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Green's functions in the color field of a large nucleus
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We compute the Green's functions for scalars, fermions, and vectors in the color field associated
with the infinite momentum frame wave function of a large nucleus. Expectation values of this
wave function can be computed by integrating over random orientations of the valence quark charge

density. This relates the Green s functions to correlation functions of a two-dimensional, ultraviolet

finite, field theory. We show how one can compute the sea quark distribution functions and explicitly
compute them in the kinematic range of transverse momenta, a, p, (& kt &( p, , where p, is the
average color charge squared per unit area. When m~„,i, (( p A, the sea quark contribution
to the infinite momentum kame wave function saturates at a value that is the same as that for
massless sea quarks.

PACS number(s): 12.38.Mh, 12.38.Bx, 13.60.Hb

I. INTRODUCTION

In two previous papers [1,2] we argued that the quark
and gluon distribution functions for very large nuclei at
small values of Bjorken z were computable in a weakly
coupled many-body theory. We argued that when z ((
A f' and when a parameter proportional to the density
of valence quarks per unit area,

(4)

In the light cone gauge, A = —A+ = 0, a solution to
the classical equations of motion for the gauge fields is

A+ ———A = 0 with the transverse components of the
gauge field given by

is large, the theory is governed by a weak coupling con-
stant a, (ls). The valence quarks serve as sources of color
charge and can be treated as static sources along the light
cone. They follow straight line trajectories traveling at
the speed of light. We further argued that as long as we

were measuring parton distribution functions on trans-
verse momentum scales which are k~ &( p, the sources
of valence charge could be treated classically. The field is
stochastic and we must average over the classical sources
of charge p with a Gaussian weight

Further, the field o.s may be inserted into the equations
of motion to show that

F~ ——0,

where Ft are the transverse components of the field
strength tensor, and

V'. o. —gp

These conditions are equivalent to as being a pure gauge
transform of the vacuum for a two-dimensional Yang-
Mills theory, with the gauge condition being the above
equation. We may, therefore, write

[dp] exp
~

— d zt p (z)
~

.
)2p,

(2)

To lowest order in n„ the theory can be reduced to
computations of the two-dimensional Euclidean correla-
tion functions of an ultraviolet finite gauge theory.

These correlation functions are related to the solution
of the classical equations of motion in the presence of an
external current which is localized on the light cone:

where the equation which determines U is

V (UVUt) = ig p. —(9)

This source corresponds to a sheet of charge in the two
transverse spatial dimensions propagating at the speed
of light x = t. Here we use the light cone variables

This solution has zero light cone Hamiltonian, P = 0.
Finally, the integration over all the color orientations

of the external sheet of charge must be performed. This
is equivalent to computing the expectation values of
(n;(z&)as (y&)) with the measure
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[da] exp( — d z~{V a) ]b(F~)Bet(V D),
g2 p2

where D is the covariant derivative. This measure can
also be expressed in terms of the compact fields U as

[dU] exp — d z&Tr V
~

U VU—.t
~

)
x det(V' D) . (11)

The above form for the equations explicitly demonstrates
a scaling behavior. Namely, the two-dimensional expec-
tation values of the variables U are functions of g pxq
or g2y, /kq. The dependence on k+ of the external field
is particularly simple and has the form 1/k+. Thus
to lowest order in a„and to all orders in o.,p, the
distribution function for gluons is flat in rapidity, and
has the above simple dependence on transverse momen-
tum scales. When kq )) a,p, we showed in our previ-
ous papers that the distribution functions were simply
Wiezsacker —Williams distributions.

Although the limitation that the computations we em-

ploy are only valid for k, &( p, arose &om requiring that
we can treat the external sources classically, it would
seem that one might easily extend the kinematic region
where our results hold to larger values of transverse mo-
mentum. After all, in this region, the gluon field is essen-
tially the perturbative Wiezsacker —Williams field, with
the only essential modification that the source is quan-
tum mechanical. In the lowest order, the source squared
averages to the same values as for the classical result, and
the result is the same.

The problem is that there will be big quantum cor-
rections to our lowest order result. These will arise as
factors involving o., ln(ki/p) and can be large. This is a
consequence of the fact that the background field is be-
coming weak, of the order of A& a, p, /k~ and when
kq p, the background field is of the order of the quan-
tum corrections.

Eventually it may be possible to extend the range
of validity of our method to larger values of kq. In-
deed, the corrections seem to be similar to corrections to
bremsstrahlung radiation which are understood to some
degree. At this time we do not know how to make these
corrections, and our results are restricted to transverse
momenta kz (( p. This is a nontrivial restriction because
the bremsstrahlung spectrum is hard, and as we shall
see for quarks with masses m~„,i, )) p, , the dominant
contribution to the sea quark spectrum comes from this
region.

The central issue we will address in this paper is that
of computing the Green's functions for scalars, fermions,
and. vectors in the presence of the above background field.
We will consider scalars and fermions in the fundamen-
tal representation of the gauge group. The vectors will
be the gluons. We shall first compute the Green's func-
tion before averaging over all values of the valence quark
charge, and later average over all values to obtain our fi-
nal result. We will get explicit expressions for the Green's

functions in terms of the background Geld, and will thus
be able to determine the scaling properties of the distri-
bution functions associated with these Green's functions.

It is not too surprising that the Green's functions can
be explicitly computed. In the region x &, 0 and in the
region x ) 0, the background field is a pure gauge. Only
the step function at x = 0 prevents the field from being
entirely a gauge transform of the vacuum configuration.

There are at least two uses towards which the Green's
function computation can be applied. The first is to com-
pute, to lowest order in o.„the contribution of sea quarks
to the wave function of a nucleus. This is of interest for
heavy quarks because the enhancement of the momentum
scale arising &om the typically higher density of partons
in a nucleus leads to a correspondingly enhanced contri-
bution of the strange and charm quarks to the nuclear
wave function. In fact we will see that if m~„,k && p,
then the contribution of sea quarks has saturated at a
value which is the same as that of the massless sea quarks.

The Green's functions may also be applied to deter-
mine the higher order corrections in n, to the quark and
gluon distribution functions. This will be the subject of a
later analysis, where we will explicitly compute the first-
order corrections. It will be necessary to understand the
pattern of such corrections if the Lipatov enhancement [3]
is to be understood. Hopefully, all of this will be feasible.

For the problems we wish to study in this paper, it is
useful to know the relation between the Green's functions
and the distribution functions for quarks and gluons. We
explicitly derive this relationship in Sec. II.

In Sec. III we compute, in the fundamental representa-
tion, the scalar particle Green's function in the presence
of the background Geld. We show how averaging over the
different orientations of the sources of charge simplifies
the result.

In Sec. IV we generalize our results for the Green's
function to fermions in the fundamental representation
and to gluons.

In Sec. V we compute the sea quark contribution to
the nuclear wave function. We compute the ratio of the
contributions of light mass quarks to glue. For heavy
quarks, we compute the mass dependence of our results.
Unfortunately, for heavy quarks with mq„,k ) p, the
dominant contribution to the integrated spectrum comes
for values of kq )) p.

We will summarize our results in Sec. VI. In the Ap-
pendix we obtain an expression for the quantum Huctua-
tions in the constrained vector fields. These fields, which
are not dynamical fields, are nevertheless necessary for
computations of some pieces in the gluon Green's func-
tions.

II. PROPACATORS AND DISTRIBUTION
FUNCTIONS

We want to be able to relate the distribution func-
tions for various species of particles to the propagators
for these particles. Let us first consider the example of
a scalar field in the fundamental representation of the
gauge group. The scalar field may be written in terms of
creation and annihilation operators as
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d3k
gP(z+, x) =

),+)p /2k+(2m)'

x(, "*a.(z+, I)+e '-" b-t(z+, k)) . (i2)

In general, our propagator will have the structure

D ~(k, q) = b ~(27r) b(k'—q )6~ l(kq —qq)

xA(k+ q+, k, k&) . (24)

In this equation, k denotes the set k+, k&. The equal
(light cone) time commutation relations for the a and b

fields are

[a (z+, k), a~ (z+, q)] = (2x) 6 (k —q)6 ~

[b (z+ k) & t(z+ q)] (2fr) h (k q)h ~ (i4)

with all other commutators vanishing. The operator a~

creates a scalar particle and the operator bt creates its
antiparticle charge conjugated partner. If we define

b t(z+, k) = a (z+ -k),

we then have

d3k
& (z) =

2 Ik+ l(2~)s
e'" a (z+, k).

The distribution function for the scalars is

dN 1
dsk (27') s ) (a t(z+, k)a (x+, k)

a
+b t(x+, k)b (x+, k)).

) (a t(z+, k) a (x+, k)) .
a

The sum in the above equation goes over both particles
and antiparticles. For the systems we consider, the sum
will be symmetric under interchange of particles and an-
tiparticles. We therefore have

dNscalar

dsk
'ascalar (2k+ )

(2n. )
s

6" ' '(k+, k+, k, k, ) .2'

In exactly the same way, we derive, for gluons,

dNgluon

d3k

iris luon (2k+ )
(2~)s

x ) bs, " "(k+,k+, k, kg), (26)

where the sum over i is a sum over transverse gluon po-
larizations.

For fermions we get

dNfermion

d3k

2~fl fer mio n (2k+ )
(2n)s

f ) gfermion(k+ k+
2'

8

This form follows because, after the averaging over
sources, the propagator must obey translational invari-
ance in the transverse spatial directions and color invari-
ance. The external field does not depend on the light
cone time z+—hence one also obtains a delta function of
k —q . Since the background field depends on x and

y even after summing over the charges of the valence
quarks, there is a nontrivial dependence of the propaga-
tor on both k+ and q+.

Combining terms together, we finally see that

Now on the other hand, we also have that

e (e+, k) = gr
~

k+
) f d e e '"

d (e),

so that

= 2i ) D (z+, k, z+, k) .
dsk (2w)s

(20)

Here the sum over s is a sum over fermion spin degrees of
&eedom. In the above, n„ l „ngl„„,and nf„; „are the
respective color degeneracies of the scalars, gluons, and
fermions. In the fundamental representation, this factor
is N, and in the adjoint representation it is N, —1. A
factor of 2 for the degeneracy of particles and antipar-
ticles is included in the above expressions. Further, the
sum over spins and polarizations will reproduce the spin
degeneracy factors.

The propagator in the above equation is defined as

D '(z ~) = -i(& (z)& (~))

with

D(e+, k, y+, S) = f d ed y e ' +'e"D(e, y). (22)

We shall now compute the propagator for a scalar field
in the fundamental representation of the gauge group
propagating in the background gauge 6eld:

(2i) IIL THE PROPAGATOR FOR SCALAR BOSONS

Finally, we can write the distribution function as the fol-
lowing integral over the fully Fourier transformed prop-
agator:

= 2i ) D (k, k, q, k). (23)
dN . 2k+ . dk dq

CX
where

A+ ——0

A =0
~. A; = 8(z )a;(zr), (2s)
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1
o.;(zg) = —

—U. {x,.)V;U'(x, ) .
l,g

To do this, we Erst solve the Klein —Gordon equation

(—(V', —igo)'+ 20+0 + M') y~(z) = ) y~(x) (30)

for the scalar field P and the corresponding equation for
P(x), the complex conjugate of the scalar field.

We will soon see that an eigenstate of the above equa-
tion is labeled by its four momentum p and its color label
s for a color spinor with index )9. The Green's function
is given in terms of the above eigenfunctions as

The solutions are normalized so that

(32)

For x ( 0, the external field vanishes. The solutions
are therefore plane waves:

p', +M' —X
(g'(x) = exp

~
ip, z, —ip x+ — ' x

~
u, .

)
(33)

Here u is the elementary color spinor, such that

dA d4p
, h(A —p' —M') t

@B&+S +S B (34)

For z ) 0, the field is a gauge transformation of the
vacuum Geld con6guration. The solutions for 6xed p are
therefore

(. . + p'+ M' —A
&i„'(z) = (U(zi)u j exp

I &p~x~ —&p z+—
l 2p ]

We must now construct the solution to the equations of motion which is continuous across the discontinuity in z
The solution is

x (U(z, ) V&(q, )u, ) ), (36)

where we have defined

Vt(X, ) = jd z, e 'e'*'Vt(z
) (37)

The above solution for tt) is properly normalized as may be easily verified. Upon defining

p,'+ M' —a
p

2p
(3S)

(t) may alternatively be written as

d2 2 2

dx'(z) = e' q( —z )u, +q(z )
e'e'*' exp

1

—t z
~

((t(ze)Vt(qq)u, )

With the above solutions in hand, we can now construct the Green's function for the scalar 6eld in an arbitrary
background field of the type described above. Et is important to note that this expression makes no assumption about
the color averaging over the color labels of the external sources corresponding to the valence quarks. This averaging
will be done later. (The expression we quote before averaging is the quantity which will be useful in loop graph
computations. ) The result of a considerable amount of straightforward but tedious algebra is

~p 8 p 1
{-" ~(z V) = ~(-z ){)( ~)Ge (*—~—)+{)(z )0(& )(&(z~)ce(z —&)U'(&)) +

{2~)4p2 + M2 —ie
e'u( -~}

gg
-(et —s t)

d2z 0(z )0( y )e {Pt qt){ t t)e P (U'(x )U't(z ))
(2m. )2

+q( —* )tt(q )e "' ""*' z'exq t
" '

q (tJ(ee)&'(qe)) )2P
(40)
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where the free particle Green's function we have the snm rule

d4 ~i@-(x—y)

(2vr)4 p2+ M2 —i~
' (41) f

d2p

), Y(pt) (45)

((U(*)U'(~)) ) =~'I'(* -v) (42)

we see that

Now if we average the above Green's function over all the
possible values of the color labels corresponding to the va-

lence quarks, the result simplifies even further. Defining

This expression can now be inserted into the definition
of the propagator. The result can be expressed most
simply in terms of the Fourier transform of the Green's
function —the propagator D(p, q). Letting bD(p, q)
D(p, q) —Do(p, q) where Do is the free propagator, and
writing

r(o) =1, (43)

p(y, ) = f d'z, e '~'"F(x,), (44)

which follows from the unitarity of the matrices U. Defin-

ing the Fourier transform of I',

~D ~(p, q) ='~ ~(2~)'~(p —q )~"'(p~ —~~)»(p q)

(46)

it is straightforward to compute». As a result of con-
siderable algebra and using the above sum rule for the
integral of p(pq), we finally find that

h&(pq) =e(p ) I

1

(p+ —q+ +ie
( 1

+~(-p ) i

),p+ —q++ i.

p &o(q)
l

&o(p- «) ~(4) —(2~) ~' '(«)
dz« 2 (&)

(2z)2

p &o(p) I &o(q —4) g(4) —( ~) ~ (4)
d24 2 2

(2z)'
(47)

In the above, Ao represents the usual scalar propagator:

1
&o(p) =

p +M (48)

IV. PROPAGATOR FOR FERMIONS AND
GLUONS

It is easy to show that each component of the free
fermion wave function obeys the Klein-Gordon equation.
Hence the Green's function defined in Eq. (31) for the
fermions is simply related to the scalar Green's function

b&(p q)':.™~= 2p+b&(p q), (49)

where»(p, q) is given in Eq. (47).
The solutions of the small fiuctuation equations for

the gluons in the background field are plane waves in the
adjoint representation for z ( 0 and gauge transforms
of plane waves in the adjoint representation for z ) 0.
Defining p+ = (piz —A)/2p, and matching the fields
across the discontinuity at z = 0, we obtain for the
transverse components of the gauge field the relation

by a relative normalization factor of 2k+. This relation
also holds for their Fourier transforms —the propagators.
Explicitly,

ge
''*' Ux~ U~xg7Uxg U z (5o)

where q is a unit vector and the 7's correspond to the usual SU(3) matrices. The coinputation of the Green's functions
for the vector case is exactly analogous to that of the scalar Green's functions outlined in Sec. III. To obtain our final
result, though, we have to make use of the Fierz identity

Our result for the Green's function is then

)~p
~

ppps pspp
~2 ( 3 )
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d4 ip(a —y) I I

G ' (*y) =
2 4 2 8( )8( y )( ) ( ) +0(* )()(y )(U(*) U ( )) (U(y) U (y))

+ "d'* (0(* )0(-y )"'"' ""*' *""' "'* '" (U(*) U'(*)) '(U(*) U'(*)) '
(2') 2

+~(—* )t)(v )"""""' "'~'" "'""(~(*)«'(*)) (~(v)«'(v)) (52)

Again, as in the case of scalars, we define the expectation value

((U(~,)~Ut(*))'(U(y, )~Ut(yq)) ) = —
~

b r b ~ —'b ~b -('
~
r(x, —yq).

2 \ 3

The rest of the discussion is identical to that in Sec. III and the change in the gluon propagator bD(' ('(p, q)
may be expressed as

bD ~' ~ (p, q) = i
~

b ~ b —~ ——8 ~b ~
~

(2vr) b(p —
q )b (p, —q~)b6(p, q),

I.(.
2 ( 3 (54)

where bb, (p, q) has a form identical to the result obtained
in Eq. (47).

V. SEA QUARK DISTRIBUTION FUNCTIONS

Now that we have computed the fermion propagator
in the classical background field in Sec. IV, we are in a
position to calculate, to the lowest order in n„ the sea
quark distributions in this background field. The relation
between propagators and the corresponding distribution
functions has been discussed in Sec. II. However, due to
the singular nature of the propagators in the background
field, the actual computation of the distributions is some-
what subtle. This computation will be outlined below.
In the rest of this section, we compute the ratio of sea
quarks to glue in the background field and study the mass
dependence of our results —whether one obtains an en-
hanced contribution Rom strange and charm quarks to
the nuclear wave function.

From Eqs. (23) and (49) we can show that the sea
quark distribution function can be written in terms of

I

the scalar propagator as

g~fermion

xR2 d3k

4N, (2k+) .

(2vr) s

x dk+ dk bD(k„k, k+; k+ )

xb'(k+ —k+) . (55)

g~fermion

srR2 d3k

4N 2k+ i
bD(k„k, k+; k+) .

(27r) s 2vr

(56)

However, this cannot be done in this case due to the
singularity in bD(kq, k, k+; k+ ) as k+' ~ k+ [see Eq.
(47)). The limit must be taken only at the end, after
performing the integrations in Eq. (55).

Substituting Eq. (47) in Eq. (55), we obtain

Note that we have implicitly included a factor of 2 from
the two light cone spin degrees of freedom in the above.
Typically, the above equation would reduce to

1 d~e
mB2 d3k

"'"'
~(2-) b( l(p)—

(2n)s a+ ~I.+ (2')2

dk
x (—2k )Ao(k)Ao(k'+ p, ) +2'

dk Ao(k'+ pg)

2~ I+' —I++i.

dk Ao(k+ pc)
2m' k+' —Jg+ +

(57)

The first term within the curly brackets vanishes because both poles in the contour integral lie on the same side of the
contour. The remaining two integrals are apparently logarithmically divergent. It can also be shown that the pieces
singular in the limit k+ m k+ either vanish or cancel out. The sum of the two integrals in the brackets may then be
written as
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1(ln (k, + p, )'+ M' —lnZ)lim-
Z~oo k+

where Z is a constant corresponding to the upper limit of the divergent integrals.
Substituting the above result in Eq. (57), we obtain

(58)

1 dN'-'- N, (2k+) d'p, „, 1 . (in (4+p&)'+M' -in&j
xR2 dsk (2x)4 (2vr) 2 2 z~~ k+2 (59)

However, the Z-dependent piece of the above integral
vanishes due to the sum rule in Eq. (45):

1 dN„2(N, —1)
xR' dy

(64)

f
2

h'(A) —(2&)'~'"(p~)] = o.
(2m)

(6O)

dN fermion

xB2 d3k
4N,

(2m. )4k+

d pg (kg+ pg)2+M2
(2~)2 k2 + M2

(61)

A key feature of the above result is that the sea quarks
demonstrate the same 1/z scaling behavior as that
obeyed by the gluons.

The sea quark distribution in rapidity per unit rapidity
per unit transverse area can be represented as

Our result for the sea quark distribution can therefore
be written as

1 de)„~~
srR2 dy

2cr, ln( —')p2(N2 —1)
(65)

The ratio of intrinsic quarks to glue in the nuclear wave
function is therefore suppressed by a factor rr, /vr. Note
also that the sea quark distribution saturates; it is not
dependent on the sea quark mass. This result is true
for all quark masses which are mq~zp (& p. The dom-
inant contribution for heavier quarks comes &om large
transverse momentum where our results cannot yet be
extended.

This result is the main result of our paper. Recall
that the lowest order result for the gluon distribution
arising from the same range of momenta was just the
Wiezsacker —Williams result scaled by p2:

1 dN 4N, d pg

vrR2 dy (2x)4 (2~)'
(kg + pg)2 + M2

k2+ M2 (62)

2(4~)2(N2 —1) o,p
C pt

(63)

Therefore, in the dominant range of integration,
a,p (( pz (( p, we obtain the astonishingly simple
result for the sea quark rapidity distribution:

It turns out that the integration over kq can be performed
analytically and one obtains the simple result vrp~~. This
result implicitly assumes that the range of k& and quark
mass is &( p. If otherwise, for reasons stated in the
introduction, we expect large contributions due to radia-
tive corrections. The stated range of transverse momen-
tum is the dominant one if we require that the mass be
mq„,& &( p. This is because this range of the sea quark
transverse momentum corresponds to the range pq & p of
the gluon distribution —the contribution from the large
kq & mq„,g is suppressed in this range of the gluon trans-
verse momentum.

Now, in Ref. [2], we argued that the dominant contri-
bution from the averaging over the color charge distribu-
tion [see Eq. (11)]came from the range o.,p ((p~. In
this range, the leading order contribution to p(p, ) from
the color averaging is simply

VI. SUMMARY

We have given in this paper explicit expressions for
the quark and gluon propagators in the background field
generated by a heavy nucleus in the infinite momentum.
frame. These expressions will allow us to compute the
first radiative corrections to the distribution functions. If
there is a Lipatov enhancement, it will appear in the first-
order radiative corrections. If such an enhancement does
occur, once understood, a technique must be developed
for including its eEects to all orders. This issue will be
the subject of later analyses.

We have estimated the contributions of light to inter-
mediate mass sea quarks to the distribution functions in
the region of momentum where our results are reliable.
To get a reliable estimate for larger masses, one must
understand the kinematic range when kq & p. This re-
gion is basically a weakly coupled region, but is not yet
understood within our &amework. The region where the
distribution function is cutoK, kq o.,p, must also be
properly understood if one wants to go beyond an ap-
proximation which is accurate to the leading logarithm
of a, . Finally, the modifications due to a possible Lipa-
tov enhancement must be understood.

There is also some hope that the result for heavy nu-
clei might be extended to hadrons. This would occur if
there is a Lipatov enhancement, since in this case the
typical parton separation might become smaller than the
hadronic size. We have made the first step toward com-
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puting this possible enhancement in the context of this
theory.

There is finally the issue of how to relate these compu-
tations to experimental measurements of structure func-
tions. This can only be done by studying the depen-
dence on the Q of the probe by using an Altarelli-Parisi
analysis. There are two important weak coupling re-
gions. In the first, Q )) p~, presumably, the ordi-
nary Altarelli —Parisi analysis goes through. The other
region is p, )) Q )) A&cD. In this region the cou-
pling is weak, but the intrinsic transverse momentum of
the quarks and glue is important. It is this region which
must be studied carefully since this region provides the
greatest potential for measuring the intrinsic properties
of the hadronic wave function.
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dependent fields. One can also compute Green's functions
for the dependent fields by making use of the constraint
conditions on the light cone. These constraints are ob-
tained &om the equations of motion on the light cone
(see discussion in Ref. [1]).

In this brief appendix, we obtain an expression for the
dependent vector field A in terms of the transverse vec-
tor field Aq. The Green's function for the constrained
fields may then be obtained following a procedure iden-
tical to that followed in Sec. IV.

The general constraint condition for the A vector field
is obtained from the equations of motion to be

—0 A = J++ DgE'. (AI)

In the above equation, J+ is the component of the light
cone current defined by Eq. (3), Di are the transverse
components of the covariant derivative and E' = 0 A'
are the transverse electric fields.

If we define A" = A,"& + A"„, then keeping only terms
up to order O(A"„),

BA —„=D, (8 A'„) —ig[A'„, ()9 A,'()]. (A2)

APPENDIX

We have derived in this paper expressions for the
Green's functions for the scalar, vector, and fermion in-

Here D, = (Bi —igA, ) &).
(o)

In Eq. (50), we had obtained an expression for A ~, .
This expression can be rewritten in the compact form

g( — )
" fg+g(* *) " """"'*'

g~ — ' lf, (g))

where
(A3)

f~P gpgg g a)s

f~g = g~ f d g, e ~'"(U(z, )U~(g, )YU(g, )lT~)z, )) (A4)

where gi is a unit vector. Further, A',
&

——&(z )n,'&.

To obtain an expression for A+, we integrate both sides of Eq. (A2). We choose the boundary condition A (x
0) = 0. This particular boundary condition is convenient because it implies that the source current 1 has a constant
value for all light cone times x+. Though convenient, this boundary condition is not sufhcient to ensure that the fields
vanish at infinity as implied by the original constraint equation. We shall return to this tricky issue in a later work.

Our final result for the quantum correction to the constrained field A+ is

2 'Lgt Kg(~")- =-""g-" *' "*[-g(-*-)(~-""
)—"' '+g) )*-
p+ p+ (2~)~ i+ (~i a+a')

2pp- .

x exp~ ix
~

—e'" —[i(qi+ p, )f~, ]
( . (2piqi + q,') ),„+- cxP

)

+~gx e'~ g(x )[g,ra.;) g) . ,
(A5)
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Note that this solution for As+" is defined only up to a
term Bx, where B is an arbitrary function which does
not depend on x . The Green's functions for the con-
strained 6elds can now be computed in the manner dis-
cussed in previous sections.

An essential feature of the above result is that it has
terms in&ared singular in p+. There is an extensive lit-

erature on how to regularize such singularities which are
endemic in light cone quantization [4—7]. A discussion of
light cone regularization schemes is outside the scope of
this paper. However, this issue will be important when
one considers one-loop corrections to our results and the
problem of regularization will be addressed more fully at
that time.
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