textbook on quantum electrodynamics (+ED); to this
order there is no difFerence between @ED and +CD, up to a
trivial overall factor.

As will be seen below, naive dimensional regularization can-
not serve this purpose.

(,)mq(A) = mq 1+—ln + const

2' s
mq(&) ™q(v) + ——'(v —

r ). (17)

What is important in Eq. (17) is the occurrence of a
correction of order I/mq relative to the leading term.

The procedure outlined above is not unambiguous in
both its elements —the de6nition of the running mass
and the speci6c manner in which the normalization point
has been introduced. In principle, one can use other pre-
scriptions. Let us mention, for instance, the suggestion of
Ref. [22] where the running mass mq(p) was introduced
through a certain integral over the cross section for the
process p+ Q ~ g+ Q. The normalization point p then
enters as an upper limit in this integral (see [22] for more
details; we plan to discuss this approach in a forthcom-
ing publication). Within this procedure one gets an ana-
logue of Eq. (17) which still contains a linear correction,
albeit with a different numerical coefFicient. While the
numerical value of the 1/mq correction is thus scheme
dependent, its presence is not.

The physical meaning of the 1/mq contribution is

quite transparent. It is nothing else than the classical
Coulomb self-energy of a static color source, see, e.g. ,
Ref. [14]. The energy of the Coulomb field at a distance
rp is given by

2a, 1
@Coul—

3 Pp

Identifying ro with 1/p we recover Eq. (17).
The Coulomb contribution to the mass can readily be

derived directly &om the graph in Fig. 3. In the limit of
large mq (compared to the gluon virtual momentum k),
i.e., in the static limit, the expression for the mass shif
takes the form

6mq = m~q
' —rrtq(p)

4, d4k 1

3 ' (2z.)4 (ko + is) (k2 + i~)
(19)

with an ultraviolet cutofF in the A: integration implied at
p, . (The integral for bmq becomes linearly divergent in
the static limit. ) It is easily seen that the only surviving

(16)

Here mql is the bare mass (the mass at Mo), while the
quantity on the left-hand side is the pole mass which
depends on A. We remind the reader that the domain
of virtual momenta k ( A is absent in mq(A), and this
leads to the dependence on A.

Next, we identify A and p, as explained above, and ex-
press the mass at one normalization point (we will refer
to this mass as the running mass) in terms of that corre-
sponding to some "starting" normalization point pp.
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contribution in Eq. (19) comes from 1/(ke + ie) in the
form of a term —imb(ke). The fact that the static limit
implies the vanishing of ke is quite evident by itself; the
occurrence of the linear in&ared effect under considera-
tion can be traced back to this feature of the static limit.

Performing first the integration over ko (which reduces
merely to putting ko ——0) we arrive at

The running gauge coupling is given by

k
a.(~e)

1 —(ba (~e)/4~)»(~o/k')
11

(~'o) )
n=0

(23)

8' d3k 1
bmq ———a,

3 '
(2m)s k' '

If an ultraviolet cutoff is introduced through a factor
p2o/(po2+ k2) in the integrand we get

Substituting the expansion of Eq. (23) into Eq. (22) we

immediately obtain the series

4a. (S o) - &,& ba. (Vo) ) "
3

hmq = mq
' —mq(pp) = sa, pp,

pole
(21) (24)

IV. INFRARED RENORMALON

Next one examines the impact of the high order correc-
tions in o., to the pole mass. We again study the chain
of loops inserted into the gluon propagator, this time in
the graph of Fig. 3, see Fig. 4. Summing all these "bub-
bles" amounts to replacing a, in Eq. (20) by the running
coupling a, (k2) in the integrand:

Sx dsk a, (k2)-q" -«"')= 3 „.„(2.) (22)

cf. Eq. (17) where, to get the pole mass on the left-hand
side, one should set p = 0. Were the cutofF introduced
in a "hard" way we would get a different coefficient in
front of the linear term, of course, but the very fact of its
presence would remain intact.

The appearance of the term linear in p in Eq. (17) tells
one, according to the discussion of Sec. II, that there is a
renormalon singularity in the perturbative series giving
rise to a relative uncertainty in the pole mass of order
1/mq. Below we will demonstrate it explicitly.

To conclude this section an important remark of a con-
ceptual nature is in order. The calculation carried out
above clearly reveals an important fact: while the OPE-
like procedure routinely used in HABET resembles closely
Wilson's OPE procedure [11], it has one very distinct
feature. In the static limit all energy transfers to the
heavy quark line vanish, implying that the time separa-
tions are always large. Physically that is quite transpar-
ent: the heavy quark after being placed at the origin as a
static color source at t = —oo remains there at rest until
t = +oo. The OPE procedure in the effective low-energy
theory is then based on a separation of small spatial &om
large spatial momenta. Therefore, below mq we actually
deal with a three-dimensional version of OPE, which re-
sults in peculiarities that might seem strange, at 6rst
sight, to those who got used to the standard features of
the four-dimensional OPE.

where the coefficients C„are given by

C„= dz/ ln —
/~2 (25)

At large n these coeScients grow factorially:

C„=2"n! . (26)

In other words one can say that the position of the nearest
singularity in the Borel plane [15,16] is at b = 2m/b This.
series is not Borel-summable due to the presence of an
in&ared renormalon; truncating it at the optimal value
of np,

2'
ba. (~e)

' (27)

one arrives at an estimate of the irreducible uncertainty
in m~q

' —mq(pp):

pole S
b, (mq" —mq(po)) —p0 exp

3b ( ba, (pp) )
8

~+CD.
3b

(28)

Thus, we see that perturbative /CD indeed does not
allow one to define m~q

' with an accuracy better than

AqcD, i.e., an infrared effect linear in AqcD/mq.
A simple way to explain the estimate (28) is to turn to

the original integral (22):

4 dkm~q" —mq(p0) = —a.(pp)3Ã o 1 — '~"'1 ln -"j
4~ Ic

(29)

Previously we have just expanded the denominator in
the powers of a, (pe), obtaining in this way the facto-
rial behavior of the expansion coefficients related to the
existence of the pole singularity in the integrand. Now,
instead, we regularize the singularity, say, by adding ie in
the denominator. Then Eq. (29) acquires the imaginary
part

r
~ ) ~ ~

q
~ I ~ \ ~ ~ ~~ ~

v ~ o or ~e
~ ~

~ ~ r ~r

0

Im [m~q
' —mq (po)] = —AqgD, (30)

FIG. 4. Infrared renormalon in the pole mass.
where AqcD parametrizes the position of the in&ared
pole in the running gauge coupling. The estimate (2S)
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above coincides with Eq. (30), up to a factor 1/vr refiect-
ing the difference between the real and imaginary parts.

[I et us parenthetically note that in Eq. (22) we sub-
stituted the soft cutoff po/(yo + k ) by a step function
at ~k~ = po. This is unimportant for the infrared renor-
malon where the integral is saturated at k poe
However, with the soft cutofF restored the very same in-
tegral (22) produces the ultraviolet renormalon due to
the domain k p02e ". It is not dificult to check that
the corresponding factorial behavior is the same, up to a
sign, (C„)iiv = (—2)"n!. In contrast with the situation
with the polarization operator II considered in Sec. II,
these two singularities in the Borel plane, in&ared, and
ultraviolet, are symmetric with respect to the origin. ]

The statement above, the impossibility of defining
m' to the accuracy better than AqcD, implies some
tacit assumptions. In particular, we assumed that one
should use the value of the running coupling n, (k ) in
the integrand in Eq. (22). This natural prescription is
easily justified in /ED where the Ward identity reduces
the renormalization of the coupling constant to the cor-
rections to the photon propagator. In non-Abelian the-
ories this is not the case in covariant gauges. A general
argument below illustrates the fact that one cannot get
anything else.

Being interested in effects occurring at the scale p,
much below the mass of the heavy quark, one integrates
out all momenta above p, and arrives at an effective
field theory of a nonrelativistic heavy quark with an ul-
traviolet cutoK p The .parameters of /CD are then n, (p)
and mq(p) (and, in principle, masses for the "light"
quarks); including external interactions adds also the cor-
responding couplings that must be renormalized at the
same scale p as well. The dependence of these parameters
defining the effective theory on the renormalization point
p, follows from the requirement that physical observables
do not depend on p, . If the renormalization procedure is
such that lowering p &om a value pi down to p2 incor-
porates radiative corrections due to virtual momenta ~k]
between pi and p2, then there must be a linear depen-
dence of mq(p, ) on p, necessarily of the form

seen by inspecting the local operators of the relevant di-
mension. The only potential candidate is

Q~DoQ,

[D,Q(t, x = 0)]e '~~ "'!&" [D,Q(t = 0, x = 0)], (33)

where Q is the heavy quark field and D; is the spatial
component of the covariant derivative. The pole mass
formally appears in consideration of the operator (33) if
one considers the matrix eleinent of this operator over
the heavy quark state in the limit t ~ oo. Thus, we deal
here with a generalization of the standard Wilson path
operator for an open path along the t direction.

where iDO ——its + g, Ao ( we imply gauge invariance
plus a static description of the field Q similar to that
used in HABET). However, the equations of motion reduce
this operator to those of dimension 5 which can generate
corrections of the relative weight A&~cD/m& only, rather
than AqcD/mq, provided that the definition of the quark
mass is properly adjusted, so that there is no so-called
residual mass [23], see below.

From the derivation given above (see Sec. III and, es-
pecially, the fact that ko ——0, as emphasized there) it
is clear why the standard OPE program is inapplicable
to m '. By analyzing Fig. 3 we have realized that
only very small &equencies (of the order of po2/mq) con-
tribute to the pole mass. In other words, even though the
characteristic spatial distances are small in the problem
at hand, the time separation is parametrically large. To
state it in more physical terms, measuring the pole mass
of the heavy quark requires a very long time, inversely
proportional to the allowed uncertainty in the absolute
value of the mass.

This means that the nonperturbative infrared contri-
bution in m&

' cannot be expressed in terms of a local
condensate, but, rather, through a nonlocal expectation
value. We have encountered a similar situation previ-
ously [24] in connection with the so-called temporal dis-
tribution function defined through the hadronic matrix
element of the operator:

= p [~ (s)] =-p"~.(s)+ ". (31) V. IRRELEVANCE OF THE POLE MASS

The fact that it originates kom radiative corrections is
indicated by the explicit factor a, on the right-hand side.
Of course, the exact form of the function P (o,,) depends
on the particular renormalization scheme. If one uses a
scheme that coincides to one loop with the prescription
of introducing a "gluon mass" p, then, according to Eq.
(16)

p(l) 2 (32)

The renormalization-group equation (31) combined with
Eq. (32) is equivalent to Eq. (22): O(n2) terms in the
function P (31) are neglected as subleading.

Recalling the discussion in Sec. II one is tempted to
relate the infrared part in m~&

' in Eq. (28) to the ma-
trix element of some local gauge invariant operator. Alas,
such an attempt is doomed to fail. This is most easily

a' m'
I = F '[V['

192+3
(34)

The only systematic approach presently known that al-
lows one to treat nonperturbative effects in /CD analyti-
cally is based on Wilson's OPE. This procedure requires,
as discussed in detail in Sec. II, a careful separation of
contributions from large- and short-distance dynamics.
Our 6ndings &om the previous section suggest that the
pole mass cannot be handled within such an approach.
In this section we will demonstrate that this is indeed the
case.

To be specific let us discuss the problem of charmless
semileptonic decays of B mesons which has been already
mentioned in Sec. I. In the parton model the total width
is given by the probability of the 6 —+ ulv~ transition;
neglecting all corrections we have
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When n, corrections are included the result of the ex-
plicit perturbative computation is most naturally ex-
pressed in terms of the pole mass (and this is what is
usually done, see, e.g. , Ref. [13]):

CF(m~")'
pert =

192~3

25&
x

3m 4)
This formula is perfectly legitimate as long as we stay

in perturbation theory. If, however, we would like to take
into account nonperturbative (in&ared) effects the use of
Eq. (35) can be seriously misleading. Let us clarify this
point.

As explained above, the perturbative series for m&
diverges factorially —a fact signaling the presence of a
nonperturbative contribution. A similar factorial diver-
gence takes place in the n, expansion in the large paren-
theses of Eq. (35). This perturbative series does have the
renormalon singularity at b = 27r/b giving rise to (uncon-
trollable) corrections of order AclcD/mq. Both effects
combine, however, to cancel each other, if the running
mass mq(mq) is used.

To illustrate how this cancellation works let us consider
one-gluon exchange graphs, Fig. 5. One must keep in
mind that the gluon Green function is assumed to be
dressed as in Fig. 4, so that o., (k2)/k2 must be used
for the gluon propagator. This gives rise to the usual
in&ared renormalon.

We remind the reader that we are interested in the
imaginary parts of the diagrams in Fig. 5 correspond-
ing to the appropriate cuts (i.e., the total semileptonic

(36)

where C is a constant related to I'0,

C = I'p/(2m~).

width). The graphs 5(a) and 5(b) contain the efFect of
the radiative shift of the mass discussed in Sec. III, and,
in particular, the factorial divergence, see Sec. IV. Our
point is that the integrands in the Feynman integrals
for diagrams 5(a) and 5(d) will completely compensate
each other in the domain of virtual momenta ~k~ && ms,
likewise with the graphs 5(b) and 5(e). [The above as-
sertion requires an explanation. We consistently work in
the Coulomb gauge. In this gauge diagram 5(c) has no
imaginary part and gives no contribution provided that
the b quark is at rest. As for diagram 5(f) the soft gluon
contribution in this graph is strongly suppressed and is
irrelevant in our approximation. Here the compensation
occurs between difFerent cuts of one and the same graph. ]

Now let us prove that the integrands in the Feynman
integrals for diagrams 5(a) and 5(d) completely com-
pensate each other in the domain of virtual momenta
~k~ && mg. To this end let us freeze the virtual momentum
of the gluon k and 6rst integrate over the light fermions
in the diagrams depicted in Figs. 5(a) and 5(d). In the
case of Fig. 5(a) we get in this way the b —b transition
amplitude U(p) presented by the right-hand side of the
diagram of Fig. 5(a) (p stands for the b quark momen-
tum). Pictorially this transition amplitude is denoted
by a black box in Fig. 6(a). Likewise, in the case of
Fig. 5(d) we obtain a two-loop induced effective vertex
6 —b —gluon, to be denoted below by V„(p, k). This
vertex is also depicted as a black box in Fig. 6(b).

The imaginary part of U(p) is readily calculable and is
well known; if the fermions propagating in the loops are
taken to be massless,

ImU = Cyf,

~ ~ ~ ~ ~

a)

c)

b)

~ ~ i ~ ~

What is crucial for what follows is the fact that this result
is in&ared stable: the corresponding loop integrals are
saturated by loop momenta of order of p. This implies
that the limit k ~ 0 in V„ is smooth.

Now, it is not difBcult to derive the Ward identity re-
lating V„ to U:

k„V„=U(p+ k) —U(p). (37)

(Here we ignore the color structure of the vertices which
is not important in the approximation considered; the
calculation would proceed in the very same way in /ED. )
The Ward identity (37) is sufficient to fix V„ in the limit
of small k:

cI) vA(p, o) = U(B)
|9

Bpp
(38)

As a matter of fact, we need only the imaginary parts of

~ ~ ~ ~

~ ~ ~a

a) b)FIG. 5. Diagrams determining O(cx ) corrections to the
total semileptonic width (taking the imaginary part is im-
plied).

FIG. 6. Graphs 5(a) and 5(d) in the language of the ef-
fective local vertices (denoted by the black box).
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both, V„and U; then, Eqs. (36) and (38) yield

Im Vp(p, 0) = 5Cppmb, (39)

to leading order in k/mb. The residual difference between
the graphs 5(a) and 5(d) shows up at the level of integrals
of the type

where we have accounted for the fact that one can sub-
stitute y'by mb in the approximation considered.

Note that the solution (38) of the Ward identity (37)
implies the absence of the infrared singularities at small
k, the fact that has been already mentioned.

It is not difficult to understand that the consideration
above, based on the solution of the Ward identity at small
k, can be reformulated in slightly different terms as fol-
lows. The b —b transition amplitude Im U = CyP can be
represented as a local effective vertex:

b(i P) b

The gauge invariance of the theory implies that the vertex
Im V„(p, 0) is generated by the substitution

b(i f) b m b(i P) 5,

where D„ is the covariant derivative. Diagrammatically
these effective vertices are presented in Fig. 6. The gluon
emission vertex in Fig. 6(b) is

5 P' g ~ 5(m,"')' g (40)

[see Eq. (39)].
The net efFect of diagrams 5(a) and 5(b) is quite obvi-

ous: they convert the bare b quark mass into (m[ ') in

the total width where mb
' in this approximation is

b b (41)

and —Z is given by the graph of Fig. 3. Explicitly these
two graphs produce

(42)

The result for Z is implicitly given in Eq. (16); its explicit
expression is not needed for our purposes here, where
we have to consider only the integrand of the integral
determining Z.

I et us now turn to diagrams 5(d) and 5(e). With the
effective vertex of Eq. (40) it is straightforward to check
that diagrams 5(d) and 5(e) yield

G2 V
( (o))4~

192vr3

We conclude that the uncertain contribution from the
domain ~k~ && mb present in individual graphs and re-
sponsible for the factorial growth of the coefficients (see
Sec. IV) is absent in the sum, Eqs. (42) and (43). Of
course, the cancellation described above takes place only

d k/ik/

1
bb = v„bp„b + 2 bi srGb

4m',

b[(iD) —(ivD) ]5+ O(1/mb)
1

b

(44)

explicitly demonstrating the absence of 1/mg correc-
tions. Equation (44) is valid up to terms representing
total derivatives.

In other words, one integrates out the momenta above
the scale p to get a generic operator product expansion
for the width:

I' = c(p, mb)mbbb~„+ c2(p, mb)mqbio. Gb~„+ . .
; (45)

which are harmless from the point of view of the linear in
1/mb efFect we focus on here. I et us also note in passing
that the exercise above is nothing else than a check that
equations of motion at a high normalization point could
have been used in OPE &om the very beginning.

Thus, in applying heavy quark theory one has to avoid
the pole mass altogether and to use, instead, the run-
ning mass which naturally appears in OPE; for only in
this case one may hope to get consistent and well-defined
expansions in powers of 1/mq. The leading operator in
the expansion in the problem at hand is b(i P) b. From
the consideration above it follows that the normalization
point p = mb is the most natural choice: by adopting
this normalization point we avoid any large logarithms
as well as the problem of a factorial divergence of the
type discussed in Sec. IV. Nonperturbative effects en-
ter through the matrix element of this operator; they are
also represented by matrix elements of other (subleading)
operators, for instance, b(i P)sio Gb.

Using the equations of motion one reduces the lead-
ing operator to mbbb, where both mb and bb are taken
at p = mb. We then evolve bb down to a low nor-
malization point, p « mb, the net effect of this evo-
lution is refiected in a factor of the type c(p, mb)
1 + ai(mb/y, )a, (mb) + az(mb/p)n, (mb) + which is,
anyway, included in the perturbative calculation. This
factor contains also terms of order (p/mb)" due to the
exclusion of the domain below p from the perturbative
calculation. It is important that the power n starts &om
n = 2. These sxnall terms, (p/mb)", will contain the se-
ries in n, (p), not cr, (mb). The additional p dependence
occurring in this way will be canceled by that coming
from appropriate local operators, e.g. , b(i P)sio Gb.

Once the operator bb is evolved down to a low normal-
ization point we can use the relation

Strictly speaking, these graphs also give rise to the 6 6eld
renormalization. In the Coulomb gauge the soft-gluon contri-
bution to the corresponding Z factor vanishes in the linear in
1/mb approximation.

the matrix element is taken then by using Eq. (44).
A question which immediately comes to one's mind is

as follows. What happens if we first evolve the operator
b(iP) bb down to a low normalization point and only then
use the equations of motion. At first sight we would
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get m&(p), not m&(ms) in this case, and in the limit

p ~ 0 we would recover (m&~ ') . The loophole in this
argument is rather obvious: the operator b(iP)sb mixes
under renormalization with the operators b(i P)4b, etc. ,
and accounting for this mixing returns us to the mass
normalized at mg.

It is instructive to dwell on this issue of mixing in more
detail, the more so since it is intimately related to the no-
tion of the residual mass, to be discussed below. Consider
the operator bi Pb]„, and evolve it down to p. The efFect
of the evolution is described by the diagrams of Fig. 6(b).
If only terms linear in p, are kept, the only relevant graph
is the vertex renormalization; this graph is the same as
that for the mass renormalization (Fig. 3), up to a sign.
As a result we get

bi Pb]„, = bi Pb~„———'(pp —p)bb. (46)

Using now the equations of motion in combination with
Eq. (17) we see that both the left- and the right-hand
sides contain ms(pp), Q.E.D. A similar relation holds, of
course, for any power of i P.

Above we have demonstrated our assertions consider-
ing explicitly a certain class of diagrams. The result is
more general, of course. It can be viewed as a statement
that the inclusive widths of heavy fiavors do belong to
the class of observables which are given by operator prod-
uct expansions in the standard understanding: physics of
short and large distances 4 can be separated into oper-
ators and their coefficients, and the in&ared behavior of
the latter is governed, in turn, by the corresponding lo-
cal operators. The existence of the 1/mq renormalon in
the heavy quark mass shows that this statement is not as
trivial as it might seem at first sight. However, as soon
as the validity of the OPE is accepted, one necessarily
arrives at the irrelevance of the pole mass.

Within the OPE-based approach one obtains the cor-
responding inclusive width as a series of operators of the
form b. b initially normalized at the scale mp, the in-
frared stability of the inclusive widths ensures that the
coefficient functions are finite in any perturbative or-
der. Some of these operators contain covariant deriva-
tives acting on the b fields; due to the equations of mo-
tions these derivatives reduce to powers of the high scale
mass ms(ms). Subleading operators can produce relative
effects not larger than 1/m2s.

Perturbative corrections actually drop out altogether
from certain observable quantities. Differences in the life-
times of different species of hadrons in the same heavy
fIavor family provide a prominent example: the widths of
pseudoscalar mesons Pg and baryons Ag agree through
order 1/mq,

in clear contrast to their masses,

MA~ —My ~~ -1 mg.
MA + My

We plan to present a more detailed discussion in a forth-
coming paper [25].

Since our conclusions obviously do not depend on the
particular decay process, they apply directly and equally
to radiative and nonleptonic decays.

VI. THE RUNNING OF A AND
OTHER CONCLUSIONS

Z/2 2/6
f~ &m, l (n, (ms) l

(mg) (a, (m, ) )
(47)

We have discussed in some detail the problem of the
pole mass in the heavy quark theory. Because of the pe-
culiarities of the static limit an in&ared term linear in
AqcD/mq is generated in the pole mass, as signaled by
an in&ared renormalon. The presence of this nonpertur-
bative term makes the notion of the pole mass, beyond
perturbation theory, not only useless but, rather, detri-
mental. What is even worse, this nonperturbative term
cannot be absorbed into any local condensate, unlike
the usual OPE-based prescription where the in&ared ef-
fects are naturally incorporated through the condensates.
Thus, the pole mass should be avoided altogether in an-
alyzing calculable observable quantities. The problem
disappears provided one uses the running mass mq(p)
normalized at a sufficiently high point. The same situa-
tion in a different context has been noted recently in Ref.
[26].

The occurrence of a new, linear infrared efFect in the
static limit reminds us of high-temperature /CD. In
this theory an external parameter, temperature, sets
the scale of the energy transfers, and if T && AgcD
this scale is fixed to be of order T. The integrals over
the four-dimensional momenta degenerate into integrals
over three-dimensional momenta. This produces new lin-
ear infrared divergences in high-temperature /CD [27].
Whether this parallel leads to nontrivial insights into our
problem remains to be seen.

The fact that corrections linear in 1/mq are present in
some quantities is not surprising by itself. Perhaps, the
best-known example is the axial vector constant fq (f~
or f~ for charm and beauty, respectively). In the limit
mq -+ oo they scale with mq as follows [28—30]:

It must be noted that it is indeed a statement of separation
of large and short distances in the process, not of perturbative
versus nonperturbative efFects; for the Wilson coefBcients in
general include nonperturbative contributions generated, for
example, by instantons of small size 1/p or 1/mg.

(olqw~w VII'q) = ifqp, (48)

However the correction is much smaller if one would de-

This scaling is known to be significantly modified by pre-
asymptotic 1/mq terms if one defines the axial vector
constant in the standard way via matrix elements of the
axial vector current:
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fine it via the pseudoscalar current [31,32]:

(0IQi&, qIPq) = fqM, . (49)

In the heavy quark limit the two definitions obviously
coincide,

fq M~

fq mq +mq
(50)

and this difference is therefore indeed contained in 1/mq
terms.

Calculation of fq cannot be directly formulated as an
OPE-based procedure; therefore, the emergence of the
1/mq correction is natural. The pole mass belongs to
the same class. Yet the OPE prescription is fully appli-
cable to the calculation of the inclusive widths of heavy
Qavor hadrons; the in&ared behavior of the correspond-
ing Wilson coefBcients is given by matrix elements of the
appropriate operators. This difference between the pole
mass and the inclusive widths is not accidental, of course,
and could be anticipated.

A remark is in order here concerning the place the pole
mass occupies in the heavy quark effective theory [3, 4].
HQET is formulated in such a way as to get rid of the
heavy quark mass at all; the effective theory is left with-
out a large parameter which might set an appropriate
scale for distances. It is then only the renormalization
point p that fixes the scale of momenta for static quan-
tities. However, the pole mass assumes that one takes
the limit p m 0 and, thus, no parameter is left at all.
It is clear that in any consistent formulation of HQET it
is impossible to set p = 0. One should keep p explicitly
and operate only with mq(p).

It is well known that in the framework of the HQET a
key role is played by the di8'erence between the hadron
and the quark mass for an asymptotically heavy quark:

A = lim (MH~ —mq)
VAN ~OO

(51)

It is always stated that the mass mq entering this defini-
tion is the pole mass. We have shown, however, that this
quantity is ill defined. There have been a few attempts
to define it consistently in HQET. One of those has been
made in Ref. [23]; namely, for pseudoscalar mesons it was

suggested that

(Oli(v~) (qip h„)IP(v))
Ap ——

(Ol qips h„ IP(v) )
(52)

The fields of the HQET are assumed here and standard
notations are used. This definition per Se is not better
and is plagued by the same problems —the impossibility
of disentangling nonperturbative effects frozn the pertur-
bative contributions. Any consistent formulation has to
discriminate large and small momenta rather than per-
turbative versus nonperturbative e6'ects. A consistent
formulation must then include the normalization point

p to ensure that momenta higher than p do not appear
in the matrix elements. If p is introduced one must then
define a "running" value of A(p), depending on the renor-
malization point p, as

with p having to exceed suKciently typical hadronic
scales. Its renormalization point dependence is given by
Eq. (31); attempts to put y, to zero to arrive at the
"old" A, would bring about uncontrollable uncertainties
of order AqcD in A(0).

It has been suggested [33] to use the requirement that
the so-called residual mass term vanishes to rigorously
define the heavy quark pole mass m '. In Sec. V it
was shown that mixing between the operators QiPQ and

QQ arises already at the one-loop level to order p. This
means that even if the effective Lagrangian of HQET is

chosen in such a way that at a certain p the residual mass
is zero, it necessarily reappears at a different value of p, . If
the process is characterized by a single scale (such as mq
in the total inclusive widths) one can certainly adjust the
effective Lagrangian so that there is no residual mass. If
the scale varies, however, it is mandatory to "readjust"
the notion of the mechanical mass of the heavy quark.
In other words by requiring the vanishing of the residual
mass one defines the running quark mass. (It has been
traced [34] how various observables calculated in HQET
via matching with full QCD turn out to be independent of
this term although it is present in intermediate stages. )

The fact that perturbative corrections to mq vanish
in dimensional regularization, which is often referred to
as a remedy, is an accident due to the fact that HQET
does not contain a dimensional parameter at the per-
turbative level. References to dimensional regularization
per se without an actual subtraction scheme are irrele-
vant for the eH'ective theory which requires a clear sepa-
ration of high and low momenta. For example, the mod-

ified minimal subtraction (MS) scheme giving a logarith-
mically dependent one-loop value for mq in the form

mq(p) = mq(mq)[1+ (2n, /vr) log(mq/p)] for an in-

frared cutofF p, (& mq cannot achieve the momentum
separation necessary for OPE.

Note that the problem of the total inclusive widths
is, strictly speaking, outside pure HQET: for the large
mass scale parameter, the energy release, is intrinsically
involved from the very beginning, determining the char-
acteristic space-time separations here.

Some relations are known for exclusive form factors in
6 m e transitions, that, in the limit mb, m, ~ oo de-

pend on A outside the zero recoil kinematics (see, e.g. ,

[35]). However, they contain purely perturbative O(a,")
corrections. Their main piece reHects the hybrid renor-
malization [30, 36] that must be properly accounted for

in constructing the e8'ective low energy description; they
are governed by the scale momenta between mp and m„
or, in general, above p, . Some corrections, appearing
already in the efFective theory itself, reBect, however,

much lower scales; obviously in the heavy quark limit
at v g v' there always exists a large domain of gluon
momenta 0 g Ikl g Ivlmq whose effect is not governed

by n, (mq), but rather by the running coupling at the
lower scale. These corrections therefore can lead again

A(p) = »m [M~~ —mq(p)] (53)
N.U. is grateful to V.M. Braun for pointing out this con-

structive interpretation.
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hm —AqgD.p ), 8
3b

(54)

To determine what particular A (i.e., A corresponding to
what particular subtraction scheme) enters on the right-
hand side one needs to perform a two-loop calculation.
In the absence of such calculations it is consistent to use
the one-loop A which is one and the same in all schemes,
A ] p 100 to 150 MeV. Then one gets

bmvq" 50 Me V; (55)

certainly this estimate needs improvement via real two
loop calculations.

The presence of the I/mq renormalon in the pole mass
of the heavy quark makes the attempts to extract the
value of the pole mass &om the absolute widths of heavy
flavors [38—40] not very meaningful from a theoretical

to in&ared renormalon contributions. There is no reason
for them not to be able to convert the "pole" A into a
"running" one. It is clear that this problem deserves fur-
ther theoretical studies, especially if one wants to under-
stand the real meaning of the relations mentioned above
in the presence of an in&ared renormalon in the heavy
quark mass. In principle a more complicated situation is
conceivable —exclusive modes may not be described com-
pletely by the standard OPE and intrinsic uncertainties
similar to that in the pole mass could have emerged.

We do not address in this paper the numerical aspects
of the in&ared renormalons; they are left for the future
studies [25] (see also [37]). Still for orientation it is in-
structive to consider the estimate (28). According to this
expression the uncertainty in the pole mass is

perspective; it is the masses m, (m, ) and ms(m&) (see
Ref. [38]) that can be extracted from the widths. Indeed,
one can reach the required 1jmq accuracy through cal-
culating suKciently many perturbative corrections only
if the semileptonic width of D or B mesons is expressed
in terms of the high scale mass. On the other hand,
one could determine V,g &om the b ~ c semileptonic
width assuming that one is close to the small velocity
(SV) limit [2]; then this width depends mainly on the
difference m~ —m, meaning that the overall uncertainty
in the mass cancels out in mb —m, [38,39, 7].

The uncertainty in the pole mass can well constitute
a sizable part of the commonly accepted value for A for
mesons of about 400—600 MeV, cf. Eq. (55). This is
apparently due to the peculiar Coulomb enhancement of
the leading radiative corrections that has been noted in
a different context by Braun et al. [41].
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