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Total cross sections and logarithmic slopes of the elastic scattering cross sections for different
hadronic processes are calculated in the framework of the model of the stochastic vacuum. The
relevant parameters of this model, a correlation length and the gluon condensate, are determined
from scattering data, and found to be in very good agreement with values coming from completely
diferent sources of information. A parameter-free relation is given between total cross sections and
slope parameters, which is shown to be remarkably valid up to the highest energies for which data
exist.
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I. INTRODUCTION

It is certainly a great challenge to establish a micro-
scopic description of high-energy scattering in the frame-
work of the field theory of strong interactions, i.e. , @CD.
Sophisticated treatments of perturbation theory [1] have
lead to interesting results, which however are either qual-
itative or not able to explain the most striking phenom-
ena. There is a rich amount of data on soft high-energy
scattering, i.e. , elastic scattering at high energies and
momentum transfers smaller than the hadronic scale (=
1 GeV). The newest and most precise data come from
proton-antiproton scattering [2], extending up to center
of mass energies +s = 1800 GeV. There are older data in
the pp, xp, and Kp channels [3,4], and for other hadronic
channels, such as the Ep system [5], they are still scarce.
More soft-scattering data are expected for the near future
from Fermilab and the CERN Large Hadronic Collider
(LHC).

The energy dependence, in the full range of available
data, is well described in the Regge picture [6] . The total
cross sections [7] increase with energy like s ', leading
to a hypercritical Pomeron intercept. The variation of
the slope of the elastic scattering cross sections is also
well described in the Regge picture with a slope of the
Pomeron trajectory n'(t) = 0.25 GeV

The value of about 2/3 for the ratio of harp to pp (or
pp) total cross sections, as well as certain factorization
properties, are suggestive of an additive quark model [8],
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in which the main features of high-energy scattering can
be described through quark-quark scattering amplitudes.
On the other hand, there is also a remarkable Qavor de-
pendence of the cross sections, which decrease with the
increasing number of strange quarks in the scattering
channel. Such a feature is most naturally explained in
models in which the cross sections depend on the sizes of
the hadrons, which is also indicated by the dependence
of the slopes of the elastic diR'erential cross sections on
the hadron sizes [9].

In this paper we evaluate elastic scattering amplitudes
of hadrons in the framework of the model of the stochas-
tic vacuum (MSV), originally developed in order to treat
non-perturbative eHects in low-energy hadron physics
[10,11]. The model therefore deals with parameters of
nonperturbative @CD that play an essential role both in
hadron spectroscopy and in high-energy scattering. Our
treatment is based rather on loop-loop than on quark-
quark scattering. An important consequence is that the
high-energy cross sections depend on the sizes of the
hadrons, and this e8'ect is due to the same mechanism
that leads to con6nement.

The paper is organized as follows. In Sec. II we give
the theoretical foundations of our model. In Sec. IIA
we shortly recapitulate essential aspects of the analysis
of soft high-energy scattering and in Sec. IIB some im-
portant features of the model of the stochastic vacuum
are explained. In Sec. III we apply the MSV to soft
high-energy scattering and in Sec. IV we evaluate the
formalism derived in Sec. III and find convenient numer-
ical representations for the results. In Sec. V we discuss
the choice of input parameters and compare our theo-
retical results with experiment. In Sec. VI we present
concluding remarks. In the appendices we discuss some
more technical points.
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II. THEORETICAL BACKGROUND

A. SoS high-energy scattering
in nonperturbative +CD

The first field theoretical approaches to soft high-
energy scattering at small momentum transfer were
attempted by Amati, Fubini, and Stanghelini [12] in
the framework of the multi-peripheral model and by
Gell-Mann, Goldberger, and Low in a massive vector-
exchange theory [13]. Since the time when it became
clear that QCD is the fundamental theory of the strong
interactions, many efforts were made to explain the rel-
evant features of soft high-energy scattering, either by
assuming genuine nonperturbative efFects [14] or by elab-
orate summation of perturbative contributions [1] .

The success of methods, applied primarily in hadron
spectroscopy, taking into account nonperturbative contri-
butions as gluon condensates [15] stimulated Landshoff
and Nachtmann [16] to apply nonperturbative concepts
also to soft high-energy scattering. In an Abelian model
they related elastic high-energy scattering to the nontriv-
ial structure of the QCD vacuum, requiring, besides the
(static) gluon condensate, a finite correlation length for
the slowly varying (nonperturbative) gluon fields in the
vacuum. In their Abelian model, this correlation leads
effectively to a nonperturbative gluon propagator. The
main consequences of the model were the correct spin
structure (vectorlike exchange) of soft elastic high-energy
scattering and quark additivity. The latter holds only if
the above-mentioned correlation length of the gluon fields
is small compared with the hadron radius. The energy
dependence of the total cross section comes out only ap-
proximately correct, namely as a constant, instead of the
experimentally observed slow rise like 8 ' . This model
has been applied successfully also to other channels [17].

The structure of nonperturbative contributions to
high-energy scattering was further investigated in a more
general way by Nachtmann [18], who reduced the non-
perturbative parts in soft high-energy hadron scattering
to quark-quark (antiquark) scattering, justifying this re-
duction in certain kinematical regions through consid-
erations in the femtouniverse. Through the use of the
eikonal method, the high-energy scale was separated and
the (nonperturbative) part of the quark-quark scattering
amplitude that is due to exchange of states with the vac-
uum quantum numbers could be reduced to an expression
with the structure

tude was achieved through current matrix elements oc-
curring in deep inelastic scattering.

In this paper we widely follow the general analysis
of Nachtmann [18], and evaluate quark-quark scattering
amplitudes in a specific nonperturbative model, namely
that of a stochastic vacuum with Gaussian Buctuations
[10,11]of the field strength. There is however a very spe-
cific difference: whereas the original treatment of Nacht-
mann is based on a reduction of hadron-hadron scattering
to quark-quark scattering, our basic entities are scatter-
ing amplitudes for Wilson loops in Minkowski space-time.
A definite advantage of our approach is the gauge in-
variance of these amplitudes in contradistinction to the
quark-quark amplitudes. The loop amplitudes treated
here can also be obtained in the framework of Nacht-
mann [18], if one starts with hadron-hadron rather than
with quark-quark scattering matrix elements (O. Nacht-
mann, private communication).

Another important difference must be remarked.
Quark additivity appears in a natural way in the
Landshoff-Nachtmann model [16] and in the extended
framework of Nachtmann [18]. Here each quark interacts
with the vacuum field, and we may consider that this in-
teraction defines a region with the form of a tube around
the quark path. Since the interaction with another quark
is due to the correlations of the fields in two such tubes,
the effective radius of a tube is actually determined by
the correlation length of the vacuum field. The qq inter-
actions occur only in the regions where two such tubes
overlap. If the separation of the quarks inside a hadron is
large compared with the correlation length a, the inter-
action regions for the different pairs of quarks when two
hadrons collide are indeed well separated from each other,
and quark additivity holds. However, such an argument
is dangerous in a nonperturbative treatment, since, for
instance, it would not lead to the area law for the Wilson
loop. Indeed, it is well known that even a short range
correlation of the fields can lead to long range effects due
to potentials, since the step &om the fields to the po-
tentials is essentially nonlocal. A good example of this
phenomenon is the Bohm-Aharonov efFect [19],where the
phase of an electron can be inQuenced by a magnetic field
located far away. These long range effects might spoil
quark additivity, and we show in Sec. IIB that this is
indeed the case with the model of the stochastic vacuum:
the same effect which leads to confinement also leads to
a violation of quark additivity. The physical reason for
that is easy to understand, since not only the quarks but
also the glue between them participate essentially in the
scattering process. We return to this point in technical
detail in Sec. IIB.

+(Pl) ~"u(pi) u(p2) 7~u(p2) J«(q') ~c c~D'D B. The model of the stochastic vacuum

with small momentum transfer q = py p$ —p2 F2.
The upper indices t, D denote the colors of the quarks,
and u(p) is a Dirac spinor.

The transition from the quark-quark scattering ampli-
tude to the observable hadron-hadron scattering ampli-

The model of the stochastic vacuum [10,11] is based
on the idea that the low frequency contributions in the
functional integral can be taken into account by a simple
stochastic process with a converging cluster expansion
[20]. This assumption leads, in a non-Abelian gauge the-
ory, to linear confinement of static color sources.

Let us phrase this idea in a somewhat more formal
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language. Let 17$(k) e ~~~ be the functional measure of
a quantum field theory where the fields to be integrated
over are expressed in momentum space. If the measure
is split into low and high &equency parts,

potentials A„(z), but rather of the field strengths E„,
where the upper index F is the color index of the adjoint
representation. As usual, we introduce the Lie-algebra-
valued field quantities

17$(k) 17$(k), (2) N,' —» N,' —»

&v(z) = ) . &, (z) ~F F~-(z) = ) +„.~F
F=1

the integration over the high frequencies can be ac-
counted for perturbatively, in an asymptotically free the-
ory. All terms of higher than quadratic order in the fields
occurring in the exponential of the action e l~~ are ex-
panded in a power series and, since only quadratic terms
are kept in the exponent, the remaining functional inte-
grals are Gaussian.

Little is known about the functional integration over
the low &equencies. In the @CD sum rule approach
[15], the contribution of this part is taken into account
by power corrections proportional to specific nonper-
turbative vacuum expectation values (condensates). A
model which goes further is that of the stochastic vacuum
[10,11] in its most restrictive form. Since we know that
nature has managed to regularize the infrared problems
of perturbative theory (after all, we do observe hadrons),
we may assume that the integration measure of the low
frequency fields may be approximated by a simple func-
tional measure. The simplest ansatz is that of a Gaus-
sian integration measure, which is specified by a corre-
lator (corresponding to the propagator in perturbation
theory). This correlator is (apart from its specific form)
determined by two scales: the strength of the correlator
and the correlation length.

Generically, we may write

+4'(k)e 4'(zi) 4'(z2)= (4'(zl)4'(z2))A

= G(zi —x2), (3)

and obtain all other Green's functions for a Gaussian
process by factorization. Note that we have liberally
switched between the fields in coordinate space, P(z),
and in momentum space, P(k). Equation (3) describes
only the low internal &equencies part of the correla-
tor, and thus G(xi —x2) is supposed to be regular for
z» ~ z2. The singularities are due to perturbative terms.
As mentioned above, this simple model leads to con-
finement in a non-Abelian gauge theory, and moreover
the heavy quark potential deduced from the correlation
determining the Gaussian stochastic process agrees very
well with phenomenological determinations [21,22]. Thus
it is not unreasonable to apply the approximation by a
Gaussian process to other nonperturbative phenomena,
as soft high-energy scattering.

First we discuss some basic properties of the two-point
correlator defining the nonperturbative Gaussian process
(i.e. , the approximation for the measure of functional in-
tegration over the low frequency fields). As always oc-
curs with approximations, a control of gauge invariance
is essential. If that control is missing, one is never sure
whether the output of the calculation is only a gauge ar-
tifact. So we do not deal with the correlator of the gauge

and the covariant derivative

D„=
/

1 —igA„/
( 0

~z~ )

F„„(z)m U(z) F„(z) U '(x),
where U(z) is a local element of the gauge group SU(N, ).

In order to give a well-defined meaning to a correlator,
which is a bilocal object, we parallel transport the color
content of all fields to a single reference point m, i.e., we
consider the parallel-transported field strength tensor

F„„(z;w):= P '(x, w) F„(z) g(z, w),

where P(z, w) is a non-Abelian Schwinger string from
point m to point x:

1

P(z, w) = P exp ig do (z —w)„—
0

x A„[w + o (x —w)]

P denotes path ordering, which is necessary in order to
give to the exponential a well-defined meaning. In a non-

perturbative way, this ordering is defined, for any opera-
tor D through

1

Pexp i O(o) der
0

I ~

lim
Ao'&0

k

exp iO
~ ~

4o'g

with 0 & o» & 02 - - ( 1, Dog ——op+» —oy .
The field strength tensor in Eq. (7) transforms with

In the expression above, w~ represents the N, —1 gen-
erators of the Lie algebra of the gauge group SU(N, ). For
N, = 3 they are, in the fundamental representation, 1/2
times the Gell-Mann matrices A~. If not stated other-
wise, we always use the fundamental representation. For
some later discussions [see Eq. (36) below], it is conve-
nient to work with a general number of colors N, . In the
first part of this section we work, as usual in the func-
tional approach, in a Euclidean space-time continuum,
and therefore only lower Lorentz indices are used.

In a non-Abelian gauge theory the field strength tensor
F„„(z)does change under a local gauge transformation
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the gauge transformation at the fixed reference point m:

F„„(z,ii)) m U(u)) F„„(x;iU)U '(m) . (io)

The correlator (F„„(z,ii)) Fg (y, w))&, i.e., the vac-

uum expectation value with respect to the low frequen-

cies, is gauge covariant because of Eq. (10); in general, it
may depend on the two coordinate differences (x—tu) and

l

(y —ii)). We now make the crucial approximation that
the correlator is independent of the reference point u),

and thus only depends on the difference z = z —y. This
approximation becomes exact for x ~ y, and is nearly
true for n fixed and large distances z = x —y. In this
approximation, the most general form of the correlator

[11] is given by

LCD
g» Fa (a, w) Fa(g, w)) =, —(g' FF)

X ' K yp ~~ p~ gyp D Z G

+(b —a) — (»ab, —» b a)+ (» baa —»aba ) D, (» /a )) .

Here z = z —y, a is a characteristic correlation length,
(g2 FF) is the gluon condensate

(g' FF) = (g' F„„(0)F„„(0))„, (12)

N, is the number of colours, C, D = 1, . . . , N, —1, and
the factors in Eq. (11) are chosen in such a way that

D(0) = D (0) = 1 .

The two possible tensor structures are arranged in
order that the second term satisfies the homogeneous
Maxwell equation, i.e.,

b9
e p„„g F„„(z,ii)) F (y, i') = 0 for rc = 0.

(i4)

g= (g FF)a J D( a)d a—
Thus only the tensor structure proportional to D leads
to con6nement. This result has the very welcome conse-
quence that only in non-Abelian gauge theories the model
of the stochastic vacuum leads to con6nement. It also
teaches us that the correlator D is the part specific to
non-Abelian gauge theories.

The correlator in Eq. (11) has been calculated on the
lattice [23], and the results show unambiguously that v
is diHerent &om zero, as predicted by the model of the
stochastic vacuum. The ratio bb;/(1 —K) is rather large
(about 3), so that D(z2/a ) is the dominant contribution.
We return to this point in more detail later.

Hence, in an Abelian gauge theory without monopoles,
where the homogeneous Maxwell equations must hold,
only the second structure can occur, i.e., we must there
have e = 0. However, in a non-Abelian theory there is
no reason for ~ to be zero.

With the form of Eq. (11) for the correlator, one ob-
tains [10,11] the area law for a Wilson loop with the string
tension p, given by

III. THE MODEL OF THE STOCHASTIC
VACUUM IN HIGH-ENERGY SCATTERING

The correlator in Eq. (11), specifying the Gaussian
process that approximates non-perturbative effects of
/CD, is the starting point for our evaluation of observ-
ables in soft high-energy scattering. In the analysis men-
tioned in Sec. II, Nachtmann [18] evaluated the quark-
quark scattering amplitude using the eikonal approxima-
tion for the interaction of the quarks with the gluon field.
In a first step, we follow the same approach, and consider
the scattering amplitude of a single quark in a given ex-
ternal color potential A„. If the energy of the quark is
very high and the background field has only a limited
frequency range, the quark moves on an approximately
straight lightlike line and the eikonal approximation can
be applied; At the end of this section we recall the con-
dition for the validity of the eikonal approximation.

Along its path I', the quark picks up the eikonal phase
(which is here a unitary N, x N, matrix)

V = P exp
~

—ig A„(z) dz"
~r " )

Here A„ is again the Lie-algebra-valued potential and P
denotes path ordering [see Eq. (9)]. The phase factor for
an antiquark is obtained by complex conjugation.

From the scattering amplitudes for single quarks in the
background 6eld, we obtain the nonperturbative quark-
quark scattering amplitude by functional integration over
the background 6eld of the product of the two scatter-
ing amplitudes. More specifically, consider two quarks
traveling along the lightlike paths I'z and I'2 given by

r, = (*',b/2, *' =*')

r, = (*',—b/2, *' = -x'),
corresponding to quarks moving with velocity of light
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in opposite directions, with an impact vector b in the
xiz plane (referred to in the following as the transverse

plane). Let Vi 2(kb/2) be the phases picked up by the
quarks along these paths

Vi 2(kb/2) = P exp i—g A„(z) dz" (18)

Then the scattering amplitude for two quarks with mo-
menta pz, p2 and color indices c~, c2 leading to two quarks
of momenta ps, p4 and colors cs c4 is given by [18]

T....,'...(,t) = -(p.) ~"(p.) -(p. ) ~. (p. ) ~, (»)
where

x'

X3

v='(z ')„(fd'b ''
I v( ——

)
—1

x V2 + — —1

C3 C1

(20)

Here ( ) denotes functional integration over the back-
ground field; q is the momentum transfer (pi —ps) pro-
jected on the transverse plane. Of course the approxi-
mation makes sense only if ~q~ && ~p~. The quantity Z~
is the fermion wave-function renormalization constant in
the eikonal approximation, given by [18]

1 1
Z~[A] = tr [V, (0)] = tr [V,(0)] .

C C

FEC. 1. Wilson loops formed by the paths of quarks and
antiquarks inside two mesons. The impact vector b is the
distance vector between the middle lines of the two loops. Rq
and R~ are the vectors in the transverse plane from the middle
lines to the quark lines of meson 1 and 2, respectively. For
the antiquarks the corresponding vectors are —Rz and —R2.
The front lines of the loops guarantee that the mesons behave
as singlets under local gauge transformations.

The subtraction of the unit operator from the phase ma-
trices V is due to the transition from the S to the T
operator.

In the limit of high energies we have helicity conserva-
tion

u(ps) p"u(pi) u(p4) p„u(p2); 2sb~, i„b~,~, , (22)

where A, are the helicities of the quarks and s = (pi +
p2)2. In the following we can thus ignore the spin degrees
of freedom.

The scattering amplitude in Eq. (19) is explicitly
gauge dependent and the cautioning remarks made in
the last section apply here. But we know that, in meson-
meson scattering, for each quark there is an antiquark
moving on a nearly parallel line. Furthermore, the me-

son must be a color singlet state under local gauge trans-
formations. To construct such a colorless state we have
to parallel transport the color content &om the quark to
the antiquark (or vice versa) in the same way as discussed
in Sec. II for the field-strength tensor. Since this paral-
lel transport of the colors is made by a Schwinger string
P(x~, z~) [see Eq. (8)], we obtain for the meson a Wilson
loop whose lightlike sides are formed by the quark and
antiquark paths, and front ends by the Schwinger strings
(see Fig. 1). The direction of the path of an antiquark
is effectively the opposite of that of a quark, so that the
loop has a well-defined internal direction. The result-
ing loop-loop amplitude is now specified, not only by the
impact parameter, but also by the transverse extension
vectors.

We thus introduce the loop-loop scattering amplitude

- —1

J(b, Ri, R2) = tr Wi(0, Ri) tr W2(0, R2)
C A c A

1 b - 1 b
x tr TV2 ——,R2 —1 tr TVg ——,RgN O' N 2' (23)

where Wi( —b/2, Ri) is the Wilson loop

Wi ——,Ri l
= P exp ig A„—(z) dz"2'

f BS,
(24)

The closed loop OSq is a rectangle whose long sides are
formed by the quark path I'i = (xQ, b/2 + Ri, xs = xQ)

and the antiquark path I'Qi ——(xQ, b/2 —Ri, xs ——zQ)

and whose front sides are formed by lines from (T, b/2+
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Ri, T) to (T, b/2 —Ri, T) for large positive and negative

T (we will then take the limit T ~ oo). Wz(b/2, R2) is
constructed analogously. The first factor in Eq. (23) is
the loop renormalization constant that replaces the quark
field renormalization in Eq. (20).

Our next aim is to perform the functional integration
over A by applying the model of the stochastic vacuum
discussed in the preceding section. Since the correlator
is given in terms of the parallel-transported field tensor
F„„(x,u)), we have first to transform the line integrals

f A„dz" through integrals over the field tensor. This
is done with the help of the non-Abelian Stokes theorem
[24]. By deforming the path as indicated in Fig. 2, we can
express the line integral $&& A„(z) dz", where the closed
path (9S goes from i() to 2:~il then to z~2l and back to
u), into the surface integral 1& F„„(z,u)) dZ""(z), where
dZ""(z), with p, ( v, is the element of the surface S at
point z. Here we have used that, for a suKciently small
contour, we have

FIG. 2. Representation of the non-Abelian Stokes theorem.
The contour integral running from m to z~q~ then to @~2~ and
back to ur is deformed in order to become a surface integral.
Here x~z~ and z~z~ represent the coordinates of the quark and
antiquark in a meson, respectively.

A„dz" = F„„dZ""+ O(S ) .
BS S

In this way we obtain

P exp —igA„(z) dz" = Ps exp igF„„(z,u))—
8S S

x dZ""(z), (26)

where Ps now denotes surface ordering according to
Fig. 2. Since the reference point m in the correlator (11)
must be the same for both fields, we have to choose a
common reference point for both traces in the product

(
b - tbtr Wi ——,Ri —1 tr Wz~ —,R2 —1
2 E2

We choose the point u) in the most symmetric way and
then the surface emerging f'rom the loop BSi is formed by
the sliding sides of a pyramid with the loop (9Si as basis
and the point with coordinates m as apex; the same holds
for (9Sz (see Fig. 3).

Before its application to high-energy scattering, the
model of the stochastic vacuum must be translated from
Euclidean space-time, in which it is naturally formulated,
to the Minkowski continuum. Unfortunately we cannot
go the other way and continue Eq. (23) to the Euclidean
continuum, which would be the safe way &om the point

I

of view of the functional integration. However the Wil-
son loops occurring in Eq. (23) have lightlike sides which
would shrink to a point if continued to a space time con-
tinuum with Euclidean metric. We think that this is
a serious obstacle in all attempts to evaluate soft high-
energy amplitudes numerically on a lattice.

Since we cannot adapt the scattering amplitude to
the Euclidean world, we have to proceed the other way
and adapt the model of the stochastic vacuum to the
Minkowski world. We are fully aware that this is by no
means a trivial step and, pending a better analytical un-
derstanding of nonperturbative effects, we have to let the
experiment decide on the justification. (Similar problems
occur when one applies instanton eKects to high-energy
scattering [25].) Thus we must translate the correlation
function in Eq. (11) to the Minkowski world. This is ob-
vious for the tensor structure, where we just substitute
b„„by —g„„, etc. , but simple choices for the correla-
tion functions like exp( —z2/a ) or exp( —v z2/a) cannot
be analytically continued in a meaningful way. There-
fore, we must look for correlation functions D(z2/a2)
and Di(z2/a ) that fall off for negative z2 values (cor-
responding to Euclidean distances), and whose Fourier
transforms exist in Minkowski metric, since these will
enter essentially in the scattering amplitudes. An ansatz
for the correlator that fulfills this requirement can be
written in terms of the Fourier transforms

(CD 4

(g ~z-(z ~) Pe. (v ~))z = ~, , —,2(g P~) 2, e '* z"((gzeg —ge'g e) ezD((&')---
C

.dDi(k )+(—gzzpkp kp + pgzzkpk—p gppkzzkzz' + gpzzkzz kp) (1 —I(')

zD, (kz) = f d zD, (z*/e') e' '~ (30)

and

iD(kz) = /d'zD(zz/ez) e' (29) After this choice is made, all functional integrations
can be performed, in principle. The quantities Wq 2 in
Eqs. (23) and (24) can be expressed as surface integrals,
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according to Eq. (26). The exponential being expanded,
the expectation value can be calculated using Eq. (26)
and assuming factorization in a Gaussian process (see
below) .

Before we enter i.nto details, we make two remarks
which facilitate further calculations. First we note that,
since

(trWi)~ = (trW2)~ = N. , (31)

the functional integral over the surface of one pyra-

FIG. 3. Tilted perspective view of the surfaces S~ and S2
obtained from the line integrals along the Wilson loops OSq
and BS2 after appying the non-Abelian Stokes theorem. The
line B,&A, & is the quark path line and B;2A;z is the antiquark
path line of meson i. C is the reference point (with coordi-
nates m in the non-Abelian Stokes theorem).

mid alone vanishes. To see the formal reason for
Eq. (31), we remark that in the evaluation of a
single loop, say (trWq)~, only the expectation value
(e+F„;(x, tU) e+F~l, (y, ur)) ~ occurs, where e+ is the light-
like vector (1,0, 0, —1), and i, k (1 or 2) are indices of
the transverse plane. These correlators are zero by virtue
of the tensor structures given in Eq. (28) (note that
e+e+„——0). Therefore only the unit term contributes,
leading to Eq. (31). This is not in contradiction to the
area law in Euclidean space-time, since the area of loops
with lightlike sides would be zero in Euclidean metric.

Due to this mechanism, the quantities

Z@ —— trlV1 0, (32)

that enter in the first factor of the expression in Eq.
(23) are equal to one (no loop renormalization). In the
same way only mixed terms, &om diferent pyramids,
contribute for the expectation value in Eq. (23), since
the correlation functions arising Rom the expansion of
trWq( —b/2, Rq) alone, or equivalently of trW2(b/2, R2),
contain only field projections e"F„i or e+F„i, respec-
tively.

We next expand the exponentials W; in Eq. (23). Since
in the expansion of the trace of the exponential at least
two terms are necessary (trT~ = 0), and because of Eq.
(31) the lowest-order contribution to the loop-loop scat-
tering amplitude is given by

2 2

g(b, ytt, Rt) = —
(—tg) (

—
) tr ] r ]Ter ]vgtt hatt] gz"' '(z) f dE~' ' (yt)

S1 i=1 S2 ~=1

1
x „F'„( qx, ur) F„' (x2, t()) F ' (y) tu)) F '

(y2, tu) + higher correlators .
C A

(33)

We next apply the factorization hypothesis

(FCtFCzFDt FDz ) (FCt FCz )(FDt FDz) + (FCt FDt )(FCzFDz) + (FCt FrDz)(FCzFDt ) (34)

where the arguments and the Lorentz indices of F ', F
are the same as in Eq. (33).

We have checked that the higher-order terms are in-
deed small as compared to the leading term, and there-
fore we neglect them in the following. In this way the
surface ordering indicated in Eq. (26) becomes irrele-
vant.

It is convenient to introduce the eikonal function y:

We notice the presence of the color suppression factor
1/(N2 —1) that always occurs in interactions between
colorless objects. The eikonal function is determined by
the geometry and by the correlator (28).

For the Fourier transform D(k2) of the scalar correla-
tion function D, that enters in Eq. (28), we introduce an
ansatz which fulfills the requirements made above, and
write

y(b, Rg, R2) = (—ig) dZ~" (x) dZ "(y)
S1 S2

x (F „(x,w) F (y, t()) )~ . (35) with

—6iA„k 1
, n&4, (37)

Then the loop-loop amplitude J(b, Rq, R2) is given to the
lowest order in the correlator by

D( 2/ 2) D(A, 2) —ikz/tt d4A:

(2n)4
(38)

- 2

J(b, Rgt R2) = —
2

—
2 y(bt Rgt R2) . (36)

These functions are discussed in Appendix A. The con-
stants A and A„are fixed by the normalization condi-
tions
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D(0) = 1 and duD( —u ) = 1 .
0

(39)

The second of these conditions allows the identification
of a as a correlation length.

The string tension for the correlator of the form (37)
can be obtained [11] from Eq. (15). With our choice for
the correlator, we have [26]

the baryon is described as shown in Fig. 4. There are
three quark paths leading fmm x~;~ to x~,~, i = 1,3. The
coordinates xh and x& refer to the central point of the
baryon. The paths from x~ to x~;~ and zh to z&,-~, re-

spectively, must ensure that the baryon is a color singlet
under local gauge transforro. ations. This is done by par-
allel transporting the color from the quark positions z~;~
to zg, and coupling the colors antisyrnmetrically in the
form

2 2 I'(n —3)
p = r(g FF)a (n ——3)

81 I'(n —5/2)
(4o) 1

~abc 4'aa'(+hs +(1)) t)bb'(+hi +(2)) 4'cc'(+h& &(3)) I (42)
6

The scalar function Dq is completely independent from

D, and may have different values for the parameters
a and n. Lattice calculations [23] show however that
the forms of D and Dq in the Euclidean region at large
distances are similar, with D about three times larger
than D~. We show in Appendix B that even with equal
weights for the two functions, the contribution of D to
high-energy soft scattering is by far the dominant one, so
that we can safely concentrate on this function.

Since analytic calculations are most easily done for the
case n -+ oo, previous calculations have been made with
that choice [26—29), but for n = 4 there is good agree-
ment with the form (exponentially decreasing at large
distances) indicated by lattice calculations in the Eu-
clidean region [23]; we therefore adopt this form in the
present work.

Up to now we have only considered loop-loop scatter-
ing amplitudes. It would be highly desirable to have a
formalism relating these fundamental field theoretical en-
tities to observables, corresponding to the operator prod-
uct expansion for quark (and gluon) amplitudes. In the
absence of such a formalism, we have to rely on a rather
simple-minded quark model.

In a relativistic quark model, the distribution of the
quarks is described by the transverse momentum k~ and
the fraction z of the longitudinal momentum carried by
the quark. Since our amplitude is independent of the
momentum of the quarks (as long as the energy is high
enough to ensure lightlike paths), we may neglect the
dependence on z, and only consider the transverse de-
pendence. This transverse dependence is given by the
Fourier transform of the transverse wave function, which
determines the width 2IRI of the Wilson loops. We thus
obtain our hadron-hadron (here still meson-meson) scat-
tering amplitude by smearing over the values of R~ and
R2 in Eq. (33) with transverse wave functions g(R). This
leads to the meson-meson scattering amplitude

where P's are the Schwinger strings, Eq. (8). An anal-
ogous factor occurs at the end (primed coordinates), so
that the baryon is described by the product of paths

1

6 ~~[ ]~b[ ]~f[ ]s f (43)

where the path I'; leads &om xg over x~;~ and z~,.
~

to
z&. Iet I'0 be the path leading fi.om x& to zg. Since
/[I'0] CSU(3), we have

~d f —& 'b' ' 4'do' [I0] 4' b' [I 0] 4'f ' [I 0] ~ (44)

Inserting this expression into Eq. (43), we obtain that
the baryon is represented by the product of Wilson loops
(without traces)

1

6
—s b, W [(9S&] Wbb [c)S2] W„[c)Ss] s (45)

W, ,(—b/2, Rs) —h bbb h„) . (46)

Here R; is the vector extending from the middle line I'p

to the border of loop i. The impact parameter vector b
is taken with respect to the middle line I'0. The factor
1/36 is due to color normalization. We discuss baryon
transverse wave functions in the next section.

where W [hSq] = pay[I'q] ada [I'0] is the loop from zh
to x~, zz, z& and back to zh, . Thus for a baryon the fac-
tor (I/N, )tr [Wq( —b/2, Rq) —1] in Eq. (23) has to be
replaced by

1

36 b,~(W ~ ( b/2, R—g) Wbib( —b/2, R2)

(41)

JMM'(b) = f d R& f d R2 J(b, R&, Rz) ~gM(Rz)~*

x IOM (R2) I' . I Xh JXh

The choice of the transverse wave functions @M(R) will
be discussed in the next section.

For the treatment of the baryons we restrict ourselves
to N = 3. We adopt two pictures: a genuine three-body
configuration, and a diquark picture. In the latter the
baryon is described exactly as a meson, where the di-
quark replaces the antiquark. In the three-body picture

X(i)

(2l
I

X(2)

FIG. 4. Wilson loops (without traces) describing a baryon
path in the three-body picture. The line from x~,~

to x&,
&

represents the path for the quark labelled i. The line from xq
to xz is the path for the central point of the baryon.
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From this relation Nachtmann also obtained a conserva-
tive upper bound for the energy, which results from the
requirement that the observation time should be short
enough so that the string between the scattering quarks
or antiquarks is not broken if the two particles By apart.
The string breaks if the two quarks become so far apart
that the potential energy of the string reaches the proto-
hadron mass m, = 1.3 GeV. Then the breaking time 7;,
is determined by

mc
+C1' (48)

We conclude this section with some considerations con-
cerning the validity of the underlying quark model, re-
viewing the analysis made by Nachtmann [18], who dis-
cusses limits on the energy values ~s in order to en-

sure the validity of his treatment. It is clear that the
eikonal approximation can be justified only for a sufFi-

ciently high energy. A detailed analysis yields the con-
dition ~s ) 2~oh where h is a typical hadronic scale

(h 1 GeV ) and 7o is the observation time of the
scattering process in the femtouniverse. There is another
scale Qo that indicates the separation between the per-
turbative and the nonperturbative effects. The correla-
tion length and the wave function depend on its value,
since it can be viewed as a renormalization scale for non-
perturbative quantities. The value of Qo should also be
approximately equal to the hadronic scale h i, and its
relation with the energy and the observation time was
found [18] to be

where Tz is the above-mentioned two-dimensional
Fourier transform of the correlator with n = 4 [see Eq.
(37)], defined as

1 2 - 6A4A4]K~
~

(2 )' ( P4[K~~ 1)

x exp (iK~ (),

&~ '(-l(l') =—

are represented in Figs. 3 and 5. The first of these figures
gives a somewhat tilted three-dimensional view, while the
second shows a projection on the transverse plane. The
vectors Q(K, L) in the transverse plane connect the refer-
ence point C (with coordinates iv) to the positions of the
quarks and antiquarks of the loops 1 and 2. The quantity

Q(K, L) is the angle between Q(l, K) and Q(2, L)
In the integrations indicated in Eq. (49) we first note

that the contributions involving front planes (CAiiAi2,
CB11B12, CA21A22, and CB2iB22) in Fig 3. vanish
in the limit T m oo, and therefore we are 1eft with
four remaining terms, the integrals over the products
of the side planes of two different pyramids. The four-
dimensional integration over the two surfaces can be fi-

nally reduced to a single integration [26]. The integra-
tions along the directions z+ and z can be performed,
and result in expressions involving two-dimensional in-

verse Fourier transforms of the correlator D(k2). A typ-
ical resulting contribution that comes from the product
of surfaces (CAiiBii) and (CA2i82i) in Fig. 3 is

1 1

dn dP cos @(I,1) P2 (
—~nQ(1, 1) —PQ(2, 1)~ ),

0 0

where p is the string tension p —0.18 GeV . The maxi-
mal observation time is given by wo = 2~ . In the present
paper we consider only elastic scattering of loops, where
no string between quarks of different hadrons is formed,
hence we see no compelling reason to apply the above
limit to 70, and there is no upper limit on the energy
for the applicability of the model from this considera-
tion. However, for definiteness, we take in the present
work as a reference energy the value +a = 20 GeV, cor-
responding to the conservative upper bound indicated by
Nachtmann [18], and discuss other energies separately.

IV. NUMERICAL EVALUATION AND
PARAMETRIZATION OF THE RESULTS

g(lb, R(1, 1),R(2, 1)) = (—ig) dZ" (x) dg~ (x')
S1 Sg

x (F„(x,iv)F (x', iv)) ~ (49)

We now introduce the notation R(I, I ), where the first
index (I=1,2) specifies the hadron, and the second speci-
fies the particular quark or antiquark in that hadron. We

first evaluate the eikonal functions y(b, R(l, 1),R(2, 1))
in Eq. (35) for the confining case, namely r = 1. The
integration surfaces Si and S2 of the eikonal function

where ( is a two-dimensional vector of the transverse
plane. This quantity, which is evaluated in Appendix
A, can be can be written in the convenient form

/x&

R{2

Z \ ~ ~
OO' ~

~ ) r 0 ~
~ e & ~

Q(1,1)

y{'t,~)

b/2

~Ci
/

l~
,' 0{2,2)

/

b/2

q1

X)

FIG. 5. Geometrical variables of the transverse plane,
which enter in the calculation of the eikonal function for me-

son-meson scattering. The points Cq and C2 are the meson
centers. In the integration, P2 runs along the vector Q(2, 1),
changing the length z, which is the argument of the correla-
tor characteristic function. In analogous terms, points P~, P~,
aud P2 ruu along Q(1, 1), Q(1, 2) aud Q(2, 2). This explains
the four terms that appear in Eq. (56).
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where

&2"(-I&I') = -9 &2[(s I&I)'Ks(s I&I)]

(53) and

y(b, Rg, R2)—: , y(b, Rg, R2)~ g2FF

a reduced loop-loop scattering amplitude through

(54)

K3 is a modified Bessel function, and A2 is the Laplacian
in two dimensions.

Taking advantage of the Laplacian form, we can ap-
ply Gauss' theorem in two dimensions and eliminate one
further integration [26).

It is useful to introduce a reduced eikonal function and

JMM~ (b, Rg, R2)—:
1

2 JMMi (b) R„R2)
r(g'FF)

[y(b, R~, R2)]'
144 x 8 x N2(¹—1)

[see Eq. (36)]. We then obtain

y(b, R(1, 1),R(2, 1)) = —cos g(1, 1) I[Q(1,1),Q(2, 1),g(1, 1)] —cosg(2, 2) I[Q(1,2), Q(2, 2), Q(2, 2)]

+ cos g(1, 2) I[Q(1,1),Q(2, 2), g(1, 2)] + cos vP(2, 1) I[Q(1,2), Q(2, 1),g(2, 1)],
where the quantities I are given by

32 &3~i'i
I[Q(1,K), Q(2, L), @(K,L)] = —

I

—
I

I
Q(1, K) [Q(1,K) + z —2zQ(1, K) cos g(K, L)]

9m g 8 )
3'

x K2 —QQ(1, K)2 + z —2zQ(1, K) cos g(K, L) dz

(56)

Q(X,K)
+Q(2, L) [Q(2, L) + z —2zQ(2, L) cos Q(K, L)]

0

3'
x K2 —QQ(2, L) + z —2zQ(2, L) cos g(K, L) dz I, (57)

with Q(K, L) = IQ(K, L)I.
From the eikonal function y we contruct the loop-loop

amplitude J™(b, Rq, R2) following Eq. (36), where Rq
and R2 are shorthand notation for R(1, 1) and R(2, 1),
respectively. The meson-meson scattering amplitude is
then constructed by averaging over the transverse wave
functions, according to Eq. (41).

These results apply equally well to meson-baryon and
baryon-baryon scattering if the baryon is represented as
a mesonlike structure in the quark-diquark picture.

The evaluation of the eikonal function and of the ob-
servables for the nonconfining correlator follows the same
lines. Since this part of the correlator is not going to be
used in the phenomenological analysis, we only present
in the Appendix B the comparison between some corre-
sponding quantities for the two cases, in order to exhibit
their large differences.

In order to treat the baryon as a genuine three-body

I

I

configuration, we have to start from the expression given
in Eq. (45). The projection of the loops for meson-baryon
scattering is shown in Fig. 6. In this case the relation be-
tween the scattering amplitude J and the eikonal func-
tions y is more complicated than Eq. (36). Let us now
define y by

Aa —= g(b, R(1,K), R(2, 1))

= —cos Q(K, 1) I[Q(1,K), Q(2, 1),g(K, 1)]

+ cos g(K, 2) I[Q(1,K), Q(2, 2), Q(K, 2)], (58)

with the functions I given by Eq. (57). The index K =
1, 2, 3 refers to the three quarks in the baryon loop, which
is here taken as hadron number l. As before, in the
meson loop (hadron number 2) the quark is labeled 1,
the antiquark is labeled 2. The relevant quantity for the
transition probability is then

J~~ [b, R(1, 1),R(1, 2), R(1,3),R(2, 1)] =
144 x 8 x Nz~ Nz~ —1

(A', + A', + A', —A, A, —A, A, —A, A, ) .

For the scattering between two baryons in the three-body picture we define y by

(59)

y(b, R(1,K), R(2, L)) = A~I. = —cosg(K, L) I[Q(1,K), Q(2, L), Q(K, L)], (60)

which obviously represents the contribution due to the interaction between the quark loop K in baryon 1 and the
quark loop L in baryon 2. Then the hadron-hadron scattering amplitude is given by
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Jaggy [b, R(1, 1),R(1,2), R(1,3), R(2, 1),R(2, 2), R(2, 3)]

2 2 2 2 2 2 2 2 2

144x8xN& Nc —1
A, 1+ A12 + A,3+ A2, + A22 + A23 + A31+ A32+ A33

A12A13 A22A23 A32A33 A11A13 A21A23 A31A33

A11A12 A21A22 A31A32 A21A31 A22A32 A23A33
—A11A31 —A12A32 —A13A33 A11A21 —A12A22 —A13A23

1)'+-
I A22A33 + A23A32 + A21A33 + A23A31+ A21A32 + A22A31

2 (
+A12A33 + A13A32 + A11A33 + A13A31 + A11A32 + A12A31

(61)

In the simplest case we place the quarks around the
central point of the baryon in such a way that the vectors

R(l, K) form angles of 120' (this configuration minimizes
the string tension), and also choose the distances to the
baryon center to be all equal, i.e. , IR(1, 1) I

= IR(1, 2)l =
IR(1, 3) I. In this way, to form the amplitude, the config-
uration of the loops forming a baryon is speci6ed by only

one transverse vector, say R(1, 1) of quark 1.
For the hadron transverse wave function we make the

ansatz of the simple Gaussian form 10. = —Im TH, H, , (65)

I

correlation length a, and q is the momentum transfer
projected on the transverse plane (in units of 1/a, so
that the momentum transfer squared is t = —

lql /a ).
The eikonal approach requires large s and Itl (( s.

We have veri6ed that the contributions of next order
in (g2FF) are small [26], which is a consequence of the
presence of the color factor in Eq. (36).

Our normalization for TH, H, is such that the total
cross section is obtained through the optical theorem by

Q~(R) = g2/m exp( R /SH)—,
SH

(62)
and the differential cross section is given by

dg H (b, gi, ge) = f d*Re f d Re dg, g, (b, Ri, Re)

x 1@1(R1)I l&2(R2) I
(63)

where SH is a parameter for the hadron size.
Analogously to Eq. (41), we write the reduced hadron-

hadron amplitude as an average over the hadronic wave

functions

d~eE

dt , ITH, H, I' (66)

For short, froxn now on we write J(b) to represent

J(b, S1, S2).
The shapes of J(b) for the three cases of hadronic scat-

tering are shown in Fig. 7, against the impact parameter

Tg, g, =ee(x(g PF)] e f d b exp(eq. b)

x J~,H, (b, S» S2), (64)

where the impact parameter vector b is in units of the

which is a dimensionless quantity.
The hadron-hadron scattering amplitude in the eikonal

approach is then given by

10 2

0.40
J
0.35

0.30-

0.25-

0.20

0.15

S-4a
BB
MB

0.10

~(&,& ) Q(

C

0.05

I l I

2 4 6 8
impact parameter b/a

I

10

FIG. 6. Geometrical variables for the calculation of the
eikonal function for meson-baryon scattering. Notation anal-
ogous to Fig. 5.

FJG. 7. Dimensionless function J(b/a), where fgis the im-

pact parameter, and a is the correlation length. The three
represented cases refer to baryon-baryon (BB),meson-baryon

(MB), and meson-meson (MM) amplitudes, with the same
values (ST = SR = S = 4a) for the hadron extension parame-
ters.
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P+P ba2
J(b) = J(0) ' '

exp [
—Ps(b/a)'], (67)

where Pq, P2, Ps are parameters, determined by fitting
the exact (numerically obtained) values of J(b/a)

Let us define the dimensionless quantities (as before,
with b in units of the correlation length a)

II, —— bb" J b, k=0, 1,2, ... (68)

b (in units of the characteristic length a). In all the three
curves represented in the figure, we have used S/a = 4 for
both interacting hadrons. The label M means mesonlike
structure, while B means a three-body configuration.

In all cases, J(b/a) can be written, in very good ap-
proximation, as a function of the form

0.3

0.25
4„
4„

0.2
Q

b

0.15K

0-1

G
+ 005

MB

BB

I
I

I
I

I
I

I
I

I
I

I
I

I
I

which depend only on S/a, and the Fourier-Bessel trans-
form

0 I I I I I

0 0.5 1 1.5 2

EXTENSION PARAMETER S / a
2.5

I(t) = f d b Jo(ba~~f~) J(b), (69)

where Jp(ba~~t~) is the zeroth-order Bessel function.
Thus

T~,~, = is[m(g FF)] a I(t) .

are given by

d / d(r'tl
dt (, dt ) , p

Since J(b) is real, the total cross section o +, the difFer-

ential elastic cross section and the slope parameter (slope
at t = 0)

size parameters S;, to an accuracy better than 3% are

fSgS2')
Ip ——o.

a )
(75)

B = 1.558a + (p/2) [Sz + S&], (76)

FIG. 8. Function Ip(S/a) representing the dependence of
the total cross section on the extension parameter S (in units
of the correlation length a) of the hadron wave function. M
represents a mesonlike hadronic configuration ( qq for mesons,
quark-diquark for baryons), and B represents a three-body
starlike picture for baryons. We have here used Sz ——Sz ——S
in all cases.

o~ = Ip[~(g FF)]'a' (71)
where the value of the constants a, )9, p are given in Table
I for the three difFerent cases.

and

I(t) [~(g FF)] a'

B= ——a =Ka.1I,
2 Ip

(72)

(73)

MM

MB

We have here defined

1 I2K= ——,2Ip' (74)

which is a function of S) /a and S2/a only.
We observe that in the lowest order of the correlator

expansion used here, the slope parameter B does not
depend on the value of the gluon condensate (g FF).

The curves for Ip ——o+/ [(eg (FF)) a ] and for K =
B/a2 as functions of S/a are shown respectively in Figs. 8
and 9, for the BB, MM, and MB cases, with hadrons
of same extensions, Sq ——S2 ——S.

In the interesting ranges 1 & S/a & 3 and 0.5
S2/Sq & 1, parametrizations for the dependence of the
total cross section and slope parameter on the hadron

4

C4

2

0 I I I I I I I I I I I I I I I I I I I I I I I

0 0.5 1 1.5 2

EXTENSION PARAMETER S

I I I I I I

2.5
/a

FIG. 9. Same as for previous figure, for the quantity
K(S/a), which represents the slope parameter B divided by
a2.
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Case
MM
BB
BM

0.00626
0.00881
0.00682

3.090
3.277
3.135

y

0.366
0.454
0.348

TABLE I. Values of the parameters to be used in Eqs. (75)
and (76) to determine total cross sections and slopes.

dent of S/a. The values are C —0.54 for MM systems
(here is included the case of diquark picture for baryons)
and C —0.42 for BB systems (three-body picture for
hadrons).

V. CHOICE OF PARAMETERS AND
COMPARISON WITH EXPERIMENT

/S, I'
Ip ——n/—

ho)
(77)

and

It =1.558+ &
/sg)t'
(a) (78)

where now the coefficients a and p depend on the ratio
S2/Sq. The values of the parameters a, P, p, b are given in
Table II, for values of the ratios S2/Sq which we consider
in the next section, where, besides pp and pp scattering,
we also discuss px, pK, and pZ scattering, in which cases
S2 g Sg.

The t dependence of the logarithmic slope of the dif-

ferential cross section is given by

do e

2 dI(t)
I(t) dt

J(I )t'J~(&nml~l)d& .
p

(79)

For small t values, we obtain, expanding the Bessel func-
tion,

(t) =B(0) 1+ —
I

——~a'
1 62I2 I41
8(Ip I2j

—:B(0)[1 + Cn'[t[] . (80)

The values for t that we have obtained in our calcula-
tions for systems with S2 ——Sz ——S are almost indepen-

A more precise parametrization, accurate in ranges of
Sq/a extending from 0 to 5, is given by

The numerical parametrizations of the total cross sec-
tion and of the slope parameter B, Eqs. (75) and (76),
are very convenient for comparison of our model with
experiment. We erst concentrate on elastic pp and pp
scattering. In these channels data are available over a
wide energy range. Since phenomenologically the Regge-
pole parametrization works very well [6,7], the vacuum
exchange contribution, to which our model refers, can be
extracted as the Pomeron contribution in a Regge-pole
analysis. Donnachie and Landshoff [7] found that the
parametriz ation

crp, (pp, pp) = 21.70 mb s '

B = 12.47+ 0.10 GeV (82)

This value extrapolates very well, through a Regge am-

plitude with n'(0) = 0.25 GeV 2, to the observed [2]
value B = 17 GeV at +s = 1800 GeV, so that it can
be taken confidently as representative for the vacuum ex-

change contribution.
Once the form of the correlator is Axed, we have two

parameters in the model, which are fundamentally re-
lated to @CD, namely the gluon condensate (g2FF) and

(with s in GeV) works very well over the whole range of
data from +s = 5 to 1800 GeV, so that we can use this
expression for the Pomeron contribution. According to
our convention we choose as energy +a = 20 GeV, but
we wish to enphasize already here that the value of the
@CD parameters, namely the gluon condensate (g FF)
and the correlation length a entering expressions (11)
and (28) for the fundamental correlator, are practically
independent of the choice of the energy value. We return
to this point at the end of this section.

For the value of the logarithmic slope of the elastic
cross section at t = 0 for +s = 20 GeV we use [4]

TABLE II. Values of the parameters for Eqs. (77) and (78), for several values of S2/Sz which

are important to represent the total cross sections and slopes for difFerent hadronic systems.

Hadrons

S2 ——Sg

S2 ——0.94Sg

S2 ——0.77Sg

S2 ——0.67Sy

M
B
B
M
B
M
B
M
B

M
M
B
M
B

M
M
M

0.006260
0.007846
0.008814
0.005610
0.008000
0.004159
0.004446
0.003353
0.003604

3.090
3.135
3.277
3.090
3.277
3.090
3.277
3.090
3.277

Parameters for cross sections Parameters
y

0.3616
0.4311
0.4891
0.3403
0.4636
0.2908
0.3577
0.2672
0.3330

for slopes
b

2.023
1.955
1.892
2.023
1.892
2.023
1.955
2.023
1.955
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the correlation length a, and the extension parameter

SH, determined by phenomenological hadronic physics.
Of course none of these parameters is completely free, as
they appear in other phenomena besides soft high-energy
scattering, and they may be obtained also through lattice
calculations. In this section we take advantage of this in-

dependent information to check the consistency and fix
the values of our physical parameters.

The gluon condensate (gzFF) was first determined in

1979 by Shifman, Vainshtein, and Zakharov [15] in the
framework at /CD sum rules applied to the charmonium
system, with a value (g2FF) = 0.47 GeV . The analy-
sis has been repeated and extended many times, several
authors finding a range of values extending to consider-
ably larger values (see Appendix C). So we here accept
as conservative estimate the range

(g FF) = (0.5 —1.5) GeV (83)

There are also theoretical uncertainties. Low-energy
theorems [30] indicate that, in a world without light
quarks, the condensate value would be larger by a factor
2 to 3 than the empirical value of our world with three
light flavors. Therefore in our calculation we must re-
fer to the value of the gluon condensate which is valid
for a world without light quarks. Our model does not in-

clude dynamical effects of light quarks, which are treated
as external sources moving on given (lightlike) paths. A
consequence of the absence of dynamical fermions is that
the fermion (or Wilson loop) renormalization constant is
equal to 1. Taking into account dynamical fermions not
only would change the value of the gluon condensate but
also would lead to a loop renormalization constant [see
Eq. (21)],

with

A = 3.6 x 10 AL„A = 1/(183AL, ),
and

AL, = (0.005 + 0.0015) GeV .
(87)

Within the given accuracy, the scalar function Dq is
proportional to D, and e 3/4. Our choice of the corre-
lator function D(z2/a2) given by Eq. (37) with n = 4, in
the Euclidean region of the lattice results, namely for val-

ues 1 & —z2/a2 & 9, is well approximated by an exponen-
tial function. We can therefore determine the gluon con-
densate and the correlation length a by fitting our expres-
sion for the correlator to the one obtained in the lattice
calculation. The values obtained for lt(g2FF) and a de-
pend strongly on the value of the lattice-/CD parameter
Al, . In Fig. 10 we show our correlator (solid line) together
with the result found in the lattice calculation in the re-
gion 0.5 & r & 0.8 fm, for the choice AL, ——0.0044 GeV.
This fitting leads to the values z(g FF) = 1.774 GeV4
and a = 0.350 fm.

With this value for a, our correlator passes through
zero for r —1.4 fm. This change of sign is certainly an
artifact of our special ansatz, but is has no practical con-
sequences, since it occurs in a region where the exponen-
tial damping makes its contribution irrelevant anyhow.

As mentioned in Sec. IIB, the evaluation of the (Eu-
clidean) Wilson loop in the model of the stochastic vac-
uum yields a relation involving the condensate e(g2FF),
the correlation length a and the string tension p [see Eq.
(15)]. For our family of correlators the integral can be
performed analytically [see Eq. (40)] and we obtain for
the case n = 4

Z@ = tr W(O, R)
C A

(84)

that is smaller than one. Thus in our case we should
use a value for the gluon condensate &om a pure gauge
theory

1.4

(g FF) = (1 —3) GeV (85)

As already mentioned in Sec. II, the fundamental cor-
relator

e(g FF)D( r /a ) = 24Aexp( ——r/A), (86)

(F,'.(* o) F,.(o 0))~

has been calculated in a pure SU(3) lattice gauge theory
by Di Giacomo and Panagopoulos [23] using the cooling
method. By this method the high frequency contribu-
tions are frozen out and therefore this correlator is just
the one which can be compared to that of our investiga-
tions. The cooling method works very well for Euclidean
distances above about 0.4 fm and the results obtained
in the lattice calculations show that the confining ten-
sor structure (h„~h„—h„h„~f in Eq. (11) is definitely
present and even dominant, with ~ ~ 3/4. In the physi-
cal range &om r = 0.5 to r = 0.8 fm, the scalar function
e(g2FF)D( r2/a2) is given by t—he function

C5

1

I

~ 0.8
4,

~ 0.6

0 4

0.2

0
0 0.2 0.4 0.6 0.8 1

PHYSICAL DISTANCE (fm)

I

1 2

FIG. 10. Demonstration of the determination of the +CD
parameters through the fitting of our correlator to the lattice
calculation results [23], for a given value of Ar, . Dashed line:
lattice results for AL, = 4.4 MeV. The arrows indicate the
range inside which the lattice calculations were made. Solid
line: our fitted correlator, with the fitted values a = 0.350 fm
and s(g FE)D(—

(g( ) = 1.772 GeV at (f( = 0.
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81m
Ic(g FF) = p . (ss)

a = 0.350 fm, (g FF) = 2.39 GeV, S„=0.835 fm,

AL, ——4.4 MeV, p = 0.18 GeV (89)

(2) In the three-body picture

a = 0.361 fm, (g FF) = 2.08 GeV, S~ = 0.730 fm,

AL, ——4.2 MeV, p = 0.16 GeV (90)

The calculations described above lead to a determina-
tion of K(g FF) . To obtain the value of the full conden-
sate quoted above, we have used tc = 0.74, as determined
by the lattice calculation [23].

The (pure gauge) gluon condensate is well compatible
with the canonical value [see (85)]. The resulting proton
size parameter Sz comes out quite close to the electro-
magnetic radius [31] value, which is R~ = 0.862 + 0.012
fm. The lattice parameter AL, and the string tension p
are also in their acceptable ranges.

A very specific feature of the model of the stochas-

Finally, we remark that the extension parameter Sz
is not completely arbitrary, but should be in a range of
values S„=0.5, . . . , 1 fm, i.e. , around the proton elec-
tromagnetic radius. We now use all this information to
analyze our results.

In Fig. 11 we display the relation between the gluon
condensate (g2FF) and the correlation length a obtained
from different sources. Figure 11(a) refers to the diquark
picture and Fig. 11(b) to the three-body picture for
the proton. The solid lines show the possible choices
of (g2FF) and a as obtained from our model, using Eqs.
(71), (73), (75), and (76) and the experimental inputs
O.p

——34.9 mb and B = 12.47 GeV . To indicate
the ranges of values of the proton radius which are rep-
resented in the plots, we mark on these curves the points
where the values of S~ are 0.8 fm (three-body case), 0.9
fm (diquark case), and 0.6 fm (both cases).

The dashed lines represents the results of the lattice
calculation [23], where the largest error comes from the
uncertainty in the lattice /CD parameter AL, = 5 + 1.5
MeV. The values corresponding to some chosen values of
Al, are marked on this curve. The points for this curve
have been obtained by fitting the lattice results to our
form for the correlator, as exemplified for a given value
of Al. in Fig. 10.

The dotted lines represent the relation between the
gluon condensate, the correlation length and the string
tension as obtained in the model of the stochastic vacuum
[10,11];for our form of correlator, this relation is given by
Eq. (88). The upper and lower dotted curves correspond,
respectively, to string tension values p = 0.18 GeV2 and
0.16 GeV2

As can be seen kom the figures, the constraints from
these three independent sources of information are simul-
taneously satisfied in a narrow region, providing a very
consistent picture of soft high-energy pp and pp scatter-
ing, for the following sets of parameters.

(1) In the diquark picture

tic vacuum is the dependence of the total cross section
on the hadron size, even if the latter is large as corn-
pared to the correlation length. The size dependence
can best be tested by comparing the cross sections for
different hadronic systems. The Donnachie-I andshoff
parametrization [7] gives for the Pomeron parts of pm

and pK cross sections the ratios

a~ /o.~„=0.63, a&le/0'z ——0.87 . (91)

4 5 ', Lattice
' Calculation
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FIG. 11. (a) Constraints on the values of Ie(g FF) and of
the correlation length a. Solid line: our model of high en-

ergy scattering, with opp 35 mb and B = 12.47 GeV
using a diquark picture for the proton; dashed line: at of our
correlator to the lattice calculation [23]; dotted lines: relation
obtained from string tension p, Eq. (88), the upper curve cor-
responding to p = 0.18 GeV, and the lower one to p = 0.16
GeV . (b) Same as (a), for the case of a three-body picture
for the proton.
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In our treatment the theoretically predicted cross-section
ratios depend on the hadron sizes. We take for the ratios
of these sizes the ratios of the respective electromagnetic
radii. The known values [31] for these radii are

R„=0.862 + 0.012 fm, R = 0.66 6 0.01 fm,
(92)

R~ ——0.58+ 0.04 fm.

With this input we obtain for the predicted ratios the
results of Table III .

We see that in the diquark picture both ratios agree
very well with experiment. In the three-body picture the
0~/o„„ratio comes out too small. Presumably the as-

sumption that the ratio of hadron radii is the same as the
ratio of the electromagnetic radii is an oversimplification
if the assumed structures for the mesons and baryons are
so difFerent, as when we relate 0'z with 0'z~ with protons
in the three-body picture. This is confirmed by the fact
that both pictures reproduce perfectly well the 0'~ /a'~x.

ratio, where the effect of the three-body baryon structure
is the same in both terms of the ratio, cancelling out.

With the criterium for the ratios of hadronic radii now

fixed, we can also calculate the z'm cross section and we

find that for both the diquark and the three-body picture
the factorization relation

o = o.„a„„2

is numerically perfectly fulfilled, as can be verified
through the parameter values given in Table II. From
the data on the pp and per systems we thus predict the
Pomeron part of the ~m scattering cross section to be

o =8.6mb8 ' (94)

e„~- ——19.6 mb 8 ' (95)

From this cross section we obtain for the ratio of the ex-
tension parameters, in both the diquark and three-body
pictures, the value

Sg- /S„= 0.94,

which certainly is a reasonable result.

(96)

The only experimental result, known to us, on the mm

cross section [32] gives o = 10 mb at ~a = 4 GeV,
while the above expression predicts 9.6 mb for the
Pomeron part at this energy.

There are some data available on hyperon-proton scat-
tering [5], which also fit nicely in the general picture. If
we dare to extract a vacuum exchange part &om the few

existing data for Zp scattering, we obtain

The size dependence of the slope parameter at t = 0
is given in parametrized form by Eq. (76). In Table IV
we show the results of our model for the difFerences of
the slope parameters for pp, Zp, Jm, and pK scattering.
The extension parameters S~ for the different hadrons
are assumed to be proportional to the electromagnetic
radii given in Eq. (92). The experimental numbers for
the vacuum exchange part of the slopes were taken from
the analysis by Burq [4] (see their Table 7, extrapolated
to t = 0 according to Table 8). The extrapolation to
t = 0 has little effect on the value of the slope, for our
purposes at this point.

Comparison with the data shows that the difference
of the slopes for n p and pp scattering is underestimated
in our model, while the difference for np and Kp is well

compatible with experiment.
The parametrization (76) of the slope parameter

B = 1.858 a + 0.183 (Si + S2), (97)

where Si and S2 represent the hadron sizes, and a is the
correlation length, is a good approximation, within a few

percent, to the results of our model. This parametriza-
tion can be compared to that of a modified Chou-Yang
picture [33], which allows also for a quark form factor

B= —(R +R +R ), (98)

Bp Bpg Bpp Bp Bpp Bp~ Bpp Bpg

9=1:3:4:—.(99)
10

We remark that the last figure in this sequence of ra-
tios is a bit more uncertain than the three first ones,
because it was determined using the poor Zp scattering
data, and the predicted, not experimentally measured,
ratio (Sg/S~) = 0.94.

Our model also predicts a t dependence for the loga-
rithmic slope parameter, as shown in Eq. (80). In the

where R» and R; are the electromagnetic radii of the
quark and hadrons, respectively. Since in our results
1.858' is about 6 GeV, we see that in our model the
correlation length a gives a much more important con-
tribution to the slope than the quark form factor of the
modified Chou-Yang model. These different predictions
should be tested experimentally.

It is a curious result of our treatment that, given the
ratios of the electromagnetic radii of the hadrons, the ra-
tios of the differences of slope parameters are practically
those of simple integers. Thus in the diquark picture

Cross-section
ratios

~J~ ~m
&pK &p~

p picture
diquark

0.66 + 0.02
0.82 + 0.08

p picture
three-body
0.50 + 0.02
0.82 + 0.08

Experimental
values
0.63
0.87

TABLE III. Ratios of the Pomeron exchange contributions
to the total cross sections for difFerent processes.

Slopes

B p —Bgp

Diquark
picture

0.40
1.30
0.43

Three-body
picture

0.45
1.45
0.34

Experimental
values

2.48
0.34

TABLE IV. Differences of the logarithmic slopes of the
Pomeron part at t = 0 for difFerent processes, in GeV



H. G. DOSCH, ERASMO FERREIRA, AND A. KRAMER 50

analysis by Burq [4], the t depencence of the elastic cross
sections has been written in the form

120

CB(0)+ct+dt ]t
d~ d~ =p

with the parametrization for B(t)

B(t) = B(o) —2cltl+ 3d

(10o)

(1o1)

DI QUA RK
3 BODY

/
/

From Eq. (80) and our results for the slope of the slope
C, we obtain for this parameter e the values

c = 10.6 GeV in the diquark picture,
e = 8.8 GeV in the three-body picture .

(102)

(103)

411

Q
F

OUR PREDICTIONS

REGGE AMPLITUDE

INPUT DATA

These values are to be compared with the experimental
value 6.8 + 0.5 GeV 4 obtained by Burq [4]. However
we should not overestimate the signi6cance of this com-
parison. On the theoretical side this slope of the slope
depends strongly on the precise form of the profile func-
tion J(b), while the experimental results are not accurate
and may still be contaminated by Coulomb interference.

If we consider hadron-hadron scattering for two
hadrons of equal sizes, we can eliminate the hadron ra-
dius between the parametrized forms for o and B, and
obtain the relation

(K(g'FF))'a' ' ~ (B —1 858a')~~

(lo4)

where the values for the model dependent parameters
n, P, p, h are given in Table II.

If we fix r(g FF) and a at one given energy (e.g. ,

+s = 20 GeV), we obtain through Eq. (104) a parameter-
&ee relation between the total cross section op and the
slope parameter B.

In Fig. 12 we display O.p against B as given by Eq.
(104), for both diquark and three-body pictures for the
proton, using the sets of parameters given in Table II. In
the same figure we also show the relation

1& 1~~ 14 15
SLOPE PARAMETER

1&& 17
B (Gev 2)

[7] form of Eq. (81). We thus obtain for the proton radius

r.(g FF) a (21.7 mb)
'

Q Qsos/3 Qgo
p 0.00626

(106)

in the diquark picture, and

r(g FF) a (21.7 mb) o.ososy3. 2vv
p 0.00881

FIG. 12. Relation between the total cross section and the
slope parameter B. Solid lines: predictions given by Eq.
(104), obtained from our model by eliminating the hadronic

size, in the cases of diquark and three-body pictures for the
proton; dashed line: relation obtained from the Regge ampli-
tude with n(0) = 1.0808 and a.'(0) = 0.25 GeV; star: input
data at +s = 19 GeV; crosses: experimental data at 541 aud
1800 GeV.

T T 0.1616(B—Bp)
+Regge +P (105) (1o7)

obtained &om a Regge amplitude using the slope of the
Pomeron trajectory n'(0)p = 0.25 GeV 2, and as in-

put at +s = 20 GeV the values oo ——35 mb, and

Bo ——12.47 GeV . The experimental data [2] at 540
GeV and 1800 GeV are marked in the plot, together with
the input data at 20 GeV. We observe that our relation
(104), which contains no free parameters, describes the
experimentally observed relation between B and o as-
tonishingly well. Besides, there is a surprising agreement
between the Regge parametrization line and our results.
It must be remarked that the constant term 1.858a in
our expression for the slope B is important for this good
agreement with experiment.

The application of our results to diferent energies im-
plies a very slow energy dependence of the hadronic radii.
An explicit relation is obtained if we bring into Eqs. (71)
and (77) a parametrization for the energy dependence of
the total cross sections, such as the Donnachie-I. andshoK

in the three-body configuration case. The values thus
obtained for S„are in the region of the proton electro-
magnetic radius.

VI. CONCLUSIONS

We have obtained a very consistent description of the
data on soft high-energy scattering. Our basic assump-
tion is that the low frequency, i.e., nonperturbative, con-
tributions to the scattering amplitudes can be approx-
imated by a Gaussian process. The parameters deter-
mining the observable quantities are the gluon conden-
sate and the correlation length of the vacuum field Buc-
tuations. These parameters occur also in completely
different connections (SVZ sum rules, lattice calcula-
tions, low-energy hadron spectroscopy), and all the con-
ditions posed on them can be consistently satisfied. The
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third paraxneter entering our calculations is the trans-
verse hadron size, which may be related to the electro-
magnetic radius.

Gauge invariance is observed on each step of the calcu-
lation, which is based on a formalism for loop-loop scat-
tering, rather than on a quark-quark scattering picture.
In this way even Gnite distance correlations of the vac-
uum Geld tensor lead to long range correlations that are
the common source of confinement, and to a dependence
of the total scattering cross section on the hadron size.
This mechanism can be interpreted as a string-string in-
teraction in hadronic scattering.

The size dependence of the cross sections leads to a nat-
ural explanation for the experimentally observed flavor
dependence of the total cross section. The ratio between
the pion-proton and (anti)proton-proton cross sections
emerges in our model as a consequence of the different
hadron sizes, and the factor 2/3 comes out as a conse-
quence of the ratio of the electromagnetic radii, and not
ft.'om quark additivity.

The size dependence of the slope parameter, i.e., the
logarithmic slope of the differential elastic cross section,
can be parametrized in a form similar to that of a mod-
ified Chou-Yang model [33] with a finite quark radius,
which in our model appears as a correlation length.

Elimination of the extension parameter yields a
parameter-&ee relation between the total cross section
and the slope of the elastic cross section which agrees
very well with experiment.

The investigations described in this paper can be ex-
tended in many directions. In the present calculations
only one of the two possible tensor structures determin-
ing the low frequency contributions is taken into account.
The inclusion of the second term, which could also de-
scribe perturbative efFects (and even Coulomb interac-
tion), would pose no important technical problems. Fur-
thermore, we have restricted ourselves to the lowest-order
nonvanishing contribution, which is quadratic in the glu-
onic correlator. We have checked that this is justified for
the total cross section and the slope parameter. But our
amplitude is purely imaginary, and quantities like the p
parameter (the ratio of the real to the imaginary parts of
the elastic scattering amplitude) can only be described
if we go one further order in the contributions to the
correlator.

A further important step to be developed is the test
of the importance of the factorization implied by the as-
sumption of a Gaussian process. This is certainly crucial
in the present investigation, with possible consequences
for the phenomenological analysis, but it remains to be
seen which of the more general features depend on this
approximation.

It would of course be highly desirable ixnprove the
present model in order to describe the dependence of the
cross section with the energy. However, although we can-
not obtain the (slow) rise of the total cross section with
the energy, we can eliminate the hadron radius parame-
ter S and obtain a parameter-free relation between the
total cross section and the slope parameter B, as shown
in Fig. 12.
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APPENDIX A: THE CORRELATION
FUNCTIONS

In Eqs. (11) and (28) there appear two independent ar-
bitrary scalar functions, D(z z/ a2) and Di(z2/az), which
are supposed to fall off at large distances with charac-
teristic lengths a, called correlation lengths, and must
have forms that can be analytically continued from Eu-
clidean to Minkowski space-time descriptions of field the-
ory. If the expression for the correlator is used in Eu-
clidean /CD, the scalar function D(zz/a ), which is zero
in Abelian theories (if there are no monopoles) leads to
a linearly rising potential, namely to confinement. /CD
lattice calculations have shown that the dominant con-
tribution to the correlator actually comes &om the term
with D(z2/az), namely tc l. Besides that, in Appendix
B we show that the nonconfining part Di of the correla-
tor has much less influence on the values of the eikonal
functions of high-energy scattering. Consequently, in the
present work we take into account only the confining
term D(z2/a2), with the weight m determined by the lat-
tice calculations, neglecting the efFect of Di(z /a ) alto-
gether.

We thus concentrate on D(z2/a2), and take as an
ansatz the family of functions

n&4, (AI)

where

= z/a, (A2)

a is the characteristic correlation length, and the con-
stants A„and A„are to be fixed by normalization. It is
convenient to absorb A„ into k through k /A„-+ k; then
(,k and A are all dimensionless. In the Euclidean metric

for spacelike vectors

—id k=d K, K4 ——ikp, k = —K = —()K~ +K4),
(A3)
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((o ( = V'—4'es) (A4) tances, behaving like

we have

D'"'((') = D'"'(—I&i')

d4K A„A K=6 —1 "+ f (2w)4 (A~ICE+ 1)"
x exp(iK () . (A5)

The constants A„and A„can be fixed by the normal-
ization conditions

(A6)

The second of these two relations has the role of a defi-

nition for the correlation length.
These calculations can be made analytically, leading

to

D'"'( —l(l') = —
2„ ,q (P- I&I)" "e» (—P- I&I) .

(A12)

After the limits are taken, which make the long sides of
the rectangular Wilson loops tend to Woo in the x3 direc-
tion, the remaining variables in the integrands are coor-
dinates of points in the transverse plane. The distances z
between such points enter in the final expressions for the
eikonal functions y as arguments of the two-dimensional
inverse Fourier transform of D(k2) in Eq. (37), which is
defined by

6A X'K
&'"'(-I&I') =-

(2vr) (—A2 I Kg I

~ —1)"
x exp (iK~ (), (A13)

and

47rA„= (—1)"+ (n —1)(n —2)(n —3),
3

(A7) where ( is any two-dimensional vector of the transverse
plane.

Using the values for A„and p„written above, we ob-
tain

4 I'(n —3)
3~~ r(n —5/2)

(As)

For simplicity of notation, Rom now on we use more often
p„= 1/A„, instead of A„.

The integrations in Eq. (A5) can be performed ana-

lytically. We obtain

(„) -2 2(s-")r(n —3)
(-I&i ) =

9[q(„5/2)), (p I&i)"

x (n —1)Z„,(p„i(~)

--, (p-I&I)~--i(p-It'I) (A14)

D("'(-ill') = "(p-I&i)" '
7r22"-'I'(n)

x (n-1)Z„.(p„i(i)

-2 (P-I(l)&.— (P-Ill) (A9)

&~"'(-I&i') =
2('-")r( —3)
9[1'( -5/2))'

x (p-lt.'I)"&--2(p-141)

Important alternative forms are

(A15)

which is the general form for the class of functions con-
sidered. K (z) is the modified Bessel function.

Alternative useful forms to Eq. (A9) are

x (p-I(l)"+'&--s(p-I(l) (A»)

( )
- 2( ")I'(n —3) - , d

9[I'(n —5/2)]'
d

d( I&i)

x
I (p-I(l)" 'Ii--i(p-I(l)

I
(A16)

and or

2(™)1n —3

9(1 (n —5/2))'&,'"'(—1(i') = — &20'"'(P-I&i) (A»)

where

4'")(p-I&I) —= (p-I(I)" '~--i(p-It! I) (A18)

x Ii--2(p-I(l)] (A11)

These correlation functions are negative at large dis-

and A2 is the two-dimensional Laplacian operator. This
Laplacian form is important in our calculation, as it
allows lowering the order of the integrations, through
Gauss theorem.
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The moments of the D(")(—I(I ) and Xz" (—I(I ) func-

tions can be readily obtained from Eqs. (A10) and (A15),
respectively. For D(") we obtain

where

3x
P4 = —.

8
(A23)

~~[D"(-I&I')] = (p-I(l)' D'"'(—I&i')~(r -I(l)
0

(A19)

where we observe that Mq[D" (—1(i )) = 0 and that all
moments higher than p = 3 are negative, for every n.
Thus all correlation functions have a zero.

For Pi~") we have the moments

~ P'"'(—I&I')] = (p I&I)" &'"'(—l(l')~(p I(l)
0

2(v+4) ~+iI' n —3( )
9

' " [r(~)]z

&2)
Thus for every n the moment p = 1 vanishes, and all

higher moments are negative. Thus all E~~") functions
pass through zero.

We must choose the value of n in order to fix a specific
form of the ansatz for the correlation function. Actu-
ally, the dependence of the final results on this particular
choice has been tested [26], and found to be not very
marked. The reason is that all correlation functions are
normalized to 1 at the origin, and decrease exponentially
at large distances. It is enough that the chosen function
falls monotonically and smoothly in the range of physi-
cal infiuence (up to about 1 fm, say), and there cannot
be much difFerence in the results obtained using difFerent
analytical forms. Of course there will be difFerences in
the specific values given to the correlation length param-
eter a, due to the different values of the multiplicative
factor p„ in the argument of the exponential behaviour
[see Eq. (A12)], but such difFerences can be taken into
account and absorbed when difFerent forms of correlation
functions are compared.

In the present work we make the choice that n=4,
which in the Euclidean region leads to a good represen-
tation of the lattice calculations [23]. We then have for
the correlation function

The functions D( ) (—1(i2), Xz~ )
(—1/12), and Q(4) (p41(i)

are represented in Figs. 13—15, against the variable z =
p41(l. The correlation function D( ) (—1/12) has a zero at

p41$1 = 4.43 while X2( )(—1(12) has a zero at p41(i = 3.05.
As we will see from our final results, the locations of these
zeros are beyond the range of physical infiuence.

Practical representations for these functions, that are
important for the numerical work, can be obtained. As
a tool to obtain the parameters in approximate repre-
sentations, we may use the moments of the functions,
which are explicitly given by Eqs. (A19) and (A20). The
function

(z) = z K (z), (A24)

where z = p41$i, enters in heavy numerical computations
to produce the eikonal functions. It appears in Eq. (57)
as

= —z K2(z) .

Let us write

vP( )(z) 8 [1+z+aiz +a2z +asz4] e *, (A25)

0.8

0.6

that satisfies the constraints at the origin vP(0) = 8 and
g'(0) = 0 . We then have

D"(—I(l') = (p41&l) lti(p41&l) —4(p41&l)lto(p41L!I)

(A21)

and for the two-dimensional inverse Fourier transform

0.2

&' '(—I&I') =
9

(«I(l)' 2Ito(p41&l)

( 4 - —p41(l lit i(p4 161)
& p4IL! I )

= ——& [(p I&I)'lt (p I&I)I (A22)

0.5 15 2 2 5

x=(3s /8) (z/a)

FIG. 13. Correlation function D (—g'I ), given by Eq.
(A21), against the variable z = p41(i = (3z'/8)(z/a), where z
is the physical distance, and a is the correlation length. The
correlation function is normalized to one at the origin.
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T IA'0-DIMENSIONAL

FOURIER TRANSFORM 0 (x)

y {4}(—z2/a2)

I I I ~ I I I I I I ' ~ I 5 I I I I I l~ I I I J J

5 6

x=(&x/8) (z/a)

FIG. 14. Two-dimensional Fourier transform X~~ I(—~(~ ),
given by Eq. (A22), against z = p4~Q = (3m /8)(z/a) .

x=(3x/8)Iz/a)

FIG. 15. Function/ (z) = z Kz(z), givenby Eq. (A23),
and represented approximately through Eq. (A25).

28
(—~(~ ) = ——

(
—2 + 4ai) + (1 —5ai + 9a2)z + (ai —7a2 + 16as)z + (a2 —9as)z + asz e

W
W

(A26)

Using properties of Pz~ (—~(~ ), we obtain

%
~ I (z = 0) = 2r/(97r)

d
(z =0) =0

dx

Z,"'dz = 16/3
0

f ~(4)~
0

ai = 3/8,

a2 ——1/24,

1 &7 S~l
:- as= —

I

———I,8i3 4)
identity . (A27)

There are no more free parameters. The next moment

*' Z,"'dz = -80/3
0

is reproduced in good approximation.
The representations (A25) and (A26) are excellent for

our purposes, and can be safely used, reducing substan-
tially the computation time.

APPENDIX B: INFLUENCE OF THE
CONFINING AND NONCONFINING
CORRELATORS ON HIGH-ENERGY

SCATTERING

We have seen in Sec. IIB that only one of the ten-
sor structures present in Eq. (28) leads to confinement,
namely the part of the correlator whose scalar function
is denoted by D. If K, = 1 this is the only existing contri-
bution, and since it has the property of leading to con-

finement, we refer to it as the confining case. The other
tensor structure, which for v = 0 is the only one con-
tributing, is referred to as the nonconfining case. Com-

paring the efI'ects of the two functions, we put

——k Di(k ) = D(k ) (Bl)

in order to have the same spatial behavior for their con-
tributions to the correlator.

In Fig. 16 we represent the reduced eikonal function

y(b, R(1, 1),R(2, 1)) for the case where b, R(1, 1), and

R(2, 1) are all parallel and with a ratio ~R~/a = 2. The
eikonal function y is plotted as a function of b/a, i.e. , the
impact parameter in units of the correlation length a. In
the confining case the eikonal function is approximately
proportional to the overlap region of the two loops in
the transverse plane. In the noncon6ning case there is a
large contribution if both quarks or antiquarks from loop
1 and loop 2 coincide, i.e., for b = 0; the contribution is
smaller if there is coincidence of only one particle (quark
or antiquark) from of each loop. Thus in the confining
case we have typically a true string-string interaction,
while in the nonconfining case we have a quark-quark
interaction.

In Fig. 17 we show the strong dependence of the
eikonal function y on the orientation of the loops for the
confining case. The figure shows y as a function of b/a,
for the case that the loops are parallel in the transverse
plane i.e. , Oq ——02 ——0. The common angle 8 is a param-
eter, running from 0 to 80' in steps of 20 . In order to
strengthen and make very visible the eKect, we have cho-
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100

CASE

10-' .-

—0.2

-04

FIG. 18. Comparison of the total cross sections obtained
in the two extreme conditions of e = 1 (pure confining case)
and rc = 0 (pure nonconfining case).

IMPACT PARAMETER b/s

FIG. 16. Comparison of the values of the reduced eikonal

functions y for the extreme pure confining (tc = 1) and pure

nonconfining (e = 0) cases, in a situation where the three

vectors b, R(1, 1), and R(2, 1) are paralleL

be present in a non-Abelian theory, an Abelian model

will always yield quark additivity if (S/a) & 1 holds [16].

APPENDIX C: THE VALUE OF THE GLUON
CONDENSATE (gsFF)

sen a large value ~R~/a = 10. From the figure we observe
that the loops interact as one-dimensional objects in the
transverse plane.

In Fig. 18 we show the cross section (in arbitrary
units) as a function of the hadron extension S/a, using

a Gaussian wave function g2/x(1/S) exp( —8 /S ). For
S/a & 1, the two cases nearly coincide, but for larger
values the cross section in the nonconfining case stays
nearly constant, whereas the cross section for the confin-

ing case continues to increase approximately like (S/a)s.
Thus we have quark additivity only for the nonconfining
case. Since the correlator for the con6ning case can only

The most accurate determination of the gluon conden-
sate (g FF) comes from sum rule analyses of the charmo-
nium system. In their original paper on sum rules, Shif-

man, Vainshtein, and Zakharov [15] obtained the value

(g FF}= 0.47 GeV (C1)

0.51 GeV & (g FF) & 0.79 GeV (C2)

This analysis was extended [34], yielding, taken into ac-
count all observed ground states of given quantum num-

bers in the charmonium system the range of values

b

) i '
~.

~,

6-
l)

.. g=0'

Other analyses [35—37] yield considerable higher
bounds for the gluon condensate. The main uncertainties
are [38] the error in the pole mass of the charmed quark,
radiative corrections, and the contributions of higher con-
densates. The last point is the most difficult to control
[36]. Models indicate that they could increase consider-
ably the value of the gluon condensate [37,39]. A conser-
vative estimate for the gluon condensate is

' 20'
'~

(g FF) = (0.95+0.45) GeV (C3)

0
0

Novikov [40] has however argued convincingly against the
larger values (say larger than 0.8 GeV4) for the reason
that the analyses yielding large upper bounds for the
gluon condensate either rely on only one specific channel,
or are based on particular models. A nondiagonal sum
rule analysis of the matrix element (O~A„~x), with

FIG. 17. Angular dependence of the reduced eikonal func-
tion X for the purely confining case (a = 1). The figure shows
results for configurations where the two interacting loops are
parallel (eq ——eq ——8) and (Rq~ = (R2~ = 10a . The angle 8
varies from 0' to 80' in steps of 20 .

]
A~ = —g Cpp~P 8 Qp F~P s )

2
(C4)

that is particularly sensitive to the gluon condensate,
yields also a low value.
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There is however another theoretical difhculty. In a
world without light quarks the value of the gluon conden-
sate could be considerably larger. A low-energy theorem
has been derived [30] relating the change of the gluon
condensate with respect to (light) quark masses with the
quark condensate

d 2 96m 2

(g'++) = (qq) (C5)
mq 1

where (qq) is the light quark condensate and Pq is the first
coefficient of the Gell-Mann Low function. For SU(3) the
factor is large, 96rr /Pq 100.

Since the quark condensate (qq) is negative, an increase
of the quark mass leads to an increase of the gluon con-
densate. In a world of pure gauge fields the gluon con-
densate would thus have a larger value. This pure gauge
value is obtained &om the empiric one, which refers to
a world with three light Havors, by taking all masses to
infinity, i.e., by integrating Eq. (C5) up to a value of mv
where the quarks decouple. The authors of the theorem
[30] estimate that the pure gauge value is about two to
three times higher than the empirical value. As argued
in Sec. V, in our model we must use the pure gauge value
of the gluon condensate.
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