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Deep-inelastic structure functian af the pion in the null-plane phenomenelagy
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The null-plane pion wave function is used to compute the structure function for deep-inelastic
unpolarized-lepton scattering. The old problems with such a phenomenology are that the computed
structure functions are almost independent of the Bjorken x variable, and that it is difBcult to
simultaneously reproduce the observed charge radius and pion decay constant. These are avoided

by using constituent quarks with structure.

PACS number(s): 14.40.Aq, 12.39.Pn, 13.40.Gp, 13.60.Hb

I. INTRODUCTION

The wave function defined on the null plane [using
(x + xs = 0) as the "time" coordinate] allows a rela-
tivistic description of two-body bound states with two
important simplifications: (i) the center-of-mass (c.m. )
coordinate is easily separated [1,2] and (ii) pair creation
diagrams disappear for some processes [1,3].

One can obtain the null-plane wave function &om the
relevant quark diagram by performing the integration
over the null-plane "time" or "energy. " For example,
in the evaluation of the pion form factor and weak de-
cay constant from the quark-triangle diagram [3,4], the
integration on k (= k —k ) in the loop integral al-
lows the identi6cation of the null-plane wave function.
Furthermore, computing the matrix element of the so-
called "good" component of the electromagnetic current
[5] 1 (= J + J ) eliminates the effects of quark pair
creation. We also note that our quark diagram approach
yields the same formal results as the Hamiltonian &ont-
form dynamics [6—8] as well as those of the earlier for-
malisms [1,2].

Here we study the quark-box diagram for the pion
deep-inelastic scattering process. The integration over

in the momentum loop in the evaluation of the good
component of the structure tensor allows the introduc-
tion of the null-plane qq pion bound state. The resulting
structure function again turns out to be the same as that
obtained in the Hamiltonian &ont form of the dynamics
[9]. However, this pion structure function is essentially
independent of the Bjorken ~ variable [2]. This problem
is closely related to another old. deficiency of constituent
quark models, that of reproducing the observed values of
the weak decay constant f„and the mean charge radius

1r*

The purpose of this paper is to show that the problems
involving the structure function, r and f can all be han-
dled by treating the model of Ref. [4] more precisely. In
that model [4] the quarks are constituent, with mass M
obtained from the spontaneous breaking of chiral sym-

metry. Thus we expect that the constituent quark (or
antiquark) has a nontrivial structure which should play
a role in computing observables. In particular, each con-
stituent object consists of a current quark surrounded by
a cloud of partons. We make the simplifying assump-
tions that the cloud is locally neutral in both color and
electric charge. However, the cloud does carry a signif-
icant &action 1 —rl (calculations below show rl = 0.5)
of the momentum of the quark. Including these features
in different wave functions [4,6,13] leads to good agree-
ment with the observed structure functions f and r
The notion that the pion is more than a simple pair of
current quarks is consistent with the expectations about
quantum chromodynamics (@CD) [10—12].

The plan of the paper is as follows. In Sec. II we re-
view the formulation of the box diagram for the pion
deep-inelastic structure function including non-qq com-
ponents and also give the elastic form factor. In Sec. III„
the numerical results for the valence deep-inelastic struc-
ture function for difFerent models in the null plane are
presented and compared. Section IV contains a brief
summary.

II. STRUCTURE FUNCTION AND ELASTIC
FORM FACTOR

The pion structure tensor TV"" for inclusive electron
scattering is the square of the modulus of the amplitude
for the photon absorption summed over the parton phase
space. For unpolarized electron scattering, it is written in
terms of two invariants TVq and R'2, according to current
and parity conservation:
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In the laboratory frame p = m (pion mass) and p = 0.
In the deep-inelastic limit q (= q —q ) ~ oo, and the
results may be expressed in terms of the Bjorken variable

2; with x = 2, —— . In the parton model Wq and

W2 are related by W2 ——2m
The pion deep-inelastic structure function is calculated

from the box diagram in Fig. 1(a). In the null-plane phe-
nomenology the electromagnetic form factor is obtained
from the triangle diagram [3,4] of Fig. 1(b) and f from
the one-loop diagram [4] in Fig. 1(c). The PCAC (partial
conservation of the axial vector current) relates the di-
vergence of the matrix element of the axial vector current
between the vacuum and pion states to the pion decay
constant [15]. The diagram in Fig. 1(c) represents the
above-mentioned matrix element of the axial vector cur-
rent. The vertex for the process n m qq (= Mqpsaq)
is determined by spontaneous breaking of the chiral sym-
metry, M is the constituent quark mass, and 7 are the
isospin matrices. The nonpointlike nature of the pion
is included [4] by modifying this vertex function, which
can in principle be obtained by solving a Bethe-Salpeter
equation. There is no pointlike pion in the model.

The utility of working with the effective Lagrangian
for the pion quark coupling is twofold: (i) this scheme
provides the correct quantum numbers for the composite
pion and (ii) in our approach we use Feynman diagrams
for the deep-inelastic process, f and r . Alternatively,
one can construct the null-plane pion wave function as in
Refs. [6,16,17], or work directly with @CD.

The details of the calculation of the structure tensor
are given in the Appendix with the result

(o) (c)

FIG. 1. One-loop quark diagrams for the valence structure
function (a), electromagnetic form factor (b), and the pion
decay constant (c).

5 M' d'kW~" = Im 2Nce'- 8 k+ —~++q+ S&+v~
9 f2 (2z)4

tr( —) PM)() P„PM)~.(E P„pM)

)(k —M + is)[(k —p ) —M + ie]

(2)

where e is the unit of charge, N the number of colors
(3), q" is the photon momentum, p" is the pion initial
momentum, k" is the momentum of the spectator quark.
The conventions are given by Bjorken and Drell [18].

In order to relate Eq. (2) with the electromagnetic
form factor calculated &om J+ we use p = v = i
with i = 1 or 2 as the transverse direction, S'+'

cr = —,and &om g+ =
2 follow S'+' = 2. Using

= p+ in Eq. (2),

,5M' d'k + + + tr( —(+M)($ —P„+M)z+($—P +M))
9 f (2vr) (k —M + ie)[(k —p ) —M + Ee]

(3)

The next step is to obtain the structure function Fq(z). We start by relating the transverse component of W"" to
the structure function using Eq. (1) and deep-inelastic limit. Then

5W" = Wg(z) = —Fg(z).
9 (4)

This is obtained by doing the integration over k in Eq. (3). The result is

2 M2 d2k 1

(2z.)s f2 ' z(1 —z) (—m +Ms) (—m2+ M())
' (5)

where

k' +M'
M (z, kg) =

z(1 —*)

I

ment that the charge of the sr+ is unity.
The pion wave function is introduced as in Ref. [4]:

Equation (5) also gives the normalization of the elastic
form factor (see Eq. (8) of Ref. [4]) after the integration
over x,

1 M QMpN,'z m4 (x, k~),m2+M (7)

1

F,i(q = 0) = dz F,(x),
0

implying the sum rule J Fq(x)dx = 1, which is the state-

where k~ is the transverse relative momentum. Then
Fz(x) and F,) can be expressed, in the usual way, as
integrals involving 4 . For example, the result for the
structure function is obtained by replacing the mass de-
nominator by the bound-state wave function in Eq. (5):
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The replacement (7) and subsequent modifications result
from the assumption that the null-plane wave function is
independent of k . Equation (8) is the same as the one
deduced in the context of the Hamiltonian &ont form of
the dynamics [9].

We also choose a phenomenological wave function by
starting with diferent nonrelativistic ones that depend
on k . Here the third component of the momentum is
given in terms of z and k~ by [6]

0. 8

~O ~O~OO~OOOOOO ~ O~O~

k +M
z(1 —z)

This procedure amounts to a series of reasonable (but
naive) guesses about what the solution to a relativistic
theory involving confining interactions might look like.

However, the approach so far does not include the com-
posite nature of the quark itself. We imagine the con-
stituent quark to consist of a current quark surrounded
by a cloud of partons that is locally colorless and elec-
trically neutral. But the cloud contains some of the (+)
momentum of the constituent quark. Then the valence
structure function is a convolution

'dy "(y)
(10)

where P(y) is the momentum distribution of the valence
current quark component of the constituent quark and
Fss(z) is the structure function of the bound constituent
quark in the pion. We assume that Fss(z) = F~(z) is
given by Eq. (8).

The momentum distribution P(z) must be of the gen-
eral form

Oi
0

I [J

0.2 0.4 0.6 I.O

FIG. 2. Valence quark structure function of the pion [see
Eq. (8)]. Constituent quark mass of 220 MeV. Hydrogen-atom
model (solid line), Gaussian model (dashed line), and Ref. [131
(dotted line).

pion wave function. As an example, the result for the
hydrogen-atom wave function, 4 (k) oc —. .. , us-

NR+
ing Eq. (8) is shown in Fig. 2. We chose M = 220 MeV
and a nonrelativistic pion charge radius (r„,) of 0.195 fm.
Both M and r come from the model of Ref. [13]. It is
worthwhile to mention that in Ref. [13], the pion wave
function is obtained from a dynamical calculation where
the quark-antiquark potential has one-gluon exchange
and confinement. But the form of the 4 can be well
approximated by the dipole expression given above. VVe

P(z) = rib(I —z) +P (z),

with

dzP(z) = 1 —rl. {12)

The value of g gives the probability of the valence quark
in the constituent quark. We shall choose g for each
model wave function by requiring that the computed
value of the decay constant reproduce the measured
value. The function P accounts for the sharing of mo-
mentum between the current quark and the cloud; we
need to model this quantity. As a simple choice re8ect-
ing our ignorance about the probability distribution of
the recoil partons, we use 0I

0 0.2 0.4 0.6

~O+0 OOO

T r
0.8 I.O

P(z) = 1 —rj, (13)

which is fixed once q is determined. We do not introduce
any other freedom in the model.

At this stage, we investigate the differences between
the structure functions calculated with Eq. (8) and Eq.
(10), for the same model of the qq component of the

FIG. 3. First-order @CD evolution of the valence quark
structure function of the pion. Hydrogen-atom model vrith
M= 300 MeV. Pion momentum scale, Q = 0.5 GeV {solid
line), I GeV (dashed line), and 1.5 GeV (dotted line). Dis-
tribution function of Ref. [21] at the momentum transfer of 2

GeV {circles).
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observe that Eq. (8) yields an almost Hat structure func-
tion with values around 1 except at the extremes where it
vanishes. The results are about the same, if ones uses the
Gaussian model, 4 (k) = e 4~s(" ""),with the above
nonrelativistic radius and M or the model of Ref. [13].
Thus, the behavior of Ei(z) does not depend on the de-
tails of the nonrelativistic wave function. Indeed, we can
easily anticipate such behavior by analyzing Eq. (5). In
the limit where m = 0, the structure function does not
depend on x. This is strongly modified only at the edges
for x near 1 and 0, when using a model wave function.

I

These features are clear in Fig. 2.
On the other hand, using Eq. (10) leads to a valence

structure function that peaks at small z (see Fig. 3). This
is the trend of the experimental data, as discussed in the
next section.

This more precise treatment of our model requires us
to reexamine our earlier [4] results for the pion electro-
magnetic forxn factor I",~. In our present treatxnent, the
cloud carries no charge density. In that case, the coxn-
putation of F,i is the same as in Ref. [4], and is given
as

(1 —z)k~ ~ q~
Iei(q ) = dzd k~, 1+ 2 2

4 (z, k~) C (z, kz),4z 1 —z Mo k2~+M2 (14)

where k& ——k~ + (1 —z)q~ and the square free mass
M'0 ——(k& +m2)/z(1 —z) . The form factor is evaluated
in the Breit frame, where q2 = q"q„=—(q~)2 = —Qz.
The resulting qz dependence is displayed in Ref. [4]. The
pion mean square radius is

r' = 6,E,i(q ).
dq

(15)

The previous results for f are modified, because the
probability of the current qq pair is less than unity. The
result is

MQN, dzd kg Cs(z, kg)
4~ k z(1 —z) QMo

(16)

The value of g will be extracted from the measured value
of f„and this equation.

We next discuss our model in comparison with other
models of the pion wave function in the null plane. Phe-
nomenology can be a useful step in allowing us to under-
stand the aspects that a basic theory would need to re-
produce. The models of Refs. [6—8,16,17] use constituent
quarks, without taking their internal structure into ac-
count. QCD sum rules [19] can be used to study quark
distribution functions which are integrals of 4 (z, k~)
over d2k~. But the present approach is aimed at examin-
ing the k~ dependence. The model of Ref. [14] considers
the structure of the constituent quark in the null-plane
framework of the proton wave function. This model is
consistent with the general picture used in our approach
when dealing with the constituent quark.

To close our discussion, we note that our evaluation of
the pion structure function corresponds to an evaluation
at some unknown momentum transfer scale (Q ). The
idea is that perturbative evolution can be used to obtain
the pion distribution at values of Q greater than Q .
Typical values are Q2 = 1 GeV2 [20] if only the minimal
quark configurations are used. We will present results for
three different values of Q: 0.5, 1, and 1.5 GeV.

I

Gaussian, in which the main characteristic is confine-
ment, (ii) hydrogen atom that mimics one-gluon ex-
change at short distances, and (iii) the pion wave-

function model of Ref. [13] which has the (iterated) one-
gluon exchange and confinement.

The wave function in the null plane is constructed &om
the nonrelativistic ones according to the rules given in
the last section. In the pion model of Ref. [13] the quark
mass is 220 MeV. We will allow some variation of M in
the hydrogen and Gaussian models, using also M= 300
MeV to explore the mass dependence of the structure
function. The structure function is calculated with Eq.
(10), once the probability of the qq component of the
pion wave function rl is obtained from f [Eq. (16)]. The
electromagnetic form factor of the pion and the charge
radius are obtained from Eqs. (14) and (15).

The hydrogen-atom and Gaussian wave-function mod-
els are obtained &om the nonrelativistic radius and in
our calculations we use the value of 0.195 fm as given by
Ref. [13]. This value is chosen to allow the comparison
of the results of the phenomenological models to those
obtained Rom Ref. [13]. This is a somewhat arbitrary
choice, since a range of values about 0.195 fm would lead
to rather similar spectra.

In Table I, we show the results for the hydrogen and
Gaussian models for difFerent quark masses. The value of
rl is extracted &om Eq. (16), where f'"Pt = 93 MeV. The
computed value of f decreases with increasing quark
mass M. Within such models the qq probability of about
30'%%uo is reached only for M above 300 MeV or core radius
smaller than 0.4 fm. The results show quark cores some-
what smaller than the observed pion radius r "& = 0.66
fm. This is reasonable, since in our model the charge

TABLE I. r (fm) and g for di6'erent models. The nonrel-
ativistic radius is 0.195 fm for each case. The pion model of
Ref. [11] (M = 220 MeV) and using Ref. [4] gives r = 0.456
fm.

III. NUMERICAL RESULTS

The numerical calculations are performed with the
following set of nonrelativistic wave functions: (i)

Model H atom
M (MeV) r (Ref. [4])

220 0.463
300 0.408

7l

0.561
0.356

Gaussian
(Ref. [4])

0.476
0.422

0.741
0.476
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density of the constituent quark is that of a pointhke
object.

Next we turn to computations of the valence structure
function of the pion. We wish to compare our results with
the parametrization of the experimental data of Ref. [21],
at the scale of Q,„,= 4 GeV2. The nonperturbative
scale of the pion (Q ) must be defined to relate our low

Q treatment to the data. We choose Q = 1 GeV as
a reasonable hadronic scale, and allow some variation
around this value. We use the first-order Alterelli-Parisi
equation [22] to evolve the valence quark structure func-
tion q„(z,Q ) &om the pion scale to the experimental
scale. For the purpose of completeness, the formulas for
the first-order /CD evolution for the nth moment of q„"
at the scale Q to Q2„i = 4 GeV are given below:

g(Q.'.,~) = e."(Q.')
I

I' ~(Q'. ) &

expt

(17)

]
'

i

4 I 1 1S. = ' —
I
--+ —2)

33 —2X 3E 2 ( +1)( +2) -J~
1'Q') = 33-2~.i„g

where A = 200 MeV and Xy ——3.
The results of @CD evolution in first order are shown

in Fig. 3 for the hydrogen-atom model parametrized with
M = 300 MeV. The values of Q of 0.5 and 1.5 GeV are
used for comparison. First, note that, even without evo-
lution, Eq. (10) produces a peak at small z without evo-
lution; this is a new feature that Eq. (8) does not have.
Clearly, this is an important feature needed to reproduce
the experimental data with values of Q not extremely
small. The effect of the evolution is considerable but the
overall behavior of the valence structure function with x
comes from Eq. (10). Here the scale of 0.5 GeV/c for the
pion is favored by the experimental data as represented
by the structure function of Ref. [21]. (That function is
very similar to the more recent fit of Ref. [23].)

2—

OL

FIG. 5. Model dependence of the valence structure func-
tion of the pion. Calculation at the pion scale of Q = 0.5
GeV, evoluted to 2 GeV using first-order /CD evolution. Hy-
drogen-atom model (solid line), Gaussian model (dashed line),
and Ref. [13] (dotted line) with M= 220 MeV. Distribution
function of Ref. [21] (circles).

In Fig. 4, the effect of the modification of M is shown
for the hydrogen model for Q = 0.5 GeV. The con-
stituent quark mass is a crucial parameter in the null-
plane phenomenology, because it defines the change from
the instant-form to the null-plane coordinates. So it is
important to investigate the effect of mass variations.
The change of M &om 300 to 220 MeV reduces the struc-
ture function at small x. Because g varies inversely as the
mass (Table I), the small mass case is dominated by the
part of structure function that arises from the gb(l —z)
term of P(z). In the limit of rl = 1, Eq. (10) is reduced
to Eq. (8), which does not have a peak at small z.

The model dependence of the pion valence structure
function is studied in Fig. 5 with Q = 0.5 GeV and
M = 220 MeV. The differences between the models are
small but Ref. [13] and the hydrogen-atom models are a
bit closer to the data. The differences are mainly due to
the differences in the value of g.

IV. SUMMARY

0
0 0.2 0.4 0.6 0.8

FIG. 4. Effect of the variation of the constituent quark
mass in the valence structure function. Hydrogen-atom
model, M= 220 MeV (solid line) and 300 MeV (dashed line):
Q = 0.5 GeV. Distribution function of Ref. [21] (circles).

The diagrammatic approach is applied to construct the
unpolarized deep-inelastic valence structure function of
the pion. The formulas are the same as also obtained
from Hamiltonian front-form dynamics.

We generalized the previous model [4] to account for
the structure of the constituent quark: a current quark
surrounded by a cloud of partons. Then the valence
structure function takes the convolution form of Eq. (10)
of the bound constituent qq pair. This expression con-
tains the b(l —z) which carries the probability il of bavin. g
only a current; qq component in the pion wave function
and another part P that accounts for the effects caused
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by momentum sharing (recoil efFect) between the current
quark and the cloud. At this stage we appeal to sim-

plicity and choose P to be constant. The value of g is
obtained from the experimental value of f F. or g (I,
the quark-core radius is somewhat smaller than the ex-
perimental one.

We compare our computed valence structure function
of the pion for different models (Ref. [13], Gaussian and
hydrogen atom) of the q —q bound pair and with a
parametrization [21] of the experimental data. The re-
sults obtained without including the structure of the con-
stituent quark do not show the qualitative behavior of the
data as a function of x. Once the effect of the recoil is
introduced the peak at small z is seen for all the models.

Two quantities are important in determining the pre-
cise numerical values of the structure function: (i) the
constituent quark mass and (ii) the pion scale Q„.The
first one is related to the value of g and the second one
to the /CD evolution to the experimental scale. We
observed that the data indicate that for values of M
about 300 MeV, Q = 0.5 GeV is preferred. But our
main point is that including effects of the structure of

I

the constituent quark is necessary to obtain the qualita-

tive features of the valence quark distribution function in

light-&ont phenomenologies.
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APPENDIX

The evaluation of the quark-box diagram for deep-
inelastic scattering yields the structure tensor

g ""= (2z) ~N, ) tr u, (k')6, (k')(ie)
~

—+ —
~

p"(]. rsvp „g—P~+ M sM

xv, (—k)6, (—k)p r; 2 2 . (—ie)
~

—+-sM g —) +M . (1 rs)
z. '

k —p ' —M2+ie g6 2
(A1)

where e is the proton charge, N, is the number of colors (3), q" is the photon momentum, pg is the pion initial
momentum, k" is the momentum of the spectator quark, and k'" = k" —p" + q". The trace is taken over the isospin
space. We introduce the quark phase space factors and integrate to obtain

W"" = (2z) —e N, (2z) b (k' —k+ p —q)—d k dsk' 44, M M M

~ ~ ~

g'+ M „(1rs) g —P~+ M s g+ M, g —P~+ M „(I
2M (6 2 ) (k —p ) —M +is ' 2M (k —p~) —M +is (6 2 )

This can be simplified to

(A2)

(A3)
tqM' dtk tr({{+M)q ({t—'tt +M)q"t({t+M„)qt({{—tt +M)q ]"

9 f2 (2z )4 (kq2 M2 + je) [(k —p )2 M2 + je]2(k2 M2 + 2e)

The deep-inelastic limit of Eq. (A3) is obtained from the pole contribution of

lim . = ——b(k —p +q ).1 xx + + +
q--+~ k'~ —Ml + ie q

(A4)

Substituting Eq. (A4) in (A3) we obtain

~k kq~ d k d(k+ —y++ q+) tr{—k+ M)(){—tl„+m)q"q qtq (k —tt„+M)")
9 f2 (2z.)4 q— (k2 M2 + je)[(k p )2 M2 + je]2

(A5)

In Eq. (A5) only the term p+q survives in the deep-inelastic limit. Inserting the identity

and S+"" = g""g" + g~~g"" —g""g" in Eq. (A5), Eq. (2) is obtained for the unpolarized process.
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