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Corrections to mass scale predictions in SO(10) grand unified theory with higher
dimensional operators
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We calculate the two loop contributions to the predictions of the mass scales in an SO(10) grand
unified theory. We consider the modified unification scale boundary conditions due to the nonrenor-
malizable higher dimensional terms arising from quantum gravity or spontaneous compactification
of extra dimensions in a Kaluza-Klein-type theory. We find the range of these couplings which allows
left-right symmetry to survive till very low energy (as low as TeV) and still be compatible with the
latest values of sin 8~ and o., derived from CERN LEP. We consider both the situations when the
left-right parity is broken and conserved. We consider both supersymmetric and nonsupersymmetric
versions of the SO(10) theory. Taking the D-conserved non-SUSY case as an example, we calculate
the sects of moderate threshold uncertainties at the heavy scale, due to the unknown Higgs boson
masses, on the gravity induced couplings.

PACS number(s): 12.10.Dm, 11.10.Hi, 12.10.Kt

There are many extensions of the standard model,
which are suggested on various aesthetical grounds. But
so far experiments could not find anything which is not
predicted by the standard model. In other words, the
standard model is consistent with all the experiments car-
ried out so far, although there are appealing reasons to
believe that there is physics beyond the standard model.
In the standard model the (V—A) nature of the theory is
put in by hand, whereas in a left-right symmetric exten-
sion [1] of the standard model this comes about through
spontaneous symmetry breaking.

In the left-right symmetric extension of the standard
model, at higher energies the gauge group is extended to
a left-right symmetric group Gl,~ = SU(2)& SU(2)&
U(1)B &. When appropriate Higgs fields acquire vacuum
expectation values (VEV's), this group breaks down to
one of its subgroups G,i~ = SU(2)L U(1)&. There will
then be new scalar and gauge particles of mass of the
order of this symmetry-breaking scale M~. The mixing
of these gauge bosons with the standard model gauge
bosons puts a lower bound on this scale.

The Kr, -Ks mass difference gives a lower bound [2] of
about 1.6 TeV on M~ &om the box diagram with both
WL, and WR exchanges. However, this constraint is sub-
ject to the assumption of manifest left-right symmetry,
which is to assume that the Kobayashi-Maskawa matrices
of the left- and the right-handed sectors are the same. In
the absence of this artificial symmetry (which does not
have any natural explanation) the bound [3] on MR is
relaxed to 300 GeV. Prom the direct search [4] at the
Collider Detector at Fermilab (CDF) the lower bound on
M~„ is 520 GeV. This bound is not applicable to left-
right symmetric models where the TV~ couples only to
the heavy neutrinos, which again decay very fast. The
strongest bound on MR comes from an analysis [5,6] of

the precision measurement of the Z pole from the CERN
e+e collider LEP [7]. From a fit of the 1992 data and
for the commonly chosen Higgs-triplet fields for the left-
right symmetry breaking, the lower bound on M~ is of
the order of TeV.

In the standard model the three gauge coupling con-
stants are Bee parameters and are all difFerent. This has a
natural explanation in grand unified theories [8] in which
the strong and the electroweak interaction are only low-

energy manifestations of a single interaction. The GUT
interaction is a gauge interaction based on a simple gauge
group with only one gauge coupling constant. Through
spontaneous symmetry breaking this breaks down to a
low-energy symmetry group. Then the difFerent coupling
constants evolve in different ways to give the present day
low-energy coupling constants. Some of the attractive
features of GUT's were their natural explanation of the
problem of baryogenesis and their unique prediction of
proton decay. However, proton decay has not yet been
observed and the question of baryogenesis took a com-
pletely difFerent shape following the observation of large
anomalous baryon number nonconservation at high tem-
peratures in the presence of sphaleron 6elds. The main
interest in GUT s remains its unification of coupling con-
stants and charge quantization.

Recently, there has again been an upsurge of inter-
est [9—13] in GUT's following the precision measurement
of the three gauge coupling constants at LEP. The nor-
malized gauge coupling constants for the groups SU(3)„
SU(2)L„and U(1)i., as obtained [7] &om analyzing the
LEP data, are given by

ni(M, ) = 0.16887 + 0.000040,

a2(M, ) = 0.03322 6 0.00025,

ns(M, ) = 0.120+ 0.007,
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respectively. With the minimal particle content, it is not
possible to unify all three coupling constants at any en-
ergy. This apparently rules out [9] minimal SU(5) GUT
and any GUT's without any intermediate scales and new
particles unless the eKect of gravity modifies the situa-
tion.

It was further pointed out that the scale of the
intermediate symmetry breaking can be severely con-
strained by the present values of the gauge coupling
constants. For the minimal supersymmetric GUT's, the
supersymmetry-breaking scale MR 1 TeV gives a good
fit [9] to evolve all the gauge couplings to a unification
point. However, threshold efFects and higher order cor-
rections make this scale uncertain by orders of magni-
tude. This makes the threshold efFects and higher order
corrections very important in studying the evolution of
the gauge coupling constants in light of the LEP data.

It was pointed out that if one studies any GUT's with
left-right symmetric group GI,R as one of its intermedi-
ate symmetry group, then the present LEP data severely
constrain [10] this symmetry-breaking scale MR. For any
GUT's and any number of new symmetries above MR,
one obtains a lower bound

MR & 10 GeV.

This bound can be relaxed [14] if one breaks the left-
right parity and the left-right symmetric group GL,R at
different scales.

If new signatures of the right-handed gauge bosons
are found in the next generation accelerators (since the
experimental lower bound is only around a TeV), that
will not, however, mean that there is inconsistency in
GUT's. It was shown that in a very specific supersym-
metric SO(10) GUT one can satisfy [13] the unification
constraint with low MR. The details of this deserve fur-
ther study.

Since the GUT scale is very close to the Planck scale,
the efFects of gravity may not be negligible. It was shown
that if efFects of gravity are considered through higher di-
mensional operators, then even the minimal SU(5) GUT
with no new particle content may be consistent [15] with
the LEP data and proton decay.

We have studied [12] the efFect of gravity to see if
the constraints on MR can be relaxed. We considered
higher dimensional nonrenormalizable operators which
may arise due to quantum gravity or spontaneous com-
pactification of extra dimensions in the Kaluza-Klein-
type theory and their efFect in the SO(10) Lagrangian.
The GUT scale boundary condition was found to be
modified, and for certain choice of parameters low MR
could be made consistent with SO(10) GUT. In this pa-
per we present details of our analysis. Here we include
the threshold eff'ects and study the two-loop evolution
of the coupling constants, which are also very significant
in these analyses. First we present the formalism and
then present our analysis. At the end we summarize our
results.

Higher dimensional operators were considered origi-
nally [16] to help solve some problems in fermion masses.
The idea is to find out if the low-energy physics contains
some signatures of gravity effects. In all these analyses

' SU(3) x SU(2)L x SU(2)zU(1)~z L,l

[= G.R],

"SU(3), x SU(2)z x U(1)z
[—= G.~a],

SU(3), x U(1), (2)

Near the scale MU 10 GeV or higher the gravity
efFects are not negligible. But we assume that any theory
beyond this scale respects the SO(10) symmetry. Then
the Lagrangian will contain all the usual SO(10) invari-
ant dimension-four interaction terms and, in addition,
will contain SO(10) invariant higher-dimensional non-
renormalizable terms. These higher dimensional terms
will be suppressed by the Planck scale (in theories [16]
where these terms are induced by quantum gravity) or by
the Kaluza-Klein compactification scale (in theories [17]
where these terms are induced by spontaneous compacti-
fication of the extra dimensions in the Kaluza-Klein-type
theories), which can even be two orders of magnitude
below the Planck scale.

The Lagrangian can be written as,

L = LR + LNR

where the first part of the Lagrangian contains all
the renormalizable dimension-four terms including the
SO(10) gauge-invariant term

L = Tr(F„„F""),——
2 (4)

where

F„„=B„A„—B„A„—ig[A„, A„],

with

Tr(A;A~) = -b;~,

the coupling constants in these nonrenormalizable terms
are free parameters. Someday we may learn if such cou-
pling constants may arise from gravity naturally.

In our analysis we consider dimension-five and
dimension-six operators when the contribution &om
dimension-five operators vanish. We note that the ef-
fect of all operators higher than dimension six can be ab-
sorbed in the couplings of the dimension-six operators,
and hence their inclusion does not increase the number
of parameters. We therefore consider only dimension-five
and dimension-six operators in our analysis.

The main objective of our study is to look for con-
sistency of low MR. For this purpose we consider the
symmetry-breaking chain

SO(10) SU(4) x SU(2)L x SU(2)z
[—= &»]
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where the A's are the SO(10) generators. The nonrenor-
malizable part of the Lagrangian contains all the higher-
dimensional SO(10) invariant terms. We are presently
interested in only dimension-five and -six terms, which
are given as

) L()
n=5

where

and

( )+6( )+ ~{')
4 ~ 2 b

+ —6 + —6
2 4 2

1 &(&)
L( ) = —— Tr(F „PF"")

2 Mp)
(5)

Then the usual G~g Lagrangian can be recovered with
the modified coupling constants

L( ) = ——
2 (xI( )[Tr(F„„QF"")+ Tr(F„„QF""p)]

Tr(P )Tr(F„„F")

+~(')T (F~"y)T (F„„y)), (6)

1
(E) = Zo diag(1, 1, 1, 1, 1, 1, —2, —2, —2, —2), (7)

30

where Zo ——
5 M~ and aG = go2/4vr is the GUT

coupling constant. We now introduce the parameters

where g(") are dimensional couplings of the higher di-
mensional operators. When any Higgs scalar P acquires
a VEV Po, these operators induce eff'ective dixnension-
four terms, which modify the boundary conditions at the
scale $0.

Let us consider the symmetry-breaking chain [2] at the
scale M~. We shall first consider the case when this sym-
metry breaking is mediated by the VEV of a 54-piet of a
Higgs field. In this case the left-right parity is broken at
MR only when SU(2) R is broken, and the gauge coupling
constants gL and gR corresponding to the groups SU(2)L
and SU(2)R, respectively, evolve similarly between MU
and MR so that gL(MR) = gR(MR) In the s.econd case,
we shall consider the symmetry breaking at the scale MU
by a 210-piet of a Higgs field. This breaks the discrete
left-right parity symmetry [14] D, so that gL and gR
evolve in a diferent way below MU and, as a result, one
obtains gL(MR) g gR(MR).

In the D-conserving case, the symmetry breaking at
Mxx takes place when the 54-piet Higgs field Z of SO(10)
acquires a VEV:

g4 (MU) =y 4 (MU) (1 + e4)

~2L(MU) ~2L(MU) (1 + e2)

g2R(MU) = g2R(MU)(1+ &2)
'

where g; are the coupling constants in the absence of the
nonrenormalizable terms and g; are the physical coupling
constants that evolve below MU. Sixnilarly, the physical
gauge fields are defined as A'; = A; v 1+ e;

The VEV of Z leaves unbroken a larger symmetry
group than ( ps, which is O(6)O(4). The D parity
is thus unbroken and hence SU(2)L and SU(2)R always
receive equal contributions. Furthermore, since overall
contributions to all the gauge groups cannot change the
predictions of sin 8~ and 0.» the VEV of E can only
contribute to one combination of the couplings, i.e., the
relative couplings of SU(4) and SU(2). For this reason,
no matter how many higher dimensional terms we con-
sider, what contributes to the low-energy predictions of
sin 8~ and o., is only the combination

6 = 64 —62.

If we now assume that the dimension-six terms ~,.

are negligible compared to the dimension-five terms E{

then we further get

2 3
e4 ———e, and

5 5

As we argued earlier, this does not reduce the number
of parameters in the theory. If we include the higher

(x),f 1 ) ' MU (i)
)(25vr n~ ) Mpi

TABLE I. Higgs spectrum at various mass scales for the
D-conserved and the D-nonconserved chain.

and

2

(2) & 1 &
' Mxx (2)

g25mo. ~ $ Mp(

Group G,.

(2x2R4cI'),

Higgs content
(2, 2, 1)xp

(1,3) 10)12p
(3, 1, 10)y2p

(i, 1, 15)4p

Then the G~g invariant effective Lagrangian will be mod-
ified by these higher dimensional operators as follows: (2L2R4c)

(2, 2, 1)zp
(1,3, 10)y24

(1, 1, 15)4p

1 (1+ )T[F()F() ]

1—(1+E2) Tx, [F(2L) F(2L)t u]

1
(1 + ) T [F(2R) F(2R))su] (10)

(2 2 1xB Rx3cp)—

(2t.2R1B—x, 3C)

(2, 2, 0, l)gp
(1,3, 2, 1)y24
(3, 1,2, &)i24

(2, 2, 0, 1)gp
(1,3, 2, 1)y2p



50 CORRECTIONS TO MASS SCALE PREDICTIONS IN SO(10). . . 2195

( Oss lss Os4 )
(H) =

( 04s 04s 044 )
(13)

dimensional terms, then the allowed region in e will be
shared by the other e(")'s.

It was pointed out in Ref. [12] that for any choice of
the parameter e it was not possible to have a consis-
tent theory with low MR. It was necessary to make the
symmetry-breaking scale MI very close to MU, so that
higher dimensional operators can introduce another pa-
rameter, which can then allow low MR.

The VEV of a 45-piet field H can break the symmetry
group G~g to GLR.

SO(10)
multiplet

54
45
126

TABLE II. The Higgs bosons at MU.

Gq, 2,4 multiplet

Si(1,1, l),S2(1, 1, 20 ),S~(3, 3, 1)
Q$ (3, 11),$2 (2, 2, 6),ps (1,3, 1)
Ei (2) 2, 15),Z2(1, 1) 6)

where i = a, b, c. The SU(3), U(1)& & invariant kinetic
energy term for the gauge bosons will then be given by

(i+,') T [F(') F(')~"] —-(1+.') T [E(' F ' ""]1 1

where 0 „is an m x n null matrix and 1 is an m x m
unit matrix. The antisymmetry of the matrix H will
imply that to dimension-five operators there is no contri-
bution &om this Higgs field. The lowest-order contribu-
tion comes from the dimension-six operators (in Ref. 12
the dimension-five operator was taken to give the lowest-
order contribution; this is incorrect, since, due to the an-
tisymmetry of the 45 representation, the dimension-five
operator is zero):

where

and

g' = g'( ~ + 12/'3 4L b

~', = 7e' '~ + 12~,""+ 12~'('~

'(')T (F H2F~")
2
Pl

Tr(H )Tr(Fp„F"")

+&.'(')T (F'"H)T (F„„H) . (i4)

le(2) I I i(2) T (F y2 FPv)
2M2Pl

+ps( )Tr($2is) Tr(F„„F"")

The VEV of H does not modify the SU(2) couplings. The
SU(4) invariant eifective Lagrangian will only contain a
new contribution:

In general, E'y and ez may be treated as two &ee parame-

ters. But we shall assume t
&

——e = e, and, hence,1(2) 1(2) 1(2)

es = 0.42, Ei = 6 (say).

Thus the parameter space in e' and e we present here may
be further relaxed to some extent. However, the number
of parameters in the sin 8~ and o;, is not changed and
we cannot expect any change in low-energy predictions.
In our analysis we shall present the parameter space of

and e, which allows low MR. For the D-nonconserved
case, a 210-piet Higgs field is used to break SO(10) to the
group G~g without D-parity conservation. The VEV of
the Higgs field is given by

+ri,'( )Tr(F""/is) Tr(F„„/is),
1

(H2io) = Ho diag(144, 144, —144, —144),
32

(20)

where /is transforms as (15, 1, 1) of Cps. At MI
the symmetry group SU(4), breaks down to SU(3),
U(1)z L when the field /is acquires a VEV:

1
40diag[1, 1, 1, —3],

24

where Hp is related to the vector boson mass M~ by

~

~

M~ ——Hp. Keeping only the dimension-five oper-
ator we get

e4 ——0,

with Po ——/6/5vrn4Mr. We now define
where

62L = —62R = 86'(z)

1(2)
I(2) '9;

24MPl

21 ( MI 5 g(2)

20vrn4 (Mp()
(17) ( )

2 (M
32~mr. (Mp))

SO(10)
multiplet

45
126

TABLE III. The Higgs bosoas at MI.

Q2~ g~, g~ ~,3~ multiplet

1 y (1,1, 1) 0),Yg(1, 1, 0) 8),X(l, 1, —,3),X(1,1, ——,3)
(i (3) 1) ——

) 6),t'2(1, 3, —,6)) $3(3, 1, —,3),$4(1,3, ——,3)
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TABLE Iv. Allowed ranges for e and e' for the D-broken non-SUSY case.

~' (10-')
4.92—10.38
11.69—12.46
6.46—8.46
11.08—13.23
9.23—10.92
8.23—10.4

e {10 ')
—10——5.43

—9.72——1.032
—7.09——5.32
—9.59——7.91
—9.18——7.75
—7.33-—5.50

MI

10
1p16

10"
1O"
1017
1018

MU

1O"
1O"
1O"
10
1p18
1p18

a2L, (Mg)
~~R(MR)

1.4
1.3
1.3
1.2
1.3
1.2

For the evolution of the coupling constants we use the
two-loop renormalization group equations [9,11,18]

0 2 6 ~ 2 26;~
v& ~'(v) =

4
b* + ) .4" ~&(v) ~,'(v) +

4
*',~,'

through the factors A; appearing in Eq. 24. The Higgs
bosons that live around the mass scale MU and MI are
given in Table III and Table IV.

Defining gH = ln M, one can write, at MU,X

A4 ——(4+ 16qs, + 8gy, + 32qp, + 2qg, + 2rlH~),

A2 —(6+ 12&s, + 12&~, + 30&z, + 4rlp, ). (24)

n, (v, ) =Ppln —+ + —lnv 1 Pi
v ~'(v) Pp

1
~p = —b*+).be~'(v)

26;,.

(4~) 2

& '(v')+ —'

ct
—1(v) + A

(22)

where the i, j index represents the different subgroups at
the energy scale V and n; =

4
g2. The various P func-

tions with supersymmetry (SUSY) and without SUSY
are given in Ref. [19]. We use the survival hypothesis
[20] to find the Higgs content at the various mass scales
for any given chain. In Table I we show the Higgs bosons
that live at different mass scales.

An approximate solution of the evolution equation can
be written as

At the scale MI one has

As ——(1 + 6@~, + 15'(, + 15I7g, + 3g(, + 3g(, ),
AR I, = (4 + 6g(, + 6q(, + 3ilg, + 3gt, ),

A2L, = (24rt(, + 12'(, ),
A2R = (24rtII, + 12rlt, ). (25)

The quantities A4 —A2 and A3 —AB I. appear in the solu-
tion for MU and MI, respectively. We consider two cases
where the Higgs boson masses are chosen such that the
above quantities are at their extreme values. We further
make the assumption that the Higgs bosons at a given
scale coming from the same SO(10) multiplet have the
same masses. In the first case, we choose Mg, Mg, MH
to be ( )MU, wh-ile M~ to be 5M~. At MI we choose

My and Mg to be 5MI. For the second case, we just Hip

At each symmetry-breaking threshold we use the follow-

ing matching conditions for the couplings when the group
G breaks to the group G, [21]:

—1 —1 A.
~, (v) =~a-

127r

where

0.05

0.00

—0.05

.—0.10

D —conserving SO(10),MU-—-10

MI 1016(dash)

Ml ——10 (solid)
Ml= 10 (dotdash)

A; = CG. —C~; + Tr(8, ) ln
P

—0.15

—0.20 I I I I I I I I I I I I I I I I I

0; are the generators of G; for the representation
in which the Higgs bosons MH appear. t ~ and CG,.

are the quadratic Casimir invariants for the group G
and the group G;, while p, is the symmetry-breaking
scale. Gravity-induced corrections change n,. (V,) to
a,. (V)(1 + e;) as in Eq. (11). In our analysis we
identify v, the unification scale, with the vector boson
mass. Threshold corrections will occur due to the non-
degeneracy of the Higgs boson masses with the vector
boson mass. Using the D-conserved non-SUSY case as
an example, we have calculated the effect of threshold
corrections at the heavy scales MI and MU. The Higgs
boson masses are assiimed to vary between 5 and 5 times
the vector boson mass. The threshold corrections enter

0.01 0.02

D —conserving

0.03 0.04 0.05 0.06

SO(10),MU ——1017

—0.10

Ml= 1016(solid)
M&

—-101~(dash)

—0.15

—0.20 I I

0.02 0.04

-l~~~i
0.06 O. OB

FIG. 1. The allowed regions in e and e' space for
D-conserved non-SUSY SO(10) for pairs of MI and MU. For
MI not equal to MU, the upper and the lower regions corre-
spond to case (a) and case (b), the two cases considered for
threshold corrections.
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D —conserving SUSY SO(10),MU
——1018 D —nonconserviiig SUSY SO(10),MU

——1018

0.6

0.5

I

I

I I I I

I

I I

I

I I I I

—0.04

I I I I

I

I I I I

I

I I I I

I

I I I

0.4

0.3

0.2—0.025
I I I I I I I

—0.02
I I I I I I

—0.01 —0.005—0.015

10 16 (solid)
M~= 10 (dash)
M&

1018 (dotdash)
I I I I I I I I

—0.06

—0.08

Ml= 10,al, (MR)/aR(MR) = 1.2(solid)

My=10, aL(MR)/aR(MR) =1.1(dash )

I I I I I I I I I I I I I I I I I I

0.50

0.45

0.40

0.35

0.30
0.25

0.20: '

—0.015

I

I

I I I I

I

M,=1016 (dash)
M~ ——10 (dotdash)

I

-0.01 —0.005

D —conserving SUSY SO(10),MU=10 17

l

']

I

I

/

0.03

D-none
—0.02

—0.04

—0.06

0.08 —I
I

0.02

10,al, (MR)/nR(MR) = 1.2(solid)
I I I I

I=,
0.025 0.03

0.035 0.04 0.045

onserving SUSY SO(10),MU
——101

I I I I I I I I

Ml= 10,al, (MR)/aR(MR) = 1.3(dash)

0.05

0.035

FIG. 2. The allowed regions in e and e' space for
D conserve-d SO(10).

FIG. 3. The allowed regions in ~ and e' space for
D-nonconserved SO(10).

the Higgs bosons around at the two scales. We refer to
these two cases as case (a) and case (b). We have only
considered the cases when MI is not equal to M~.

RESULTS

Using the values of the standard model couplings at
Mz [Eq. (1)], the evolution equations, and the matching
conditions [Eqs. (24) and (25)] we find regions in the s,

space which allow a low M~ for various values of the
intermediate scale MI and the unification scale MU. In
Fig. 1 the allowed regions for the D-conserved non-SUSY
case are shown. For Mg not equal to MI the effects of
threshold corrections have been included. In Figs. 2
and 3 the allowed regions for the D-conserved and D-
nonconserved SUSY case are shown. For the D-broken
non-SUSY case the width of the allowed regions are too
small to be shown graphically and therefore we present
the results for this case in Table IV. For the supersym-

metric version the allowed regions are larger, but no so-
lution was found for the case Ml ——10, MU ——10
Even though we have not carried out a full analysis of
the threshold effects, from the examples considered, we
do not expect moderate threshold effects to alter the re-
gions in the parameter space drastically. In conclusion,
we have shown that both for the D-conserved and D
nonconserved case we can find regions in the parameter
space of gravity-induced couplings that allow MR in the
TeV range.
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