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Final state interactions in three-meson systems: Analysis of data on pp = w n.n. and qq~ at rest
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We provide a theoretical and computational formalism for the study of three-body annihilation of pp.
It includes (i) an analysis of three-body equations with the purpose of extracting the leading singularities
and (ii) an analysis of low-energy mm, EE, qq, and nq amplitudes and the reconstruction of them from
available experimental data. Based on this formalism, we perform an analysis of data on pp ~m m m

and yam. at rest. The data are fitted well by pure 'So annihilation and require two I=O,J =0++ reso-
nances with Ml =1335+40 MeV, I

&
=255+&p MeV, and M2 =1505+20 MeV, I 2=150+20 MeV. The

latter explains features of the data previously interpreted in an alternative way as due to Ax(1515) with

J =2++. As a second step, we evaluate the magnitude of the amplitudes due to triangle singularities
which result from rescatterings of outgoing mesons. Taking into account these rescattering processes
enhances the magnitudes of low-lying resonances, notably fo(975).

PACS number(s): 13.75.Cs, 14.40.Cs

I. INTRODUCTION

High quality data on pp and pn annihilation into
mesons are available now [1]and are becoming a valuable
source of information about meson interactions at low
and intermediate energies. Here we discuss the possibili-
ty of extracting precise information about meson-meson
amplitudes from reactions of three-meson annihilation.
This extraction is based on exploiting the conditions im-

posed by three-body unitarity and analyticity.
The principal features of the three-body problem, and

its relation to constraints from unitarity and analyticity
were discussed in the 1960s (see Refs. [2—7] and refer-
ences therein}. However this knowledge has not been
turned to practical everyday use except in some special
cases. Examples of exceptions are (i) the nonrelativistic
Faddeev equation and (ii) three-body potential models
with very specific choice of the potential, as in the Isgur-
Karl model for baryons [8]. Relativistic three-body equa-
tions, being a generalization of the two-body N/D for-
malism [9],are rather cumbersome and do not allow easy
extraction of information. Several attempts have been
made to look for specific efFects in three-body interac-
tions, for example, the so-called triangle singularity (see
discussion in Refs. [10—12]).

The appearance of high-quality data on pp (at rest)
[13], rtrino[14], blitt

.mand rel.ated charged
channels provides a good opportunity to extract informa-
tion about interactions in mm, m.g, and gg channels. In
publications so far [13,14] the analysis has been based on
a simple isobar model. However, for these high-quality
data this model is too simple. We mention a few exam-
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ples of refinements which need to be taken into considera-
tion. (1) The three-particle unitarity condition compli-
cates matters: for example, it leads to the possibility of
rescattering and results not only in triangle singularities
but also in additional imaginary parts. (2) Much is
known about mn. elastic scattering and mm~KK from
earlier experiments. The question arises how to incorpo-
rate this information into the analysis of three-body
channels. In the simple isobar analysis, only the mtt on tt-
amplitude was introduced with a constant complex cou-
pling parameter A. However, over the wide mass range
up to 1.74 GeV covered by the data we wish to discuss,
this amplitude is built from a number of resonances i,
which may have difFerent coupling parameters A, to the

pp channel. This suggests the need for s dependence of
coupling parameters. (3) It is also necessary to consider
coupling via intermediate EE states. (4) There may also
be background nonresonant contributions, and inelastic
coupling to 4m. In order to address these problems we
arrive at a more flexible form for n.tr (and ilail and iltt)
amplitudes.

We first discuss the theoretical foundations for extract-
ing leading singularities. This leads to an N!D formal-
ism where two-meson resonances in the final state appear
explicitly in D functions which are identical for both two-
and three-meson channels. The N function contains left-
hand singularities and may in principle be a complicated
function of s. Indeed we point to data of Bettini et al.
[15]which suggest strongly that this is the case.

In Sec. III, we discuss the implications of those data
and then apply the ideas of Sec. II to a reanalysis of pub-
lished Crystal Barrel data. A brief account of this work
has already been presented by Anisovich et al. [16] and
at the NAN [17] and Marseilles conferences [18]. We
find evidence for two resonances fo(1335) and fo(1505}
with quantum numbers I =OJ =0++ in m. m and gq
channels. Data on pp ~3m and gym are consistent in
masses and widths for these two resonances. In the pub-
lished work of Ref. [13], the first of these resonances was
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overlooked and the second was interpreted in an alterna-

tive way as the Ax(1515) resonance having

I =OI =2++. This alternative requires 60% P-state
annihilation in pp ~3~ .

Section IV discusses triangle singularities and Sec. V
evaluates their efFect in first approximation. It turns out
that their impact on resonance masses and widths lies
within the errors attributable to other systematic effects.
However, the inclusion of rescattering diagrams leads to
a better resolution of low-energy resonances. Coupling
parameters A, , are perturbed by significant amounts, par-
ticularly their phases.

In Sec. VI we comment on the physics of fo(1335) and

fo(1505). The former is a natural candidate for the
ground-state nonet. There are other experiments in
which fo(1505) appears. We put together a tentative
case for interpreting fo(1505) as a glueball, with some qq
mixing.

between particles 1 and 2 [for example, Figs. 1(b) or 1(e)
with i =l, k =2]; similar amplitudes arise (3) with the
last interaction between particles 1 and 3, A,3(st3); and

(4) with the last interaction between 2 and 3, A23(s23).
Here s;k is the two-particle invariant mass squared

slk (Pi +Pk ) So

A =A+ At2(st2)+At3(st3)+A23(S23) .

The equation for amplitude A tz(s, z ) is shown in

graphical form in Fig. 2. In the nonrelativistic limit, it is
the Faddeev equation. However, the relativistic generali-
zation is ambiguous: it depends on the techniques used
for writing the equation. Here we use the dispersion rela-
tion technique introduced for the three-body problem in
Ref. [2] and discussed in a series of papers [5—7]. The
dispersion relation technique in the nonrelativistic limit
was applied in Ref. [19]to the three-nucleon problem and
here we follow these ideas.

II. ANALYTIC STRUCTURE OF THE AlMPLITUDE
FOR pp —+ THREE MESONS

Let us begin by considering an example where a spin-
less bound particle (the analogue of the pp bound state)
decays to three spinless particles 1, 2, and 3. In this ex-

ample we suppose there are no transitions via other inter-
mediate states (e.g., EE) or via intermediate states in-

volving more than three mesons. This is a simplification
which does not ultimately affect the form of the leading
singularities.

The amplitude of the decay process is then determined

by a direct transition [Fig. 1(a)] and subsequent rescatter-
ings of final state particles [Figs. 1(b)—1(e) and so on].
For simplicity we consider here the case when the direct
transition [Fig. 1(a)] does not depend on energies of final

state particles and when rescatterings occur in S waves.
This case reveals all the principal points needed for our
considerations.

The amplitude A for three-particle production is then
a sum of four blocks: (1) the direct production amplitude
A, ; (2) the amplitude A, 2(stz ) where the last interaction is

ds' G (s')p, k(s')GL (s')
b(s)=

( m,.+mk ) 7T S S

where p is the two-particle phase-space factor

(2)

p;k(s) = Q[s —(m;+mk ) ][s—(m; —m„)];1

G" and GL are vertex functions which determine the par-
ticle interactions to right and left of Fig. 3(b). As a de-
tail, G" and GL may be different. For the virtual pro-
cesses the vertex functions are described by

A. Two-particle scattering

As a first step we fix our technique for two-particle
scattering amplitudes. We relate the standard N/D
method [9] to the graphical technique of Ref. [20]. The
partial wave scattering amplitude is written as a series of
dispersion relation diagrams (Fig. 3) with different num-
bers of scatterings. Here the loop in Fig. 3(e) is equal to

GL(s')G (s")=V(s',s") (4)

since energy conservation applies only for initial and final
states.

a) b) c)

e)

FIG. 1. Diagrams for the transition "bound particle —+three
mesons"; (a) direct production, (b)-(d) production with single
rescattering, (e) production with double rescattering.

FIG. 2. The graphical form of the equation for the amplitude
A, 2(s, 2 } [block (a) in this figure].
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FIG. 3. The expansion of the scattering amplitude (a) as a
series of rescattering diagrams [(b),(c),(d) ]; (e) loop diagram

defined by Eq. (2).

The series of Fig. 3 is given by

a ($)=GL ($)6"($)+GL ($)b ($)6 (S)

612($,2} does not contain left-hand singularities. The
simplest choice, which we wi11 use, is

6 ($)=1 .

The asymmetry between 6"(s) and GL (s}, which does
contain left-hand singularities, arises because the ampli-
tude of the process "pp ~three mesons" is not symmetric
as well, see Fig. 5(a).

B. Three-particle scattering

Now let us write the equation for A, 2($,2) of Fig. 2.
The diagram of Fig. 2(b} may be expressed as shown in

Fig. 5(b) with the result

A2b
b12($12)612($12)

jib R

A 12($12)
1 b ( )

+Gr ($)b (s)6"($}+

GL ($)6"(s)
1 b($)— (5)

and b12($12 ) is displayed in Fig. 5(a):

Ap, 2($')Gr (s')
b, 2($, )=

(m I +rn2) 'IT' S S )P

It is the partial scattering ainplitude of the N/D method
when Castilejo-Dyson-Dalitz (CDD} poles [21] are
neglected: Gr($)6"(s) is the N function, N($), while

D($)=1 b($). In—the general case, the N function can
be written as a sum of vertices:

N (s) =g Gi"'($)G1„1($).

The N function contains left-hand singularities related
to t-channel exchange diagrams. For example, the s-

channel partial wave of the diagram of Fig. 4(a} has a
left-hand singularity at s =4m —

p, (we put here

m, =m2=m3=m4=m), while the diagram of Fig. 4(b)

gives a branch cut starting at s =4m —(21'), and so on.
So the products Gi 6 in Eq. (6) have these singularities

as well. From a consideration of the scattering ampli-
tude, a (s) of Eq. (5), it is not specified whether both ver-

tices GL and G have these singularities or only one ver-

tex (GL or 6 }. It is easy to see that in the three-body

problem the vertex 6"(s) should be analytic. To see this,
consider the case when the singularities of the N function
are determined by the diagram of Fig. 4(a) and the ampli-
tude for direct production, Fig. 4(c) is pointlike
(A, =const). The amplitude with one rescattering of parti-
cles 1 and 2 is shown in Fig. 4(d). It has on the first sheet
of the complex s&z plane only a singularity at s,2 =4m .
The corresponding dispersion relation diagram is equal to
b",2($,2)G",2($,2), where the suffix A, denotes that b, 2 is as-
sociated with Fig. 4(c). This expression means that

Here [1—b, 2($,2)] is exactly the same D function as that

in the two-body scattering amplitude for channel 12.
Next the amplitude of Fig. 2(c) is

B i2($ i2)6'»(S i2 )

12( 12}=
1 b ( )

t

where Eq. (7) has been used. The denominators of Eq.
(ll) and the two-body amplitude, Eq. (5} are identical.
This leads to the possibility of extracting two-body in-

teractions from three-particle production data.
The full amplitude, Eq. (1), for three-particle produc-

tion becomes

b, 2($12)+B12($12) b» 13 + 13 13
A =A+ +

1 —b12($,2 ) 1 —b, 3($,3 )

b23(S23 )+B23(S23 )
+

1 —b23($23 )
(12)

The denominators contain two types of leading singulari-

where B12($12) is shown diagrammatically in Fig. 6. The
vital result for data analysis is that this amplitude and all
contributions to A, 2($,2) contain the factor

[1—b, 2($,2)] ', due to final state interactions of particles
land 2. We can write

b12($12)+B12(S12)
12 12

1 b ( )

3

FICJ. 4. Four-point diagrams with t-channel meson exchange
in scattering process (a), (b), and in the three-particle produc-
tion amplitude (d); direct production (c).

FIG. 5. The three-particle production block which includes

interactions of particles 1 and 2 only.
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2
12 12

—1+z;3~1 .

It is denoted in Fig. 7(a) by a solid line I. But at

s(0) &s'&(t s —m3)

(17)

(18)

FIG. 6. The amplitude Bl&(s» ).

ties: (i) poles, which are responsible for production of
bound states or resonances, and may contain CDD poles
from the qq system; (ii) two-particle threshold factors
which can produce cusps. However, the numerators of
Eq. (12), b;k(s, k )+B;k(sik ), also contain threshold singu-

larities as well as the so-called triangle diagram singulari-
ties [22—24]. So we need to turn to a more detailed con-
sideration of the amplitude B;k(s;k ), which will be needed

in Sec. IV.

C. B;k(sik }

The graphical representation of the block B,2(s,2) is

given in Fig. 6. This equation may be written in the form
of a dispersion integral:

the contour C (i3) contains an additional piece shown in
Fig. 7(a) by the dashed line (II). This piece of the integra-
tion was missed in Refs. [2,3]. At s') ( v s —m 3 },the in-

tegration in Eq. (14} is performed in the complex s;3
plane, Fig. 7(b).

Equations (12) and (13) apply to an S-wave two-particle
interaction. Equations for L 1 are given in Ref. [25].

D. Relation to Breit-Wigner amplitudes

Up to now we have discussed the interaction V(s', s")
which does not contain poles. Poles in the scattering am-

plitude may appear in this case as zeros of the D func-
tion: l=b,"(s; ). These poles correspond to composite
states of particles i and j. However the amplitude may
contain resonances which are not such type of composite
systems but have another origin (for example, resonances
related to qq bound states or glueballs}. In these cases,

B12(S12)

ds' GL(s')P12(s'}
[A»(s')+ 223(s')] .

(m +m ) 7T S $~2

(13)

V(s', s")=gL(s')
2

g"(s") .1

M —sik

This term corresponds to the diagram of Fig. 8(a) if
s'=s" =s,.k. The series of diagrams in Fig. 8 gives

Here

zl3
g;3(s') = J A, 3(s;3), i = 1,2,

C(i3) 2
(14}

where z;3=cos8, 3 in the enter of mass of particles 1 and

2. The contour of integration C(i3) will be given below
after writing out kinematical relations:

$ )3
=m

&
+m 3

—2p &~ 30 +2z
& 3p & p 3

b(si )k1—
M —s2

ik

gL(sik )g (Slk )

M —s k b(s;k )—
gL(sik )g (Sik )

a(sk)=
M —s.ik

(20)

$ +m) m2

s

s'+m 3
—s 42 2

p3o —
~ p3 =9 p3p2&s

(15)

a)

Then s23 is obtained from Eq. (15} by the replacement
1~2 and z,3+ —z23, s is the total energy squared of par-
ticles 1, 2, and 3 (or the mass squared of the initial bound
state):

s+m &+m2+m3 $]2+$23+S/32 2 2=

The contour integration C(i 3) at small s',

(rn, +m3) &s'

(m;+ m3)

s, 3(-)

= s. ~(+}

s. (+)

m;$ +
m,-+m3

—m;m3

m3 2(m, +m2 —m;)
m,. +m3 = s. 3(-)l3

—:s (0},
coincides with the phase space integration contour

(16) FIG. 7. Contour integration C(i3) in the complex plane s;3,
s;,(+) and s;3( —) are determined by Eq. (15) at z;, =%1,respec-
tively.
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FIG. 8. The loop diagram b (s;k ).

with

ds' g (s')p;k(s'}gr (s')
b(sk)=

(m,. +mk ) S Sik
(21)

In this case, the blocks A,.k(s;k) of Eq. (1) have a struc-
ture

+ 'k (s 'k )
A k(Sk)=

[M s,—„bg—s(slk )][1 bG—G(s, k )]+bsG(s,k )

(28)

The denominator on the right-hand side is just the same
as in the two-body scattering amplitude i +k ~i +k. In
an analogous way we can treat cases when scattering am-
plitudes i +k ~i +k contains two or more resonances.

where b (s,k ) is the loop diagram in Fig. 8.
The standard Breit-Wigner formula corresponds to

neglecting the energy dependence in g (s,k ) and b (s,„):
gL(MII)g (Mo)

o(s;k)=
M —s; —iI M

where

(22)

M =M Reb(M—)

I'=g (M )p,„(M )g (M ) .

(23)

(24)

A more sophisticated Breit-Wigner formula which takes
into account the two-particle threshold behavior is

I'=g (s;k)P k(s;k)gL (s;k ) . (25)

The three-particle amplitude is written in an analogous
way illustrated in Fig. 9. Again the amplitude A,k(s,k)
contains the same resonance denominators:

g;k(s;k }
~ik(sik }

2 . [~R +bik( ik )+~ik(sik }]
M —s; —irM

(26)

The more general case, when the two-particle interac-
tion is a sum of resonance and nonresonance terms, can
be considered similarly:

III. FITS TO DATA

In Figs. 10 and 11 we reproduce published Crystal Bar-
rel data sets on pp~n n m[13].and ririm [14] at rest.
This group has also presented data on pp~g~ m at
many conferences. Our methods apply equally well to
these data, but presently we do not have access to theme

First we discuss qualitative features of the data in order
to provide a perspective to our fits.

Figure 10 has sixfold symmetry, because of the three
identical m . There are three distinct features. Firstly,
there are strong peaks at the edges of the Dalitz plot due
to f2(1270). Secondly, there is a deep hole at the center
of the plot. The Crystal Barrel Collaboration interpreted
it as evidence for strong P-state annihilation, since an-

nihilation from an initial Pz state gives a zero there if
the final state is governed purely by phase space. Third-

ly, there is a complicated structure near 1515 MeV, inter-
preted in [13] as Ak(1515} with J =2++, and pro-
duced largely from initial P& and P2 states. The fit to
the data led to the surprising conclusion that -60% of
annihilation is from initial P states.

We favor a quite different interpretation of the data.
The motivation arises in the Veneziano model and the in-

gL (s')g "(s")
V(s', s"}= +GL(s')G (s") .

M —sik

p

p

(27)
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FIG. 9. The three-particle amplitude.
FIG. 10. Dalitz plot for pp~3m. at rest, reproduced from

Ref. [13].



50 FINAL STATE INTERACTiONS IN THREE-MESON. . . 1977

1.8

1.6

1.4

1.2

0,8

0.6

0.4

L

cI (980)

V ).
I

~ i
W Mp

~Ii,
II c

QQ tg'

~J

3.0

2.0

4.(). -. :-:.. 1.3 — ].6 "=e&/"

0 ~ ~
~ ~ ~ ~

~ ~

1.0 - . . ':-..'. .'.".' ~
~ ~

0.2
a (980)

t X (1560)
(14pp)

0 1.0 2.0 3.0 4.0 5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(~) [Gev ic )

FIG. 13. Data of Bettini et al. on pnsm. n. m. at 1.66eV,
reproduced from Ref. [15],Fig. 20.

FIG. 11. Dalitz plot for pp~gqm. at rest, reproduced from
Ref. [14].

cisive paper of Lovelace [26] on pn ~m. n+n. . In the
Veneziano model, there are regularly spaced towers of
resonances starting with p(770) and fz(1270}. The inter-
sections of f2 resonances in channels 12, 23, and 13 lead
to Odorico zeros [27] running through the intersections.
In Fig. 12 we suggest that these zeros, shown dashed,
propagate across the Dalitz plot, through the central hole
to the Adler zeros near the corners of the plot. This gives
a dynamical explanation of the central dip. Lovelace
showed that annihilation from the So initial state gives a
qualitative explanation of pn~~ ~+a data at rest, a
channel closely related to pp ~3m since they share I= 1.

The data of Bettini et al. [15] at 1.6 GeV are repro-
duced in Fig. 13. One sees a regular lattice of peaks and

dips, regularly spaced in s, t, and u. The hole at the
center of Fig. 10 in data at rest coincides with one of the
dips, at s =1.1 GeV, suggesting that this dip is not due
to P2 annihilation.

In the mn+n. dat.a d. iscussed by Lovelace, p(770)
plays a strong role. However, we are dealing in Fig. 10
with 3n data, where p(770) is absent. Near 800 MeV,

f,(i 270) ~Y/y&&

fc(800)

FIG. 12. Schematic diagram showing poles and zeros in
pp~3~. Dashed lines show our suggestion for zero trajec-
tories.

the n.n S-wave phase shift 5s also rises slowly through
90', Fig. 14(a), giving the intensity distribution of Fig.
14(b}. The peak at 800 meV is what we shall call the "e"
resonance, for brevity. We suggest that the zeros of Fig.
12 propagate through the intersections of a bands. We
shall show that the intersecting o bands account for the
bumps labeled B in Fig. 10 at s =0.64 GeV2.

Although our considerations are motivated by the
Veneziano model we have found that doing actual fits
with Veneziano amplitudes is cumbersome and fraught
with problems. The algebraic forms we use, described
below, are simpler, but allow the sort of mass dependence
intrinsic to the Veneziano model.

Next we turn to the gym data of Fig. 11. There are
three essential features. Firstly, there are horizontal and
vertical bands due to ao(980) in rim. Secondly, there are
diagonal bands ascribed in Ref. [14] to fo(1430) and
fo(1560) in i)i). Thirdly, there is a significant dip separat-
ing these two diagonal bands. These features lead us to
ask whether these fo resonances are also present in 3m.

data. Our answer is essentially yes, though the higher
quality 3n data lead to somewhat lower masses for both
resonances. We shall show that the band marked A in
Fig. 10 may be explained by a 0++ resonance with mass
1505+20 MeV, I =150+20 MeV. In gg~, we find a
lower mass for this resonance than given in Ref. [14].
The reason is that the ao(980) resonance was fitted in [14]
by a simple Breit-Wigner amplitude. We replace it with a
Flatte form [28] which takes into account the cusp at the
KE threshold. The long tail of the Flatte form intro-
duces interferences with qg amplitudes and shifts the
masses of gg resonances significantly. Using this form,
the higher of the two gg resonances fits naturally to a
mass of 1512 MeV, I = 158 MeV, compatible within er-
rors with the fitted values for 3m . The lower resonance
also moves down in mass very significantly.

In 3ndata, the lowe. r resonance fo(1335) is largely
hidden beneath f2(1270) and its presence is revealed only

by amplitude analysis. However, the dip between it and
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FIG. 14. The phase shift 5& for S-wave m.~ elastic scattering;
the data are from Refs. [29—31]. Solid, dashed, and chain
curves are our fits III, I, and II, (b)

~ T» ~, the mir~irn inten. sity

from II.

tinguished from a slowly varying component in the I =0
S wave.

We fit values of 5s and il extracted from (a) I(.,~ data by
Rosselet et al. [29], and from CERN-Munich data [30]
by Ochs [31]. Data are shown in Fig. 14 with our fits,
whose detailed forms are given below.

However, before going into detail we draw attention to
a small but unavoidable con6ict between Ochs' results
and Crystal Barrel data above about s =1.2 GeV . The
former gives a value of 5s rising slowly and steadily and
executing a slow loop on the Argand diagram. Most of
our fits to Ochs' data give a pole at M =1.5 to 1.55 GeV
with a large and poorly established width. The Particle
Data Group [32] (PDG) quotes a mass of 1400 MeV and
a width of 150 to 400 MeV. Au, Morgan, and Pen-
nington [33] describe several fits with masses in the range
1360 to 1520 MeV and widths varying from 340 to 520
MeV data. However, the data on pp~3m require in-

stead two narrow resonances centered around M =1335
and 1505 MeV, with a cusp between them at about 1430
MeV (Fig. 16 below). We suggest that the CERN-
Munich data have not resolved these two resonances.
This may have arisen because, in the CERN-Munich
data, the S wave is obscured by the presence of strong I-
and D-wave resonances and an uncertain I' wave; the
p'(1600) of the 1970—1980 era has today split into the
p'(1465) and p'(1700) of Donnachie and Clegg [34] and
this will have some affect on the extracted S wave. It is
also possible that these resonances couple strongly to 4m

and show up weakly in m.m.~a~. Figure 15 shows the
difference between Ochs' fit to m.m~mm and the best fit

using our widths for fo(1335) and fo(1505); however, the
latter ignores any background nonresonant contribution,
which could complicate the situation. In fitting data we
have to be careful to avoid "double counting" of the
broad resonance in Ochs' results and the narrower reso-
nances required by the pp data.

There is further evidence pointing toward two reso-
nances rather than one. Central production data of

fo(1505) is visible in the 3m data, just as in rlqm. data.
The precise mass dependence depends delicately on the
exact parametrization of the amplitude, but in all fits

comes out considerably lower than the 1430 MeV esti-
mate given in Ref. [14]. It is visible to the naked eye that
in Fig. 14 the lower fo band peaks in mass below 1430
MeV. With our parametrization of amplitudes, a fit to
rlrlvr data alone puts the lower fo resonance at 1334
MeV with a width of 298 MeV.

A. The mm. ~~m. S-wave amplitude

The essential point emerging from Sec. II is that the
denominator function D(s) should be identical for 0++
amplitudes in m~~m~, +~~I( K, pp ~3m, and

pp ~gg~ . In order to constrain the fit as tightly as pos-
sible we fit all four data sets simultaneously with con-
sistent parameters. We have ignored the m.m. I =2 S
wave, since it is almost constant and cannot be dis-

FIG. 15. The Argand diagrams for mu~mw amplitudes (a)

fitting 5s of Ochs [31] with a single broad resonance, (b) fitting
with fo(1335) and fo(1505).
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WA76 [35] have a shoulder at 1430 MeV, leading the
group to claim a 0++ resonance with M =1472+12
MeV, I =195+33 MeV, superposed on a mass distribu-
tion falling rapidly with s. It seems likely that the shoul-
der at 1430 meV is the same phenomenon as the cusp we
see at this energy.

We now discuss the algebraic forms we have adopted
in fitting both mw —+am. and annihilation data. Our stra-
tegy has been to try a variety of fits with difFerent param-
etrizations of the S-wave amplitude, in order to establish
the range of possible masses and widths for the two reso-
nances and indeed to establish that two resonances are
really required. We fit data at all energies with

f (en +err) —=T» (s)=N (s)/D (s) (29)

(30)

where

T'„(s)=N'(s)/D (s), (31)

and A& 2 are complex coupling constants. That is, we su-

perpose on the nn amplitude two Breit-Wigner (BW) am-
plitudes which accommodate the new resonances
demanded by the annihilation data. If these extra reso-
nances are added to the irir~n. ir amplitude of Eq. (29),
there is great latitude depending on what assumptions are
made about coupling to 4n and a possible nonresonant
background contribution. Note that the denominators of
Eqs. (29) and (31) are identical functions D(s), but the
numerators N(s) and N'(s) are difFerent.

In fitting pp data we have adopted two alternative stra-
tegies and fitted the data both ways. Both give similar re-
sults. In the first strategy we fit 5$ only up to s =1.2
GeV and allow the m.m.~~a. amplitude to be free above
this energy. We fit pp data up to s =1.2 GeV with Eq.
(30). Then above s =1.2 GeV we inake a smooth join to

and

A1 A2f =T'ii(s)+
2

+ +C,
s —M', +nor, r, s —M', +iM, r,

A1f =a+bs+cs +
PP s —M, +iM, I,

A2+ (32)
s —MI +iMI'

This explicitly avoids any possible double counting above
s =1.2 GeV . The term a +bs +cs contains no poles, so
there is no ambiguity in identifying the leading singulari-
ties. In principle, there is the disadvantage of a nonana-
lytic change of slope at s =1.2 GeV, but in practice the
eye can barely discern it on most of our Argand dia-
grams. In the parabolic background, a, b, and c are com-
plex parameters.

In the second strategy, 5$ has been fitted up to 1.8
GeV with forms II and III given below and pp data have
been fitted with Eq. (30). If our parametrization de-
scribes the Dalitz plot well, we can consider the Argand
plot as some kind of new experimental data and fit these
data by BW resonances and a background term. We have
found that the characteristics of the BW resonances ex-
tracted like this are stable, while the remaining amplitude
including the pole in T» and T» can be approximated
very closely by a parabolic background. This demon-
strates that the distant pole in CERN-Munich data near
1550 MeV plays a rather insignificant role in the fit to pp
data and the determination of the BW resonances in the
latter.

We now come to the three explicit forms we have fitted
to nir~mm and mn ~KK In the t. wo channel case, the
denominator D(s) has only right-hand singularities con-
nected with m.m. and KK production, and therefore can be
written generally in the form

D (s) =gp(s) iPlg l (s)—iP2g2(s) —PlP2g3(s—) . (33)

This denominator can be rewritten in the E-matrix form
by the substitution

gl(s) g2(s)
E»=, E23=

gp(s)
'

gp($)
(34)

Qgl($)g2($) gP($)g3($)
K12 =E21 =

gp(s)

With the relation between T matrix and E matrix,

T= 1

PlP2 K i (Pl+11+P2+22)

E11—iP2DK

E21 E22 —iP1DK
(35)

where DK is the determinant

DK E11E22 E 12
2

we have the m.m scattering amplitude as

Qg, (s)g2(s) —gp($)g3(s)

g2($) iPlg3($)

(s) iP2g3(s)—T-
D(s) V gl(s)g2(s) gp($)g3($)

(37)
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In our first approach, labeled I, we have used a simple
two-pole parametrization of functions g, (s):

V gig2e

Mii s —i(P«l +P2g2)
(47)

go(S) =($ —Sl )($ —$2),

gi($)=) i+r2$

g2(s) —
7 3+1 4$

g3(s) ='Y5+ 1'6$

(38)

(39)

(40)

(41)

g2
T22 —

2Ms $ —i (p«i+p2g2)

1+als+a2$ +ipl[bl(s —m /$)+b2$ ]

1+a1$ +a2$ lpl[bl($ m /s)+b2$ ]

(48)

(49)

p, (s)= [(s —4m „)/s]'~
[(s —4mx )/$]' for $ &4mx,
+ t[(4 mx—$)/$]' for $ &4m' .

MR 0'9535 g &
=0.1108, gz =0.4229,

a
&

= —0.3835, az = —0.4237,

bi =3.696, b2= —1.462 .

(43)
P2($) =

(44)

We take an average M+=0.49567 GeV and the best fit

gives (in units of GeV)
The last two of these parametrizations were investigat-

ed by Zou and Bugg [37]. They have a pole in the T'„
term of Eq. (30) in the region of 1400—1500 MeV, i.e., the
region of our BW resonances fo(1335) and fo(1505). In
practice, we have found this not to be a significant prob-
lem, since the pp data identify the contributions from the
nearby BW poles cleanly.

Table I summarizes the second and third sheet poles
present in forms I, II, and III. The second sheet is
defined by

s& =0.155, sz=1.536, y&=3.545,

y2= —3.728, y3= l.765, y4= —1.291,

ys= —0.433 y6=1 134

This form fits the me. ~em data well only up to
M =1.3 GeV (see Fig. 14). Above this mass, the addi-
tional poles due to fo(1335) and fo(1515) fit the annihila-
tion data.

In our second approach, labeled II, we have
parametrized in a three-pole form the elements of the K
matrix:

Impl(s) & 0, Imp2(s) & 0, (50)

and the third by

(42) Numerical values of parameters, in units of GeV, are

K; = s 2' pp, rx,
s~ s sa s sc s

+A; +B;s

We obtain the parameters (in GeV)

sz =0.7239, sz =1.5279, sc =3.9657,

ai =0.6941, u2=0, Pl =0.8974,

P2=0 0049, .y i
= 1.6385, y2= —2. 1499,

—0.2905, A iz 2.0219,

A ~2
= —0.4376, 8» —0.2049,

B)2=0, B22=0 .

(45)

Imp, (s) &0, Imp2($) &0 . (51)

r,.= A4

1+exp [($0—$) /a 0 ]
(52)

with so = 1.44 GeV and ao =0.25 GeV . In some fits we

have tried accommodating the 4n. channel by Breit-
Wigner amplitudes of the form

+BW4m
A

$ —M'+iM (I,.+r,.)
(53)

As a final comment on the complexity of this mass
range we remark that the 4m inelastic threshold opens
strongly from M =1 to 1.6 GeV, presumably because of
00 and pp thresholds. The data of Alston-Garnjost
et al. [38] on m.lr —+lrlr, EK, and 4m can be fitted crudely
by a Fermi function

e '~ —I
TI $

+
MR $ ' (Pig l+P2g2)

(46)

These two parametrizations I and II are de'erent in the
following point: in the first we use a simple parametriza-
tion of the function Dz =K»K22 —

K&2 and thus a com-
plicated expression for E,z, in the second we use a simple
expression for K&2 while the Dz function has a compli-
cated structure. Both forms give a very close description
of ~m. scattering up to 1.1 GeV; the third pole of form II
is required to fit CERN-Munich data in the 1300—1700
MeU mass range.

The third form we have used, labeled III, is based on
the Dalitz- Tuan representation [36]:

Form Sheet II

0.984—0.039i

Sheet III

0.986-0.102i

0.987—0.053i 0.954—0.060i
1.071—0.290i
1.548-0.183i

0.98—0.023i 0.797—0.185i
0.408-0.342i
1.515-0.214i

TABLE I. Second and third sheet poles present in forms
I—III, in GeV.
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Although this form modifies parameters N'(s) and
a+bs+cs in Eqs. (31) and (32), there is no significant
improvement in fits. The data are presently not adequate
to attempt a 3-channel fit to m.m., EE, and 4m, let alone a
4-channel fit to m~, EK, pp, and o.cr.

B. Fits topp~3m. and pp~gg~

In order to give some feeling for the stability of reso-
nance parameters, we shall present several fits to the
data. All assume annihilation from a pure So initial
state. In Sec. III E we report studies including P-state an-
nihilation. These studies show that the fraction of P-state
annihilation is ( 10% and has little impact on the results
presented now.

With the assumption of S-state annihilation, the initial
state is restricted by 6 parity to I =1 So. Annihilation
from the S, initial state is forbidden. In the final state,
0++ mw and gg states are produced with L =0 and 2++
states with L =2. For the latter we include f2(1270) and

f2(1525) with masses and widths fixed to PDG values.
In rim we include ac(980), fitted to a Flatte form:

~980
A (980)=

M 980 +™980(g 1P1+g 2P2 )

where

(54)

A(Bq/B21i )
T(s)=

s-MR+lMRr

The nonrelativistic form for B2 is

(56)

p, = [s —(M„+M„)]' [s —(M —M„)]'~ /s (55)

and p2 is given by Eqs. (43) and (44). We adjust parame-
ters of the Flatte form in order to reproduce as closely as
possible the parameters of the Breit-Wigner amplitude of
the Particle Data Group, but with the ratio gz/g, fixed

to the mean value of Lockman [39]. We find a negligible
contribution to ilrim data from a2(1320). In fitting 3'
data we find it necessary to add a further D-wave contri-
bution above fi(1270) at a mass of about 1560 MeV.
This important detail wi11 be discussed at some length in
a latter subsection.

For L =2, J=2, we include a centrifugal barrier factor
for both production and decay. The contribution to the
scattering amplitude is

lk31'lkil'(3 cos 8—1)/2
82=

[lk, l'(lk, l'+x )+x']'"[lk l'(lk l'+x, )+x']'" ' (57)

g„„=gq,(k, +k2)„(k—i+k2)„/(k,+k2)

P„=(k,+k2+k3)„,
k,~p=(ki ki)~,„,k3„=—k»g~p .

This result differs from the nonrelativistic one by a factor
Yin the numerator with

4 (W —M3+s, ~)Y=- +2
S,2 8' (58)

where 8'is the total pp center of mass energy, M3 is the
mass of the spectator meson, and s&2 is the mass squared
of the resonance.

where k3 is the momentum of the spectator in the labora-
tory system, k, is the momentum of decay products of the
resonance in the rest frame of the resonance, and 8 is the
decay angle; B2+ is the value of B2 on resonance for
cos8=1. The value of Xz is optimized to a value

X2 =0.356 GeV, corresponding to a range of interaction
of 0.6 fm.

The relativistic version of the centrifugal barrier is
(omitting the Hippel-Quigg form factor temporarily)

B2=[k,z„k,2„——,'g„,(k,2) ][k3&k» —
—,'g„„(k3)],

where

N'(s) =A, +Ass

ipse(A3+A4$)

. — (59)

The term involving p2 allows coupling via intermediate
EEC channels. We have found empirically that fits with
less A parameters give significantly poorer g and sys-

In fitting the S-wave amplitudes, it is necessary to in-
clude considerable fiexibility in the numerator N'(s) of
Eq. (31), in order to accommodate the complicated dy-
namics of Figs. 10 and 12. In 3m data demand a large
S-wave amplitude close to threshold and also at large s,
with a small amplitude in between, around the hole in the
middle of the Dalitz plot. Figure 16(a) shows the Argand
diagram for our eventual recommended fit, which is the
best compromise among fitted masses and widths for res-
onances. There is a broad loop at low energies corre-
sponding to the n peak at 800 meV. This is followed by
a small loop due to fo(975). Near this mass, the ampli-
tude squared reaches a minimum. Then follow loops due
to resonances at 1335 and 1505 MeV, with a second
minimum of the amplitude squared between them at 1430
MeV.

In order to show the effect of the A parameters which
scale the m.m. amplitude in fitting annihilation data, Fig.
17 displays lN(s')l/lN(s)l for 3mo. This is the ratio of
the annihilation amplitude in the mw S wave to that for
elastic scattering. It displays nicely the peak-dip struc-
ture of the Bettini et al. data as a function of s.

With form I we take for N'(s) the parametrization
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I&'(s)l/l&(s)l for the fit of Table III to the ~~ S
wave in pp ~3~0.

FIG. 16. Argand diagrams for (a) the m.~ S-wave amplitude
fitted to pp ~3~, from our "best" fit, (b) the gg S-wave ampli-
tude fitted to pp ~gym .

tematic discrepancies with data. Form (59) marginally
underfits the data, in the sense that all peaks and dips in
the data are very slightly smoothed out in the fit. The
most complicated form we have tried with the forms II
and III is

A~
N'(s) = A, +Azs +

s so
Tii+(A4+Ass)T, 2 .

The coeScient of TII allows in a natural way the ~m S-
wave amplitude to be large at low s, small around s =1
GeV~, and large again for large s. The term A&/(s —so)
allows the possibility of canceling the Adler zero, which
need not be present in coupling of mw to pp. Although
Eq. (60) gives the very best y, its flexibility is such that
convergence is poor. The reason is that the term
(A4+ Ass) T,z, which accommodates coupling through in-
termediate EK states, correlates strongly with A2 and A&.

We have found empirically that an alternative numera-
tor, giving almost as good y and much more rapid con-
vergence is

N'(s)=(Ai+A2s)Kii+ip2(A&+A4$)(KiiE22 I( 12)

(61)

with form II. Many of the results we shall show are ob-
tained with this form because of its rapid convergence.

With form III, we multiply the term (e '~ —1)/2ip, of
Eq. (46) by Ai+Azs, the resonance term in (46) by A&,

and T,z by A4. In our second strategy, where the N/D
term is cut off above s = 1.2 GeV, we take
N'(s) =A, +A2s, because of the limited mass range.

We have investigated systematically permutations of
(a) forms I to III for the mm. S wave, (b) whether or not
the cut-off at s =1.2 GeV is applied, (c) with or without
I 4 in fo(1335) and fo(1505), (d) nonrelativistic or rela-
tivistic centrifugal barriers. Several hundred different fits
have been made with these and other variants described
later. A representative sample of Argand diagrams is
shown in Figs. 18 and 19 for the mw S-wave amplitude in

pp —+3' . Corresponding resonance parameters and y
are listed in Table II. Differences between nonrelativistic
centrifugal barriers or relativistic have little effect on res-
onance parameters.

The mass and width of fo(1505) are very stable. The
mass of fo(1335) is rather less stable, because the reso-
nance is broader, making the maximum of its speed plot
harder to determine, and also because the resonance lies
under fz(1270) and is revealed by interference with it.
The absolute extremes we have observed for the mass of
fo(1335) are 1295 and 1395 MeV. However, all those
outside the range 1306 to 1365 MeV have features (e.g. ,
poor convergence) which indicate poor numerical stabili-
ty. We regard the latter range as the maximum plausible
for the mass of the resonance and add 10 MeV for statist-
ical Auctuations, making the limits of error on the mass
+40 MeV. From Table II the maximum range of widths
is 218 to 330 MeV. We therefore assess the error on the
width of fo(1335) as +45 MeV. In our final compromise
fit, given in Table III and using form IIP for the ~m S
wave, we fix the masses and widths of the two resonances
at the central values from Table II. This of course does
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FIG. 18. Argand diagrams (a)-(d) for the
~m S-wave amplitude in pp ~3+ for lines 1-4
of Table II.
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not give quite the optimum g, but is close.
Fits with N'(s)/D(s) cut off at s =1.2 GeV tend to

give lower masses for fo(1335) and fo(1505) than those
where N'(s)/D (s) is used for all energies. On the other
hand, a feature favoring higher masses is that those fits
where these resonances include I 4 of Eq. (52) give
masses systematically higher by about 25 MeV for
fo(1335) and by about 7 MeV for fo(1505).

There can be no doubt that the data require both
fo(1335) and fo(1505). As reported in Ref. [16], y2 in-
creases by a factor 5 for 3' data if fo(1505) is replaced
by a 2+ resonance, and g doubles for gym data. If the
two resonances are reduced to one, y rises from 720 to
1377, with M=1472 MeV, I =136 MeV. The mass of
fo(1505) is better defined by 3m data, but a fit to grjm
alone gives M=1512 MeV, I =158 MeV. The mass of

(b)
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I I I I I I I I I I ( I
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I & & & I

0 2 4 FIG. 19. Argand diagrams (a)—(d) for the
m.~ S-wave amplitude in pp ~3m for lines 5-8
of Table II.
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TABLE II. A variety of fits to 3~ and gym data. Resonance masses and widths are given in MeV.
In the first three fits, the mm S-wave amplitude of Eq. (31}is used for all s. In the remainder, this form is
used below s =1.2 GeV and above this is replaced by either (i) P, a parabolic form, Eq. (32) without
0(1710), or (ii) L, a linear form a +bs, plus 0(1710) with mass and width taken from the PDG. All fits
use a nonrelativistic centrifugal barrier, except those marked with an asterisk, indicating a relativistic
barrier.

Form of

S wave

II
II*

II,P
II,L
II,P
III,L
III,P

A

Used

1-4
1-4
1-4
12
1,2
1-3
1,2,4
1,2

1365
1360
1317
1328
1312
1324
1310
1319

268
330
250
242
258
260
259
218

1520
1512
1497
1500
1498
1509
1495
1499

148
170
143
142
158
159
160
136

1566
1552
1558
1560
1568
1560
1570
1573

169
168
163
179
189
173
190
174

720
726
798
795
888
740
820
781

fo(1335) is defined rather better by 3m data, but its width
is equally sensitive to 3m and gym data. A fit to gym.

data alone gives M=1334 MeV, I =298 MeV for the
lower fo resonance.

In all fits where N'(s)/D (s) is cut off at s =1.2 GeV,
the parabolic term in a +bs +cs is negative. It is there-
fore not simulating fo(1335) or fo(1505). Instead, the
trends of the Argand plots of Figs. 17 and 18 at the
highest s show that it is suggesting the onset of yet anoth-
er resonance at a mass close to the end of phase space.
The quark model leads us to expect a radial excitation
around a mass of 1700—1800 MeV. There is indeed con-
troversial evidence that 8(1710) has J =0+ [40], al-

though the WA76 Group [41] maintains with high statis-
tics data a claim for J =2+. In several fits we have in-
troduced fo(1710) with fixed mass, and with width I ei-

ther equal to the value 148 MeV of the PDG or varying
freely. The fits definitely prefer I =250-300 MeV.
However, from a conservative point of view, the data do
not show any bump positively suggesting a resonance of
this mass. Therefore we do not claim the existence of this
resonance, but simply that the data would accommodate
naturally to its existence.

C. G(1590)

The GAMS Group has presented extensive evidence
for a 0++ resonance in ilail and i)rI' at 1590 MeV [42].

We have tried including it with PDG values in fits to
both 3m and rlrlrr data. Of course, g improves, but
rather marginally. For gym, the improvement in y is
11.8, which is not really significant compared with
changes obtained by varying the form of N'(s). If
fo(1505) is omitted and replaced by G(1590) with PDG
values, y for gym rises from typically 370 to 482. If the
mass is fixed at 1587 MeV and the width is varied, y de-
creases only by 1 and I ~188 MeV. In summary, the
Crystal Barrel data show no real positive evidence for
G(1590). It might not couple strongly to pp if it is dom-
inantly an ss state.

D. The m.m. D-wave amplitude

Here we have a puzzle which is not fully resolvable
with present data. The fit to pp~3m. data definitely
demands a contribution to the ~m D wave at a mass of
—1560 MeV. Without it, y increases by about a factor
1.5. Although this is a highly significant increase in g, it
is much less than that due to fo(1505). We have
parametrized the D-wave contribution at 1560 MeV in
Tables II and III as a simple Breit-Wigner resonance.
The fitted mass and width are stable in Table II, but this
rejects to some extent the fact that the parameter Xz of
the centrifugal barrier is fixed there. The presence of the
extra D wave is demanded by data at the very edge of the
Dalitz plot, near cos0=+1, rather than by the bump B of

TABLE III. Our compromise fit with masses of the two fo resonances taken at central values of
Table II, using form II for the ~m S wave for s ( 1.2 GeV and Eq. (32) for s & 1.2 GeV .

Amplitude

fo(1335)
f 0(1505)
f, (1270)

~m S wave

1.335
1.505
1.275
1.555

Al = —1.249+ i6. 153
A3 =0.0
a = —6.919—i8.956

(Ip)„,
0.260
0.150
0.205
0.179

A2 = —1.181—i 5.757
A4=0. 0
6.676+ i8.935

0.611-i0.493
—0.077—i0.695
1.0
0.519+i0.614
C = —0.899—i0. 895

—0.888—i2.225
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FIG. 20. The Argand diagram for the m.m D wave.

Fig. 10 near cos8=0. The Argand diagram of the nm. D
wave is shown on Fig. 20.

One must be cautious about interpreting this as evi-

dence for a new resonance, although there have been
several claims from DESY [43] for large amplitudes for

yy ~pp, possibly resonant. The L =2 centrifugal barrier
plays a strong role at this mass. If there is any contribu-
tion from higher resonances, they will be attenuated
strongly at the top of phase space, so the narrow width of
the D-wave state may reflect the efFect of the centrifugal
barrier. There are resonances listed by the PDG with
masses of 1430, 1515, 1640, and 1810 MeV, not to men-
tion fz(1525) (which decays overwhelmingly to EX) and
the possibility of 8(1710) with J=2. Some combination
of these can mock up our D-wave contribution.

It has been drawn to our attention by Ochs [44] that
CERN-Munich data [45] also show evidence for a
minimum at about 1460 MeV in moments Y&, Yz, Y3,
and Y4, so it seems likely to be a real physical effect in

the D wave, whatever its explanation. In pp data, it
seems to be associated with a line of zeros of Fig. 13
propagating through the edge of the Dalitz plot, and
forming the cusp of Fig. 20 at 1430 MeV.

We have tried several modifications to the D-wave con-
tribution above fz(1270). Firstly, in order to study the
effect of the pp threshold, we have given the fz(1270) a
width for decay of the form of Eq. (52), and normalized
its strength to the PDG branching ratio of 6.9% on reso-
nance. This produces only a tiny change in y of 1 and
does nothing to eliminate the need for a contribution cen-
tered at 1560 MeV. The implication is that, if the pp
threshold plays a role, rescattering back to the 2m chan-
nel modifies I z in such a way as to generate the cusp at
1430 MeV.

Secondly, Vandermeulen [46] has pointed out that high
mass states are enhanced. This is probably a form factor
efFect: high mass states are produced with a small
momentum transfer, q. Figure 20 suggests that the high
mass side of the fz(1270) may be enhanced by this effect.
We have tried including the Vandermuelen factor explic-
itly into the fit. It helps slightly in reducing y and the
D-state contribution at 1560 MeV, but does not eliminate
it.

In summary, we find the D-state contribution above
fz(1270) to be indispensable and similar to that observed
in the CERN-Munich experiment; but we are not
confident of its precise explanation. It is risky at present
to interpret it as definitive evidence for a new resonance,
because of the restricted phase space and centrifugal bar-
rier. Its statistical significance is a factor 10 less than
fo(1505) and its contribution to the cross section is less

by a factor 7. A conservative explanation would be a
combination of the pp threshold and a qq resonance
which is expected around 1700 meV.

E. P-state annihilation

The Ax(1515) was originally claimed on the basis of
Asterix data. It is therefore necessary that we confront
our fits with these data. Our essential conclusion is that
the Asterix data can be fitted well with fo(1515). The
ambiguity arises because of (i) the large number of P-state
annihilation amplitudes, listed below, (ii) the complexity
of the m.~ S wave as a function of M . Asterix data
alone are not conclusive in sorting out this very compli-
cated story.

We first recapitulate the facts from the papers of the
Asterix group. They measured P-state annihilation to
m. +m no in gaseous hydrogen, using an x-ray coincidence
to identify a transition to the 2P state [47]. These data
show a strong Ax(1515) peak in M(~+a ). In S-state
annihilation in liquid hydrogen, the 1515 MeV peak is
much smaller. The Asterix Group also made measure-
rnents in gaseous hydrogen without the x-ray coincidence
[48]. Results lay midway between those from liquid and
from pure P-state annihilation, and were compatible with
the expected 50:50 mixture of P-state and S-state annihi-
lation in gas at 1 atmosphere. The inference is that P-
state annihilation favors production of Az(1515) and sug-
gests J =2+, because this would be strongly suppressed
in S-state annihilation by the centrifugal barrier.

The snag with this argument is that S-state annihila-
tion to m+m m is overwhelmingly dominated by the ini-
tial SI state ~pm. , which makes up 85% of the cross
section; S& annihilation to a final state involving ~m with
J=0 or 2 is forbidden by C parity. The possibility
remains that the much weaker (15%) 'So annihilation
may also lead to an Az peak, and this is how we have in-

terpreted the 3m data, to which S& annihilation does not
contribute.

In fitting P-state annihilation, the Asterix Group tried
assignments J =0+ or 2+ for Ax(1515) and obtained a
slightly better y with the latter hypothesis. A complica-
tion in the analysis is that the location of the A~ peak in,
say, the s channel coincides closely with the crossing of
two p(770) bands in t and u channels. The Asterix Group
argued that the A~ peak could not originate from a triple
interference between the two p(770) bands and A~ having
J =0+. This is the essential point where we differ. We
use a more complicated form for the m.~ S wave, which
allows a good fit showing strong constructive interfer-
ence. By discarding this interference, Asterix were
pushed toward a 2 assignment for A&, in order to ex-
plain the peak in the data near cos0=0 in Az decays.
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We have fitted the Asterix data with x-ray coincidence
[47] after applying a correction for the 8% of S-state an-
nihilation, using data from Ref. [48]. These data corre-
spond to pure initial P states. Masses and widths of reso-
nances are fixed at values from Table III, and we use for
p'(1465) the parameters of Donnachie and Clegg [34].
The ingredients of the fit are

P~~f2(1270)m, L =1,
Pi~f i(1270)n, L =1,
P, ~f0(1505)n, L =1,
P ) ~f (01335)m, L = 1,

3P, ~(~m )sir L

P2~p(770)rr, L =2,
'P, ~p(770)vr, L =0,2,
P, ~p'(1465)n, L =0,
'P, ~p(770)m, L =0,
'P, ~p'(1465)m, L =0 .

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

TABLE IV. Fit to the Asterix x-ray data.

Initial
state

3p
3p
3p
3p
3p
3p
lp
3p

Amplitude

f, (1270)n.

f,(1270)m.

p(770)n. ,L =2
p(770)m, L =2
p(770)m. ,L =0
(~~)s~
p(770)~, L =0+2
p'(1465)m, L =0

Intensity (%%uo}

10.8
11.7
9.5
8.1

3.3
18.6
36.9

1.1

The Asterix Group included phase space amplitudes for
final states. We have dropped these, but substituted the

Swave . in the form of Eq. (30). We have used the
form IIP for (nm)s given in Table III, but have multi-

plied it by a factor (A, +Ass) in order to allow for the
fact that initial P states may couple to the ~~ S wave
with different coupling constants at different masses. In
order to test the J assignment we have tried substituting
P2 and P, ~ Az(1515)m with L =1 in place of
P, ~fo(1505)a.

Our fit differs from the Asterix Group by including a
substantial amplitude for P, +(m.n. )st, see—Table IV.
The phase variation of the ~~ S wave plays a rather im-

portant role in the fit. The Argand diagram for our
(~m)s amplitude is shown in Fig. 21. The fo(1505) am-

plitude is stronger than in S-state annihilation, Fig. 16.
The Asterix data alone do not give a strong

differentiation between J=0 and J=2 for the resonance
at 1505 or 1515 MeV. With J=0, g =327 and for J =2,
g =304 for 231 degrees of freedom. The Asterix Group
have only limited Monte Carlo statistics for their evalua-
tion of acceptance, and in our quoted g we allow for sta-

1-
I

0.9B
|~]~i II

FIG. 21. The Argand diagram for the mm S-wave amplitude
in p-state annihilation.

tistical errors in this acceptance. We remark that the
J =2 hypothesis allows two initial states, P2 and P, ,
giving different cos8 dependence [47]; these two ampli-
tudes give more freedom in the fit than the J=O hy-
pothesis, so the difference in y between these two hy-
potheses is not decisive.

How then does our fit reconcile the observations de-
scribed at the opening of this subsection? The f0(1505)~
peak lies almost on top of the intersection of the two
p(770)m bands and interferes constructively with them.
This leads to the strong peak at —1515 MeV in M +

Our fit to the data in this region is essentially perfect,
with no systematic discrepancies with the data. The situ-
ation for S-state annihilation to m+ m m is that
S& ~p(770)m amplitudes are totally dominant, account-

ing for 85% of annihilation. They give a modest peak at
the crossing of p~ bands, hence a rather small peak near
A~. The remaining 15% of So annihilation makes a
contribution too weak to give a significant fo(1505) sig-
nal. The appearance of the Ax peak in P-state annihila-
tion but not in S-state annihilation to ~+m m is there-
fore explained straightforwardly.

Having fitted P-state amplitudes to Asterix x-ray data,
we can carry these amplitudes over to 3n (dropping the
'P, contributions, which are absent there). This enables
us to estimate the fraction of P-state annihilation taking
place in pp~3m . The optimum fit gives 1% of P-state
annihilation, with a y differing only by 5 from zero con-
tribution. The fit is stable against forced introduction of
P-state annihilation up to 5'. For this fraction, y has
increased by 9%% and is roughly parabolic with P-state
fraction. Beyond this P-state fraction, the character of
the fit changes qualitatively and y increases rapidly.

Suppose we introduce a large fraction of P-state annihi-
lation, along the lines of Ref. [13]. There, no attempt was
made to achieve consistency with the Asterix data. We
have tried making a simultaneous fit to 3~ and gym
data with Asterix x-ray data, varying the strengths of am-
plitudes (62) to (71). Firstly, using the simple parametriz-
ation of the vrvr S wave of Ref. [13], we cannot achieve
any simultaneous fit with reasonable g . The solution of
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TABLE V. Intensities ofcontributions to 3~ and gg~ data,
normalized to 100% for the full amplitude squared. The first
entry is for the en Swave excluding f0(1335) and f0(1505).

Channel
~n. S wave
fo(1335)
fo(1505)
f, (1270)
f2(1560)
ao(980)

f2(1525)
Total

3~'
11.4
33.9
50.9
12.0
7.7

115.9

17.1
7.2

11.4
2.7

19.1
0.40

58.0

a)

FIG. 22. The pole diagram in the 23 channel (a) and the cor-
responding triangle diagram (b).

Ref. [13]is therefore unsatisfactory. However, this situa-
tion is not a clean one. If the n.m. S wave is given the
more complicated form of Eq. (60), with five A parame-
ters, there does exist suScient flexibility to give a fit with
a wide variety of large P-state fractions and with a y
worse than for zero P state by only 25-50%, depending
on the precise parametrization. This ambiguity cannot
be resolved definitively from data presently at our dispo-
sal. However, from simulations, we believe it could very
probably be resolved by data on pn ~m n pn There . (i}
the nm S wave is present in only one channel and (ii) the
p(770) is present in the other two and acts as a powerful
interferometer for both S-state and P-state contributions.
We await these data with interest.

F. Branching ratios

Points of interest are the branching fractions of
fp(1335) and fp(1505) to n n. and gri. In Table V we
collect together the intensities of resonances and the rrn S
wave from our compromise fit, Table III, integrated over
the available phase space. The table is normalized to
100% for the total amplitude squared.

The branching ratios for pp ~3m and pp ~gym are,
respectively, 6.8 X 10 [48] and 2X10 [13]. Normal-
izing to these values we find the branching ratios

pp~fp(1335)m. ~~ m ~ =22X10 (72)

pp~fp(1335)m ~ririn =1.4X10

pp~fp(1505)mc~mcm m =33X10

pp ~fp( 1505 )n. —+rien =2. 3 X 10

(73)

(74)

(75)

As regards errors, the main diSculty is that there are
strong interferences between amplitudes, particularly
with the background (m.n. )$ amplitude, both the piece
below s =1.2 GeV and the parabolic background above
s =1.2 GeV . It is immediately evident from Table V

I

that the individual contributions squared for qg~ add up
to only 58% of the full amplitude squared. For 3mp, the
corresponding total is 114%. In the case of rIrIn, there
is another ambiguity. The background term a+b$ is
large and could be in either n m or n.r). One cannot distin-
guish between these two possibilities since $,z, $23, and

$» are linearly related and the mass range is limited. The
consequence is an uncertainty in both em and pe branch-
ing ratios of at least a factor 2. This is unfortunate, but
unavoidable with present data. Our best estimates, sub-
ject to this proviso, are

fp(1335 )~gg
0 0 0 068

fp(1335)~m n.

fp(1505)~rjg
0 0 0 075fp(1505)~m n

(76)

(77)

In all fits, there is no doubt that both resonances decay
dominantly to m ~ .

P
A23

M~ —
823

—iM~ I
(78)

The triangle amplitude for the diagram of Fig. 22(b) is,
using the same form as in Ref. [12] and putting
m) =622=613 =m,

IV. TRIANGLE SINGULARITIES

We now turn to the triangle singularities of the form of
Fig. 2. These were studied in the 1960s [22—24] and con-
tinue to attract interest [10—12]. The problem of the tri-
angle singularity is part of a more general one: the prob-
lem of anomalous singularities in the physical region [4].

The triangle singularity can be calculated in a com-
paratively simple way with the use of Eqs. (13)—(15) if
one substitutes for A23 (or A &3) the Breit-Wigner ampli-
tude in Fig. 22(a):

lS (pP (J$ —$]g)[R ($]p)+($]2—$ —m )(Jp —$$$)+/R ($$$)R (Jp)]
ln

QP($,2)R ($,2) (J2 —$,2)[R ($,2)+($,2
—$ —m )(J,—$,2)+V'R ($,2)R (J, )]

2$]g(2m '—M')+$ gz($ —m '—$ $/ )+V R ($ $/ )P ($]g )
+ln

2$,2(2m —M )+$,2($ —m —$,2) QR ($,x)P($&z)—
(79}
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where

R (s,2) = [(V's +m) —s,z][(&s —m) —s,2],
P(s&z)=s, 2(s&2

—4m ),

J, &=2m + —,'(s —m —M )+ +P(M )R(M )
2—

(81}

p i5)2+ie si»12A( ($12)
My+&I Mg

(83)

channel 23 and the dashed lines the corresponding trian-
gle singularities. The latter intersect with the resonance
where it crosses the edge of the Dalitz plot. Physically
this arises because particle 2 of resonance 23 in Fig. 23(b)
must correspond to forward or backward decay of the
resonance, in order that it collides with the spectator 1.
The sum of the two diagrams is given by

(m +M+ ) ~s ~ m +2M+ . (82)

It is located in the complex s,2 plane below the physical
region, in the same manner as Breit-Wigner resonances.

The locations of the triangle singularities are illustrat-
ed in Fig. 23. The solid line shows pole production in

S12
lk

triang
singu

b)I

with M =M„—iM I .
The imaginary part of the first logarithm on the right-

hand side of Eq. (79) is chosen such that A(r', does not
contain a singularity of the root type at the point
s, 2

= ( &s —m ) where R (s,z ) vanishes. To this end, it is
necessary that the phase of the expression under the loga-
rithm vanishes at the point s,z=(&s —m} . We note
that both logarithms in Eq. (79} have singularities at
s,2

=J
&

and s &2
=J2. But these singularities cancel each

other on the first (physical) sheet. The logarithmic singu-
larity s&2=J„located on the second sheet, occurs near
the physical region at

Here 5,2 is the phase shift for the scattering process
12~12. In Eq. (83) we redefine the constant Ju, changing
the sign of the pole diagram compared with Eq. (79); this
new form is more suitable for our purposes.

The amplitude (83) satisfies the Schmid theorem [49]:
it is integrated over z23 [see Eq. (15)]. Near the triangle

singularity, s,2
——J, , it is proportional to the factor e

' ".
So if we had a production amplitude containing only the
two terms of Eq. (83), the effect on the one-particle spec-
trum (particle 3), would be the same as for the pole dia-
gram alone. That is, there is a specific cancellation in the
one-particle spectrum. However, if the production am-
plitude has other terms, as in Fig. 23, interference effects
destroy this cancellation, and the triangle diagram will
have some inhuence on the spectrum. Nevertheless, it
will not be a large effect.

Now let us briefly discuss the properties of the triangle
singularity. It is located at s, 2

=J [see Eq. (79}]. This lo-
cation can be easily found from the diagrams of Fig. 23,
which we consider individually.

(i) For Fig. 23(a), the total energy is not large enough
to produce the resonance in channel 23. The triangle
singularity is far from the physical region.

(ii) For Fig. 23(b), the high mass resonance 23 is pro-
duced at its threshold. The triangle singularity appears
near a value of s,2 where the resonance touches the bor-
der of the Dalitz plot. Here we consider a resonance of
small width.

(iii) In Fig. 23(c), the resonance is produced with some
kinetic energy which is not very large. The position of
the triangle singularity is determined by the point where
the resonance crosses the lower edge of the Dalitz plot.

(iv) In Fig. 23(d), the singularity is near the threshold
of channels 12 and 13. Finally in Fig. 23(e), resonance 23
is produced with large kinetic energy. The triangle singu-
larity is now far from the Dalitz plot, i.e., far from the
physical region of the reaction.

Summarizing, triangle singularities originate dom-
inantly from high mass resonances, but the triangle
singularities affect regions of lower s. Physically this cor-
responds to the fact that resonance s23 needs to decay in

such a way that the decay particle can catch up with the
spectator particle.

e)

FICz. 23. The location of the triangle singularity near the
physical region of the Dalitz plot (dashed line) depending on the
position of the related resonance (solid line).

V. NUMERICAL RESULTS FOR THE TRIANGLE
SINGULARITIES

In the calculation of the triangle diagrams we take into
account the 5-wave resonances fo(984—986} of Table I,
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TABLE VI. Comparison of two sets of parameters with and without considering the triangle singu-

larity.

Resonance

f0(1335)
fo(1505)
f2(1270)

Low energy
mw S wave

II-sheet pole
III-sheet pole

A(1335)
A(1505)
A(1275)

A,
A2

A3

A4

0.250
0.143
0.200

s& =0.155 s2=1.535

y) =3.545 y2= —3.728

y =1.765 y = —1.291
y5= —0.433 y6= 1.134

M] =0.984 i0.039
M2 =0.986—iO. 102

0.4663—i0.7237
—0.3234—i0.6296

1.0
—8. 1039+i5.3040
8.9249—i4. 8739
6.6132+i0.9599

—7.9705—i l.2337

1.317
1.497
1.275

Parametrization without
triangle singularity

M r

Parametrization with

triangle singularity
r

1.319
1.497
1.274

0.254
0.145
0.200

s& =0.378 s2 =1.522

y) =2.552 y~= 2.685

y3 1.075 y4 = —O. 778

y5 = —0.516 y6= 1.088
Mr =0.984—i0.036
M2 =0.980—iO. 120

0.4862 —i0.6542
—0.3206—i0.6077

1.0
—3.7489+ i5.9112
4. 1848—i5.8031
4.3457+ i1.1521

—4.7535—i0.2612

form I, plus fo(1335) and fo(1505) and the D-wave reso-
nance f2(1275). For S-wave resonances, Eq. (83) is used
where p is the residue in the position of the correspond-
ing resonance. The centrifugal barrier should be taken
into account for the triangle diagram with f2(1275): we
substitute in this calculation BJ2($23 $]2 )

~B~[M (1275),J( ].
Results of calculations without triangle diagrams and

with them are presented in Table VI. In this case, masses
and widths change only slightly and likewise the poles of
the low-energy S-wave rrnarnplitude. . This is no surprise

because the low-energy S-wave err amplitude is mainly
determined by data of Refs. [29-31], which were taken
into account in both cases. The triangle singularities tend
to aff'ect the region of large energies less than low ener-
gies because in Fig. 23(e) triangle singularities are far
from the physical region. The main changes are in the
magnitudes of A parameters, particularly for the slowly
varying err S wave. There is a considerable change in the
phase of this amplitude (-25').

The Argand diagrams for the S-wave amplitude are
shown in Fig. 24. Let us denote the S-wave amplitudes
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FIG. 24. Argand diagram for the S-wave

~m amplitude in pp ~3m. (a) for the fit without
triangle diagrams; (b) with triangle diagrams,
A '"' Eq. (84); (c) for A,",", ; (d) for A„.
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without the triangle diagram as A (s) and with triangle
diagram as A'"'(s). Figures 24(a) and 24(b) show fits
without and with triangle singularities. One can see that
these two amplitudes practically coincide, i.e., the quality
of the fit to the data is of the same quality either way.
The amplitude A'"' contains two contributions, reso-
nance production and triangle diagram amplitudes

A'"'(s)= A""'(s}+A„(s),
(84)

e 2iSts)

A„(s)=—rto(s) A"„(s),

with 5 and rto the isoscalar m.m S-wave phase shift and
inelasticity; the factor 2/3 is the isospin coefficient. The
corresponding Argand diagrams for A,",", and A„are
shown in Figs. 24(c) and 24(d). One can see that the cir-
cle which corresponds to the narrow resonance at 980
MeV becomes very visible in the Argand diagram for
A,",", . The rescattering diagrams shadow it to a consider-
able extent in Figs. 24(a) and 24(b).

VI. DISCUSSION AND CONCLUSION

We have shown that two fairly narrow resonances
fz(1335) and fz(1505) are capable of fitting Crystal Bar-
rel data on pp ~3m and gym . It is desirable to confront
other data sets, notably CERN-Munich data, with this
hypothesis.

The assumption in this analysis is that annihilation is
dominated by the initial state So. The previous analysis
interpreted fo(1505) instead as Az(1515) with J =2+,
but required a high fraction of P-state annihilation,
namely, -60%. Our analysis is stable against small
amounts of P-state contribution. Also our identification
of fo(1505) is compatible with Asterix data on
pp~m+~ ~ . If the P-state amplitudes from the latter
are carried over to pp~3~, the fraction of P-state an-
nihilation in this reaction seems to be small, —1%. Fur-
ther data on pn ~m m ~ at rest are likely to be helpful.
Our analysis procedures are applicable to any process of
three-body annihilation.

The lower resonance, fo(1335) is an obvious candidate
for the (uu+dd)/~2 member of the ground state 0+
nonet in view of its similarity in mass to members of
1++, 2++, and 1+ nonets. There is evidence for the
I = 1 partner ao(1415) [17,18,50]. A third candidate for
the 0++ nonet is Ko(1430} [51]. The ss member of the
nonet is not well identified at present. The LASS Colla-
boration [51] has evidence for fo(1525)~KOKO at a mass
of 1525 MeV. Another potential candidate is G(1590) of
the GAMS Group [42]; this is claimed to have a strong

gg decay mode and an even stronger gq' decay mode. It
is a little surprising that G(1590) does not show up in

Crystal Barrel data. A better place to look will be in

pp ~n(KK).
The fo(1505) does not fit naturally into a nonet, be-

cause of its strong mw decay mode. The E760 Collabora-
tion [52] sees a peak at 1500 MeV in m n and 7)g in

pp~3m and gym at 3 to 3.5 GeV. The Crystal Barrel
Collaboration also sees a narrow gg peak at 1500 MeV in

pp estrin at 1.94 GeV/c [53]. If fo(1505) were a radial
excitation, such strong production would be surprising
because of the node in the radial wave function. It is also
anomalously low in mass for a radial excitation, which is
expected at 1700—1800 MeV. We remark that Bridges
et ol. [54] claim that pnsm X,X~4m is dominated by
an I =0 resonance at 1500 MeV with J =0++ or 2++,
though they prefer 2++.

An innocent explanation of fo(1505) or Ax(1515)
could be that it is associated with the pp threshold, in the
same way that fo(975) and ao(980) seem to be connected
to the KK threshold and fo(1420) could be a KK" mole-

cule. However, there are arguments against this. Firstly,
strong production of a molecule in E760 data is difficult
to explain. A molecule especially implies a large radius
(two qq pairs well separated) and should be suppressed by
its form factor. Secondly, a molecule should be coupled
to (pp+coco)/&2. The narrow width of fo(1505) is not
easily reconciled with pp. Also there is no effect in the
data at the coco threshold, nor any coco threshold enhance-
ment in pp —+cocos at rest [55].

Finally we make a case for fo(1505) to be a glueball

strongly mixed with qq in order to explain its strong ~m

decay mode. A pure glueball state would be a color
singlet and will have equal branching ratios to m m and

rtg, except for a phase space factor q which favors mn by
about a factor of 1.3. One should look for a glueball in

J/g~yX. We remark that there is indeed a peak in this
reaction in X~4m just at 1505 MeV, and with a width
commensurate with what we find [56]. Published analy-
ses find J~=O, but this assignment deserves scrutiny.
The analyses assume a pure pp final state, but contribu-
tion from ciao. might afFect this conclusion. Branching ra-
tios predicted for p p and p+p disagree with the data.
Also one must wonder why a 0 state, which decays to

pp by I. =1 should couple so strongly to pp below its
nominal threshold.

It is our opinion that the glueball hypothesis has to be
taken seriously. The mass predicted by lattice gauge cal-
culations is 1500 MeV [57], though in the quenched ap-
proximation.
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