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We apply the operator product expansion to resum the leading nonperturbative corrections to
the end-point region of the lepton spectrum in inclusive semileptonic B —+ Xq Ev decays, taking
into account a finite quark mass mq in the final state. We show that for both 6 ~ c and 6 —+ u
transitions it is consistent to describe these effects by a convolution of the parton-model spectrum
with a universal light-cone structure function. The moments of this function are proportional to
forward matrix elements of higher-dimension operators. The dominant subleading corrections to our
results are of order m, /mq for 5 ~ c transitions, and of order AQQQ/m& for b -+ u decays. The
prospects for an extraction of the structure function from a measurement of the lepton spectrum are
discussed.

PACS number(s): 13.20.He, 12.39.Hg, 14.40.Nd

I. INTRODUCTION

The heavy-quark expansion, i.e., a systematic expan-
sion in powers of A/mq (we use A as generic notation for
a typical hadronic scale of the strong interactions), has by
now become a widely used tool in the theoretical descrip-
tion of systems containing a heavy quark Q interacting
with light degrees of freedom [1—4]. Its application to
exclusive decays of heavy mesons and baryons has been
explored already in great detail [5]. Recently, the idea
has been put forward to generalize the heavy-quark ex-
pansion to obtain a /CD-based description of inclusive
decays of heavy hadrons [6—11]. In a way similar to what
is done in the case of deep-inelastic scattering, an oper-
ator product expansion is applied to the product of two
local currents. The mass of the decaying quark provides
the large momentum scale. The total decay rates can
then be written as an expansion in inverse powers of mq.
The operators appearing at leading order have dimension
three and correspond to the &ee-quark decay. The matrix
elements of the dimension-four operators vanish by the
equation of motion, and thus the leading nonperturba-
tive corrections arise &om dimension-6ve operators and
are of order (A/mq)2. For the case of B-meson decays,
they can be parametrized by two low-energy parameters
Aq and A2, which are related to the kinetic energy Kg of
the b quark inside the B meson, and to the mass split-
ting between B and B* mesons. These parameters are
defined as [12]

(&s')
Kg —— ———,m&. —m& ——442.

2m' 2m'
The operator product expansion has also been used to

calculate difFerential distributions, such as the charged-
lepton energy spectrum in inclusive semileptonic decays
[7—9]. In this case, the relevant large momentum scale is
Q = mdiv —q, where q denotes the momentum transfer
to the lepton pair, and v is the velocity of the decaying
hadron. After integrating over the neutrino momentum,
the operator product expansion is a combined expansion

in powers of A/ms and A/(ms —2'), where Eg is the
lepton energy in the rest frame of the decaying hadron.
Over most of the available phase space these parame-
ters are of similar magnitude. However, close to the end
point, i.e., for (ms —2') of order A, the second expan-
sion parameter is of order unity, and a partial resumma-
tion of the expansion becomes necessary. For the lep-
ton spectrum in charmless semileptonic B -+ X„EP de-
cays, as well as for the photon spectrum in the penguin-
induced B -+ X, p decays, this res»limation has been
constructed in Refs. [13—15], neglecting the mass of the
quark in the final state. It has been shown that the lead-
ing nonperturbative efFects can be related to a universal
structure function, which describes the distribution of the
light-cone residual momentum of the heavy quark inside
the decaying hadron.

The purpose of this paper is to generalize this approach
to the case where the mass of the quark in the final
state cannot be neglected. For simplicity, we will work
to leading order in perturbation theory. Radiative cor-
rections, which have been calculated at the parton level
in Refs. [16—18], should, however, be included before one
confronts our results with experimental data. %e shall
consider B ~ X~Ev transitions and treat mz as a free
parameter. As we shall see, the presence of several mass
scales leads to technical and conceptual complications.
Let us de6ne the dimensionless ratio

mqp=
6

(2)

which we will treat as a small parameter in our analysis.
It will be natural to distinguish the two cases where p
is of order A/ms and (A/ms)2, respectively We argue.
that the first case is relevant for 6 —+ c transitions, where
p 0.1. The second case applies, e.g. , when one studies
the efFect of a small constituent mass of the u quark in
6 M u transitions.

The necessity of a resummation of the operator prod-
uct expansion close to the end point is apparent from the
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result obtained in Refs. [7—9] for the lepton spectrum in
B ~ Xq E v decays. Let us de6ne

0.8

mb

&F l&gbl mb

192m3 (3)

0.6

and divide the differential decay rate into two pieces:
0.2

1 dI'

2I'b dy
= F(y P) o-(1 —y —P)+S(y P).

0.2 0.4 0.6 0.8

The 6rst part is the result obtained in the Bee-quark
decay model. The function I" (y, p) is given by

FIG. 1. Shape of the lepton spectrum predicted in the
free-quark decay model. We use p = (m, /mb) = 0.08.

r(v p) = v' (~(& —p)(& —&') —2V(~ —&') ],

R = . (5)

In Fig. 1, we show I" (y, p) evaluated for p = 0.08, which

is an appropriate value for B ~ X,Ev transitions. The
function S(y, p) in (4) contains the nonperturbative cor-
rections to the free-quark decay. The expression for this
function, obtained by naively constructing the operator
product expansion to next-to-leading order in A/mb, is

S(y, p) = y 2 (3R —4R )
—

2 (R —2R ) —
2 (2R+ 3R —5R )

mb(1 y) mb(1 —y) mb(1 —y)

+ 2 5y —2(3 —p)R + 4R + 2 (6+ 5y) —12R —(9 —5p)R + 10R O(l —y —p)
3mb mb

+Ol (A/[ (1-y)]) I (6)

It is apparent that the operator product expansion
gives an expansion in two parameters: A/mb and
A/(mb —2') = A/[mb(1 —y)]. Over most of the kine-
matic region, the terms in S(y, p) are of order (A/mb)
or smaller. However, provided that the parameter p is
of order A/mb or smaller, ~ the expansion becomes sin-
gular in the end-point region: when (1 —y) is of order

A/mb, terms of order (A/[mb(1 —y)]) in S(y, p) become
of order unity. In Fig. 2, we show S(y, p) for p = 0.08,
A2 ——0.12 GeV, and the two cases Ag ———0.1 GeV and
A~

———0.3 GeV . The low-energy parameter A2 can be
extracted &om the known value of the B*-Bmass split-
ting. The average kinetic energy, and with it the value
of Aq, are not well known, however. In view of the vari-
ous theoretical arguments about this quantity that have
been discussed in the literature [15, 19—21], we consider
the two choices given above as reasonable "small" and
"large" values for Aq.

The eKect of nonperturbative corrections is very small
over most of the kinematic region. Close to the end point,
however, a sharp spike of height —Az/(mbp) devel-

7.5

0.6 0.7 0.8 0.9

1

ops. The singular behavior of the expansion becomes
even more obvious when one goes to higher orders; at
order 1/mba, for instance, one encounters a h function at
y = 1—p. Clearly, one cannot trust the shape of the func-
tion S(y, p) in this region. To get a more reliable descrip-
tion of the spectrum, the series in A/[mb(l —y)] has to
be resummed. In Ref. [13],it has been shown that when

When p is of order unity, (1 —y) cannot become small in
the physical region, and there is no problem with (6).

FIG. 2. Nonperturbative corrections to the lepton spec-
trum obtained using a naive operator product expansion. The
solid line corresponds to Aq

———0.3 GeV, the dashed one to
AI ———0.1 GeV .
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the mass mq of the final-state quark is neglected, such a
resummation can be performed and leads to a smooth,
but rapidly varying, function. This so-called shape func-

tion is a genuinely nonperturbative object, which can be
defined in terms of forward matrix elements of certain
operators in the heavy-quark efFective theory. A com-
plete resummation of the operator product expansion is,
of course, too complicated a task. What can be achieved
is a summation of the leading terms in the limit mg -+ oo
with ms(1 —y) kept fixed.

In this paper we shall elaborate on this proposal and
extend it to the case mq not being zero. Taking the limit
ms ~ oo with ms(1 —y) fixed, we find, &om (6),

S(y, p) m ', (3R —4R ) O(1 —y —p)
ms(1 —y)

+oI (h/I~e(b —q)I) ) .

Our goal will be to generalize this expression to all or-
ders in A/[ms(1 —y)]. In Sec. II, we discuss in detail
the structure of the operator product expansion and ex-
plain the significance of three different kinematic regions,
which we will call the &ee-quark decay region, the end-
point region, and the resonance region. Our focus here
is on the end-point region, for which we construct an
appropriate approximation that resums the leading sin-
gularities. We show that it is natural to distinguish the
two cases where the parameter p in (2) is of order A/ms

and (A/ms) . In the second case, the subleading cor-
rections to our results are suppressed by a factor A/ms.
In the first case, however, there are also corrections of
order ~p = mq/mb (A/ms) ), which are larger. In
Sec. III, we apply our formalism to inclusive semileptonic
B-meson decays and calculate the leading terms in the
charged-lepton energy spectrum. We show that, in both
cases, the spectrum can be written as a convolution of the
&ee-quark decay rate with a universal light-cone struc-
ture function. In Sec. IV, we illustrate our results using
a simple model, which incorporates the known properties
of the structure function and provides a description of the
decay spectrum in terms of a single parameter. Section V
deals with a discussion of possibilities to extract informa-
tion about the structure function from experimental data
on the lepton spectrum in inclusive semileptonic B de-
cays. In Sec. VI, we summarize our results and give some
conclusions.

II. RESUMMATION OF THE
LEADING END-POINT SINGULARITIES

By the optical theorem, any inclusive decay rate can be
related to the imaginary part of a transition operator T,
which is defined in terms of the time-ordered product of
two local operators. For the cases at hand, this correlator
is of the form

T(q, vq) = —if d ee'i '" ~'e( (Bv) (Tb () vT( v)q, „v()qT0b (0) ~eB(v)),„

where q is the momentum transferred to the leptons, and
I'; are combinations of Dirac matrices. The b-quark field
b (z) is related to the conventional field that appears in
the /CD Lagrangian by a phase redefinition:

b, (z) = exp(imsvz) b(z) .

= mbv —q. (10)

Up to the difFerence between mg and m~, the variable
Q2 corresponds to the invariant mass of the hadronic fi-

nal state. As long as Q2 is large enough, it is legitimate

This is appropriate to make explicit a trivial but strong
dependence of the free-quark field on the large mass ms.
Written in terms of the rescaled fields, the hadronic ma-
trix element in (8) is &ee of large mass scales. Hence, the
relevant momentum scale is set by

to expand the correlator in a series of local operators of
increasing dimension, which are multiplied by coefFicient

functions that contain inverse powers of Q. In general,
this will be an expansion in three large parameters: mg,

vQ, and Q2. Over most of phase space, Q2 and vQ scale
with the heavy-quark mass, and the operator product
expansion reduces to an expansion in powers of A/ms.
There is, however, a kinematic region where vQ is of or-

der ms, but A &( Q &( m&. In this case, it is consistent
to work to leading order in 1/ms and 1/vQ, but neces-

sary to keep higher-order terms in 1/Q2. In fact, as we

shall see, one has to resum these terms to all orders.
To leading order in A/ms, the heavy-quark field b„ in

(8) can be replaced by the corresponding two-component
spinor h„of the heavy-quark efFective theory [2]. Sim-

ilarly, the physical B-meson states are replaced by the
corresponding states in the mg ~ oo limit. At the tree
level, the leading contribution to the correlator is ob-
tained by contracting the light-quark 6elds:

T(qevq) = f deee'0 (B(v,))T h„(v)r, d, (e, o)reh (0) )B(v)). .
Here Sq(z, 0) is the propagator of the q quark in the background field of the light constituents of the B meson. The
Fourier transform of Sq(z, 0) has the form
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(13)

The term in the denominator containing the covariant
derivative is, at most, of order Amb. To see whether
it is important, we have to distinguish difFerent kine-
matic regions. When (Q2 —m2) m2b, the derivative
term is suppressed by a factor A/mb. To leading or-
der, the propagator corresponds to the propagator of a
&ee quark with momentum Q. In this region, we thus
recover the free-quark decay model up to small nonper-
turbative corrections. However, in the end-point region,
where (Q2 —m2) Amb, it is not possible to neglect the
derivative term. This is why an expansion in powers of
iQD/(Q2 —m2), which was applied in Refs. [7—9] to derive

(6), becomes singular. Instead, one has to use (13) for
the propagator in the end-point region. For even smaller
values (Q2 —m2) Amv, the derivative term becomes
the dominant term in the denominator, and the operator
product expansion breaks down. This is the resonance
region, where the invariant mass Q2 of the hadronic final
state is close to the mass shell of the lowest-lying reso-
nances containing a q quark. The fact that the resonance
region is parametrically smaller than the end-point region
implies that corrections to our results, which arise from
bound-state effects in the final state, are suppressed in
the mb m oo limit.

The above form of the background-field propagator
may be simplified further by decomposing the vector Q"
in a basis spanned by the meson velocity v" and a null
vector on the forward light cone satisfying n = 0 and
nv = 1. It follows that

Q" = vQ n" + P(Q) (v —n)", (i4)

with

P(Q) =.Q —4(.Q)' - Q'.

In the kinematic region where the derivative term in the
propagator gives a leading contribution, iQD is of or-
der Amb. However, only the components of Q" in the

S.(Q) =
g+ iP —m~+ie

= ('0+'0+m )
1

X Q' —m,'+ 2iQD —PP+ie
Note that a derivative acting on the rescaled heavy-quark
field corresponds to the residual momentum k = pb —mbv.
Since the residual momentum results from the soft inter-
actions of the heavy quark with light degrees of freedom,
it is of order A.

There is a lot of information that can be deduced from
the structure of the background-Geld propagator. We will
be iriterested in the region where the components of Q are
large (of order mb), since otherwise the operator product
expansion breaks down. To leading order in A/mb, we
can then neglect the covariant derivative in the numera-
tor, as well as the term containing two derivatives in the
denominator. This gives

direction of the null vector n" can become large (of or-
der mb); vQ can be of order mb, but the function p(Q)
cannot. In other words, the leading nonperturbative cor-
rections to the propagator come from a region where Q"
is close to the light cone. To make this statement more
quantitative, let us assume parton-model kinematics for
a moment. It is then easy to show that the kinematic
limits for vQ and P(Q) are given by

m~ & vQ & (1+p),
2

m2' &P(Q) & m, .
mb

If we now consider the propagator

(16)

S,(Q) =
Q2 —m2 + 2vQ inD + 2P(Q) i(v —n)D + ie

+O(A/mb) (i7)

in the end-point region Q2 —m2 Amb, we find that
only the term involving the light-cone derivative nD can
give a leading contribution of order Amb. The term pro-
portional to P(Q) is never larger than of order Am~ and
hence suppressed by a factor mz/mb This. leads to the
final result for the effective background-field propagator:

Sq(Q) = dk+ ™
Q2 —m2 + 2k+ vQ + ie

x 8k+ —iD+ +0m' mb)A mb )

where we introduced the light-cone derivative nD = D+
and have formally written the dependence on it as an in-
tegral over an operator-valued 8 function. In light-cone
gauge, nA = A+ ——0, and the operator iD+ reduces to
iB+ and corresponds to the light-cone residual momen-
tum k+ of the heavy quark inside the B meson.

We observe that the behavior of the subleading cor-
rections, which we shall neglect in our analysis, is dif-
ferent for the two cases where m2 A2 (or smaller)
and m2 Amb, corresponding to p (A/mb) and

p A/mb, respectively. In the first case, m can be
neglected in the denominator of the propagator, and the
corresponding subleading corrections are of order A/mb.
This justifies that, in the analysis of the inclusive de-
cays B -+ X„Ev and B ~ X, p [13, 14], the efFect of a
nonvanishing u- or 8-quark mass, even as large as a con-
stituent mass, could be neglected. In the second case,
however, one has to keep the m~ dependence of the prop-
agator; moreover, there will be subleading corrections
to the effective propagator only suppressed by a factor
mv/mb (A/mb) ~ . We thus expect that these correc-
tions are more important than in the case of decays into
light (charmless) final states, and that the approach to
the mb m oo limit is slower.

I et us now use the form (18) of the background-field
propagator to calculate the leading contribution to the
imaginary part of the correlator T(q, qv). We can sim-

plify the Dirac structure of the hadronic matrix element
by using the identity
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I.rh,.=- T (rP„) K. I„
2

2
-- T (~„&,P„rP.j I „&~&,X„,

which is valid for an arbitrary matrix I'. Here P„
2 (1+]) is a projector onto the large components. Since
the matrix element of the axial vector current between
B-meson states vanishes by parity invariance, we obtain,
for the leading term,

where

f(k+) = (B(v)l ~ ~(k+ iD+) & lB(v)) (21)

is the leading-twist structure function that determines
the probability to find a b quark with light-cone resid-
ual momentum k+ inside the B meson [14]. We use
a mass-independent normalization of states such that
(B(v)l h h„ lB(v)) = 1. It then follows that the struc-
ture function is normalized to unity:

—I mT(q'vq) = ,——Te(T, (S+m, ) I', (I+ I))j
x dk+ k+ + 2k+ e —m

(20)

dk+ f(k+) = 1. (22)

It will later be convenient to introduce the Fourier trans-
form of the structure function, which is given by the for-
ward matrix element of a bilocal operator:2

f(t) =J dke e '+ f(ke)

t
= (B(v)lb~(0) P exp i duA~(—un) h„(tn) lB(v)) .

0
(23)

This function obeys the normalization condition f(0) =
1. Note that the path-ordered exponential is absent in
light-cone gauge.

Let us recall at this point some important properties
of the structure function [13,14). The moments of f (k~)
are given by forward matrix elements of leading-twist,
higher-dimension operators in the heavy-quark effective
theory. They form a set of low-energy parameters A„
defined by

Zk, k", k, =." ~"~ 0

= (B(v) lk- (iD+)"~- IB(v)) (24)

Ag
Ag ——0, A2 ————,

3 '

As ———"(B(v) l h„D„,g, G"" Ik, lB(v)), (25)

where g, G"" = i[D",D"] is the gluon field-strength ten-
sor, and Aq has been introduced in (1). Assuming that
0.1 GeV ( —Aq ( 0.3 GeV, we find 180 MeV ( QA2 (
315 MeV. This quantity is related to the characteristic
width of the end-point region [13,14]. Using the equation
of motion for the gluon field, the moment A3 may be writ-
ten in terms of matrix elements of four-quark operators,
which can be evaluated in the factorization approxima-
tion [15,23]. This leads to the rough estimate

2Ã
As = ——a, f& m~ = —(270 MeV)

27 (26)

where we have assumed f~ 200 MeV and cq, 0.4.
Summarizing these results, we know that the light-cone

where f~"l(0) is a shorthand notation for the nth deriva-

tive of f(t) evaluated at t = 0. Using the equation of
motion of the heavy-quark effective theory, one obtains
for the first three moments

structure function is centered around k+ ——0, has a width
of order 200—300 MeV determined by the average kinetic
energy of the b quark inside the B meson, and most likely
(if factorization holds approximately) has an asymmetry
towards negative values of k+.

The support of the structure function can be deduced
by observing that the total light-cone momentum fraction

(ps)p mb+ kp
(27)

(pg)+ mg

must be bounded between 0 and l. It follows that —mg &

k+ ( m~ —ms. Since the structure function is defined
in the heavy-quark effective theory, corresponding to the
m~ m oo limit, this implies that

—oo&k+&A, (28)

where A denotes the asymptotic value of the mass differ-
ence between a heavy meson and the heavy quark that it
contains, and can be identified with the effective mass of
the light degrees of freedom interacting with the heavy
quark [24]. We expect that the support of f(k+) for
negative values of k+ is slightly larger (because of the
asymmetry), but of the same order of magnitude, i.e.,

f (k+) should be exponentially small for k+ (( —A.

III. CALCULATION OF THE
LEPTON SPECTRUM

Let us now proceed to calculate the charged-lepton
spectrum in semileptonic B decays. The matrices I'; in
(20) are of the form pq'(1 —ps), and we obtain for the
leading contribution to the correlator

The de6nition of a heavy-quark distribution function as the
Fourier transform of the bilocal operator in (23) was used, in
a different context, in Ref. [22].
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1—ImT""(q, vq) = — dk+ f(k+) h(Q + 2k+. vQ —m ) Q"v + Q"v" —g" vQ —ie" ~Q vp

The next step is to express Q in terms of the lepton momentum q, and to contract T""with the leptonic tensor. A
straightforward calculation leads to the triple-differential decay rate

d I'(B-+X E ) G IVII
(vq —Er) (2msEg —q ) dk+ f(k+)b q —2(ms+ k+) vq+ m& + 2k+mi, —m, (30)q

where Eg ——vga denotes the charged-lepton energy in the
parent rest frame. To the order we are working, i.e., to
leading order in the large-mb limit, we can rewrite this
expression in such a way that all dependence on mb and
k+ comes through the combination

ms(k+) = ms+ k+ = (ps)+, (31)

which we shall identify with the effective mass of the b

quark inside the B meson. We thus observe that the
leading bound-state corrections amount to averaging the
parton-model rate for the decay of a quark with mass

I

0 & q & 2' mi*, (1 —R,),
m2

mb(ms —2Ee)
' (32)

which follows from the requirement that 0 & q2 & 4E~E .
We obtain

I

m&(k+) over the distribution function f(k+). The free-
quark decay model is recovered in the limit f(k+)
b(k+).

Next we integrate over vq, and then over q in the
kinematic region

dI' G IV EI dk+ f)k+) + O(m, /mz) 0 mt —m —2m& Re)de 12m 3

x 3(m& —m )(1 —R, ) —4m& Eg (1 —R, )

In this final result, we have indicated that there are sub-
leading corrections to the light-cone structure function
of order m, /ms, which are neglected in our approach.
There are several interesting properties of this equation.
We first note that the heavy-quark mass mb no longer ap-
pears explicitly. For this reason, and, in particular, when
the focus is on the end-point region, it would be unnatu-
ral to introduce the rescaled lepton energy y = 2'/ms.
Hence, we will hereafter present our results as functions
of the lepton energy Eg, which is the quantity that is
actually measured in experiments. Note, in particular,
that (to the order we are working) the maximum value
of the lepton energy is correctly reproduced. From the
fact that k+ " ——A = m~ —ms, according to (28), it
follows that

(mi', )m~ ——mg,
m~ f

2 ( m~)
(34)

This should be compared to the kinematic end point
EP " = (m&/2)(1 —p) predicted by the free-quark de-

cay model. The difference between the heavy-quark mass
and the physical R-meson mass is correctly accounted for
in our approach. Note, however, that we are not able to
account for the fact that, instead of the quark mass mq,
there should appear in (34) the mass of the lightest meson
containing the q quark. This effect is subleading, i.e., it
vanishes in the mb m oo limit, whereas the difference
between m~ and mb remains.

For lepton energies not too close to the end point, the
difference between mb and the effective mass mb becomes
irrelevant, and (33) reduces to the result of the free-quark
decay model, as given by the first term in (4). Since the
6rst moment Ai in (25) vanishes, the nonperturbative
corrections in this region are of order (A/ms) . Note, in
particular, that

f n(n —1) Ai
dk+ f(k+) mb(k+) = mi 1 — ~+ ),6 mb2

(35)

meaning that, up to second-order corrections, it is in fact
the mass of the b quark that matters over most of the
phase space [6].

It is clear &om this discussion that substantial non-
perturbative corrections show up only in the end-point
region, where (ms —2') is of order A, and the differ-
ence between mb and mb becomes important. We can
separate these effects from the free-quark decay distri-
bution by subtracting a term h(k+) from the structure
function. In this way, we obtain the lepton spectrum as
a sum of two terms, as shown in (4). Introducing then the
rescaled lepton energy y = 2'/ms and the mass ratio

p = m /m&, and keeping only the leading contributions
in the large-mb limit, we obtain for the shape function
defined in (4)

~(u p) =u'
~(v —~+~)

dk+ [f(k+) —8(k+)] (1 —3R, + 2R, ) + less singular terms, (36)
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where now

mgp

ms(1 —y)+ k+
'

This is the correct generalization of (7). If we would formally expand the structure function (21) as

(37)

f(k+) = b(k+) +), A„bl")(k+),
n=2

(38)

and truncate this series at n = 2, we would recover the singular term shown in (7). Such a truncation is not justified,
however, since every term in (38) is of the same magnitude.

For completeness, we note that the form of the convolution (33) simplifies in the limit ms ~ 0, which is relevant

for B ~ X„Ev decays. One obtains

E4~jdk+ (f(k+) + O(A/ms) }O(m~ —2E4) m4 (Am( —4E4)

A

m4EI (kmr, —4E4) dk~ (f(k4) + O(A/m4)}.12''s 2' —mg
(39)

This agrees with the result obtained in Refs. [13—15].

IV. A REALISTIC MODEL

At this point, it is instructive to illustrate our results
with a simple but realistic model. To this end, we pro-
pose the following one-parameter ansatz for the light-
cone structure function:

f(k+) = (1 —z) exp ——(1 —z) O(1 —x),32, 4
x2A 7r

&z = ——' =
~

——1
~

A' = (0.42 A)',
3 (8

A, = — 2 ——
~

A - —(033A) .
t' s~)

(41)

For A = 0.57 GeV, we find Ai —0.17 GeVz and
As —(190 MeV) . These numbers agree well with our
estimates in Sec. II. Given these low-energy parameters,
we can compute the b-quark mass from the expansion

+, (40)
A

'

Ag + 3A2
mph'

——my+ A- + k ~ ~

2m2
5

(42)

where A = m~ —mg is treated as a free parameter. Be-
low, we shall use the value A = 0.57 GeV, which is pre-
dicted by /CD sum rules [25, 26]. Our inodel structure
function is shown in Fig. 3. It obeys all requirements
that have been pointed out in Sec. II. The support of
f(k+) is limited to values k+ ( A, the integral over the
structure function is normalized to unity, and the first
moment vanishes. The higher moments are proportional
to powers of A. In particular, we obtain

1.5—

0.5—

0
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

k+ IGeVJ

FIG. 3. Model ansatz (40) for the structure function
f(k+), evaluated for A = 0.57 GeV.

In our model, we obtain ms 4.71 GeV. Similarly, we
find m, 1.35 GeV for the charm-quark mass, and hence

p 0.08. We shall use this set of parameters throughout
the paper.

In Fig. 4(a), we show the lepton spectrum
(1/I'5) dI'/dEr obtained from (33) in comparison with the
free-quark decay distribution. The difFerence between the
two spectra is shown in Fig. 4(b). It corresponds to the
shape function, which describes the leading nonperturba-
tive corrections to the Bee-quark decay model. For the
ease of comparison with Fig. 2, we have multiplied the
vertical scale by m5/4 in order to comply with the defini-
tion of S(y, p) in (4). To convert the horizontal scale to
the variable y, one would have to multiply Er by 2/mq.
We find that the shape function is indeed sizable only
in the end-point region. Comparing the result of our re-
summation to the singular form of S(y, p) given in (6)
and shown in Fig. 2, we see that the resummation has
eliminated the unrealistic spike at the end point. What
remains is a smooth function, which is rapidly varying in
the end-point region. Note that the decay probabilities
have been redistributed so that the height of S(y, p) is
strongly reduced; however, and most importantly, the
shape function now extends beyond the parton-model
end point (which would correspond to Er 2.17 GeV).
Needless to say, the precise shape of S(y, p) depends on
the form of the structure function f(k+) In the follow.-
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FIG. 4. (a) Charged-lepton spectrum (I/I'g) dI'/dEg in
B —+ X,8 v decays. The solid line is obtained from the convo-
lution in (33) using the ansatz (40) for the structure function.
The dashed line shows the prediction of the free-quark de-
cay model. (b) The shape function S(y, p), which is obtained
from the diff'erence of the two curves in (a).

ing section, we shall discuss some strategies to extract
the structure function &om data.

In Fig. 5, we show the corresponding spectra for charm-
less B + X„Ev decays, setting p = 0. The nonper-
turbative effects in the end-point region become more
pronounced, since the free-quark decay distribution ends
with a step function in this case.

V. EXTRACTION OF THE
STRUCTURE FUNCTION

In this section, we brieBy discuss how one could, in
principle, extract information about the structure func-
tion f (k+) from experimental data on inclusive semilep-
tonic B decays. We should mention from the beginning
that our discussion will be incomplete in that it will ne-
glect radiative corrections as well as the e6'ects of experi-
mental uncertainties. Both could be important. It is also
clear from the results of Refs. [14, 15] that a much bet-
ter place to extract the structure function would be the
photon spectrum in inclusive H ~ X, p decays. How-
ever, in view of the fact that this spectrum will be very
hard to measure in the near future, whereas very detailed
data for semileptonic decay spectra already exist [27], we

FIG. 5. Same as Fig. 4, but for B ~ X„Ev decays.

think it worthwhile to consider possibilities to extract at
least some relevant information &om semileptonic decays
as well.

We start with a discussion of the charmless decays
B ~ X„Zv. They are particularly simple, since the
nonperturbative corrections in (39) are contained in an
integral over the structure function. Up to an overall nor-
malization factor (which depends on V,s and ms), one can
directly extract the function F(Er) defined as

F(Er)—
ZC —mI,

1 dI'
dA:+ f(k+) oc

(43)

F'(Eg) = —2 f(2' —ms) . (45)

Given a measurement of F(Eg), one can extract the mo-
ments A of the structure function, which have been
defined in (24), by integration with appropriate weight

&om a measurement of the lepton spectrum. The nor-
malization can be fixed by observing that F(Er) must
approach unity when mp —2' &) A. Using the de6ni-
tion (21) of the structure function, we obtain [13]

F(Eg) = (B(v)
~
h„e(mb —2Eg + i D+) h„~B(v)) .

(44)

The derivative of F(EI) with respect to the lepton energy
gives the structure function evaluated at k+ ——2' —mg..
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functions. One finds that [13]

dEr (2Er —mb)" F(Er) —e(2mb —Er)

G(s) oc e( mbp —s) —3mb(1 —p)(1 —B2)

—2(mb+ s)(l —R ) (49)

up to an overall factor, and B = mbp/—es Let u. s now
introduce the Fourier transforms

F(e) = J dec " F(e),

G(e) =
J dec

"'G(e) .

Using (23), we find that

f(t) =-
G(t)

(51)

i.e., by taking the ratio of the Fourier transforms of the
observed lepton spectrum and of the parton-model distri-
bution, one can, in principle, extract the matrix element
of the bilocal operator in (23). The Fourier transform of
f(t) gives the structure function. Note that the normal-
ization of the spectra is irrelevant in this context, since we
know the normalization of f(t) at the origin: f(0) = 1.

Given an experimental determination of E(t), one can,
in principle, compute the low-energy parameters A us-
ing (24), i.e.,

t. ~&" (P(t))
~G(&)), ,

In practice, such an analysis will again most likely be
limited to the first few moments.

2(n+1)
' (46)

The fact that A~ ——0 can be used to fix the value of mb
in the step function. In practice, the presence of several
sources of experimental and theoretical uncertainties (in
particular, radiative corrections and corrections of order
A/mb, which we neglect in the above expressions) will
probably limit this extraction method to the first few
moments.

Let us now turn to the case of B ~ X,Zv decays,
where the form of the convolution integral (33) is more
complicated. Let us assume that the parameters mb and
m, have been extracted from a fit of the spectrum to
the &ee-quark decay model, in the region far away &om
the end point. One can then write the observed lepton
spectrum in terms of the parameter

Z = 2' —mb.

To leading order in the large-mb limit, the difFerential de-
cay rate (33) can be rewritten in the form of a convolution
of the structure function f(k+) with the parton-model
distribution function G(s):

dI' —= F(e) = J dke f(k )G( ekee), (48)

where, according to (5),

A less ambitious approach that could be followed is to
rely on a theory-inspired ansatz for the structure function

f(k+), which should depend upon few parameters with
a well-defined physical meaning. The goal would be to
extract these parameters &om a fit to experimental data.
This procedure is familiar &om the analysis of inclusive
decay spectra in the context of phenomenological models
[28, 29]. We believe that a reasonable parametrization
of f(k+) should contain (i) the parameter A, which de-
termines the gap between the parton-model end point
and the physical end point of the lepton spectrum, (ii)
the parameter Aq, which is proportional to the width of
the end-point region, and (iii) an asymmetry parameter,
which is related to the third moment A3 of the distribu-
tion function. An extraction of these fundamental quan-
tities, even if it is affected by substantial uncertainties,
would be most desirable.

VI. CONCLUSIONS

In the end-point region of the lepton spectrum in in-
clusive semileptonic decays of B mesons, a naive opera-
tor product expansion in powers of A/mb breaks down.
The reason is that, in this region of phase space, there
emerges a second expansion parameter, A/(2mb —Er),
which is much larger than A/mb. Then a partial re-
summation of the operator product expansion is neces-
sary before the theoretical results can be compared with
data. This resummation is such that one sums all con-
tributions of order [A/(2mb —E~)]", keeping, however,
only the leading terms in A/mb. In many respects, it
resembles the summation of leading-twist contributions
in deep-inelastic scattering.

For the cases of B + X„Sv and B m X, p decays,
where the mass of the quark in the final state can be
neglected, it has been shown in Refs. [13—15] that the
leading nonperturbative contributions close to the end
point can be resummed into a light-cone structure func-
tion f(k+), which gives the probability of finding a b

quark with light-cone residual momentum k+ inside the
B meson. This function is defined in terms of forward
matrix elements in the heavy-quark effective theory. It is
thus independent of mb and has a universal character. In
the present paper, we have shown that the same structure
function describes the inclusive decays in the presence of
a finite quark mass in the final state, provided that the ra-
tio p = (m~/mb) is consistently treated as being of order
A/mb. In this case, however, the subleading corrections
to the leading behavior are of order m~/mb (A/mb) )

Numerically, they could be quite significant. Yet, since
p 0.08 for the case of B ~ X Sv decays, we argue
that our results should apply and should provide a cor-
rect description of the leading nonperturbative eH'ects.

We should point out that a difterent position was taken
by Bigi et al. in Ref. [15te where it was argued that b ~ c
transitions are close to the so-called "small velocity limit, "
where mg —m is assumed to be much smaller than mg, cor-
responding to p 1. In this case, even the leading eKects are
no longer described by the universal light-cone distribution
function.
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In both cases, B -+ X„Sv and B M X,8 v decays, the
lepton spectrum can be written as a convolution of the
&ee-quark decay distribution with the universal struc-
ture function f(k+) .We have shown that the effect of
the momentum distribution of the heavy quark inside the
meson can be understood in terms of an effective mass,
m& ——mg + k+, which determines the decay kinematics.
Over most of the phase space, the &ee-quark decay distri-
bution is slowly varying on scales of order A, whereas the
light-cone distribution function is sharply peaked around
k+ 0 with an intrinsic width of order A. In this case,
the convolution reproduces the parton model up to small
nonperturbative corrections of order (A/ms)2. In the
end-point region, however, the &ee-quark decay distri-
bution falls steeply, and the convolution becomes sensi-
tive to the details of the structure function. This leads
to large, genuinely nonperturbative effects in the lepton
spectrum, which may be attributed to bound-state cor-
rections in the initial state. In particular, as one ap-
proaches the end point, the effective mass approaches
the mass of the physical B meson, and one recovers the
correct position of the maximum lepton energy.

We have illustrated the effects of nonperturbative cor-
rections using a simple one-parameter model, which in-

cludes, however, many of the ingredients of a more so-
phisticated description. For simplicity, and since our
main focus in this paper was to investigate the effects of
bound-state corrections, we have not included in our dis-
cussion perturbative /CD corrections from the emission
of real and virtual gluons. Such effects have been con-
sidered in Refs. [16—18], and more recently in Refs. [15,
30]. For inclusive decays into final states containing light
quarks, their interplay with the nonperturbative correc-

tions considered here is rather intricate, because of the
presence of large Sudakov double logarithms. In partic-
ular, in B -+ X„Ev decays the simple factorization of
bound-state corrections into an integral over f(k+) [see
(39)] is replaced by a more complicated convolution of
the structure function with a hard-scattering amplitude.
For the case of B + X,8 v decays, however, such effects
are known to be less severe. Nevertheless, further inves-

tigation of radiative corrections is necessary to put our
formalism on a more quantitative basis.

In the last part of the paper, we have discussed some
possible approaches that could be taken to extract infor-
mation about the structure function &om semileptonic
decay spectra. We are aware that such an analysis will
be complicated, due to various theoretical and experi-
mental limitations. It is likely that the most promising
approach will be to make a theory-motivated ansatz for
the structure function that contains few physical param-
eters, and to extract these parameters from a fit to data.
We are confident that it should be possible to obtain an
(approximate) determination of the first two nontrivial
moments of f (k+) They. are proportional to the average
kinetic energy of the 6 quark inside the B meson, and
to the asymmetry parameter A3. These fundamental pa-
rameters are of suKcient interest to try such an analysis
using the existing data on B ~ X, E v decays.
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