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Anomalous nuclear enhancement in deeply inelastic scattering and photoproduction
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We derive the anomalous nuclear dependence of jet cross sections in deeply inelastic scattering and
photoproduction, in terms of twist-four parton distributions in nuclei. This paper presents details of the
use of factorization at higher twist to describe multiple scattering in nuclei, and the methods described
here are applicable to a variety of other high-p& cross sections.
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I. INTRODUCTION

Hard scattering in a nuclear environment affords chal-
lenging tests for the theory of strong interactions. Some
time ago [1], it was observed that nuclear size efFects are
observable for momentum transfers hard enough to show
partonic substructure [2]. By now, there is extensive ex-
perimental data on nuclear effects in exclusive scattering
[3], single-particle inclusive hadroproduction [4], Drell-
Yan, charmonium, and Y production [5], jet hadropro-
duction [6,7], inclusive deeply inelastic scattering [8],and
most recently, jet photoproduction [9] and jet production
in deeply inelastic scattering [10]. On the theoretical
side, considerable attention has been given to exclusive
processes and possible nuclear transparency [11],as a test
of the structure of both individual hadrons and nuclei,
and to shadowing, as a probe of soft-parton evolution
[12]. In contrast to shadowing, single-particle inclusive
and jet production experiments often show a nuclear
enhancement, in which the cross section rises faster than
linearly with atomic number A. This effect was early on
recognized as a sign of multiple scattering [13—15].

In our previous work [16], we showed that nuclear,
enhancement in photoproduction may be brought direct-
ly into the scattering formalism of QCD, by treating it as
a factorizable [17,18] nonleading-power correction to
hard scattering [19]. Nuclear enhancement appears in
this context as a property of two-parton matrix elements
[16,20—22]. In this paper, we shall describe the details
that led to our previous conclusions [16] and extend our
results to jet cross sections in deeply inelastic scattering.
We have recently [21] used jet photoproduction data to
estimate the size of the relevant twist-four matrix ele-
ments. We reserve for future work applications to yet
more complex processes, such as jet production in
hadron-nucleus collisions, which involve initial-state
strong interactions that are absent in deeply inelastic
scattering and photoproduction.

Our basic observation that makes these developments
possible is the following. The infrared divergences associ-
ated with soft rescatterings in perturbation theory may
systematically be absorbed into higher-twist matrix ele-
ments, leaving behind calculable hard scattering func-
tions. The reasoning that underlies this conclusion is de-

scribed in some detail in Ref. [18].
We begin (Sec. II}with a review of the kinematics of jet

production in deeply inelastic scattering (DIS). In Sec.
III, we go on to describe how to isolate nonleading-power
corrections in these processes by a "collinear expansion"
in the momenta of the partons that participate in the
hard process [17,21,22]. Section IV describes the calcula-
tion of the resulting DIS infrared-safe hard scattering
functions at lowest order. We shall see that these contri-
butions are proportional to new nuclear matrix elements,
which difFer from the quark and gluon distributions that
occur at leading power by two extra gluonic field
strengths, associated with the soft rescattering of outgo-
ing partons. We will also identify the origin of nuclear
size effects in the incomplete cancellation of final-state in-
teractions at higher twist. Section V describes another
effect, in which there are two sequential hard scatterings.
This process is present in DIS although not in photopro-
duction. We note that at lowest order soft rescattering
and double hard scattering occur for kinematically dis-
tinct parton momenta and contribute additively, without
overlap. In Sec. VI, we discuss in more detail the origin
of the A dependence in the matrix elements that we have
derived. Section VII treats the reduction to photopro-
duction, and finally, Sec. VIII describes some details of
practical calculations and our phenomenological results.

II. KINEMATICS

In most of the following discussion, we will study
electron-nucleus DIS

e (L)~e (L')+y'(q),
y'(q)+ N (P„)~jet(l )+X .

(la)

(lb}

q"=(0,0,0, —Q),
where

(2)

This semiinclusive process is pictured in Fig. 1. For kine-
matics, we rely on the analysis of Ref. [23]. We choose a
frame in which the time component of the virtual photon
momentum is zero and its space component lies along the
negative z axis:
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P"=( P+,0,0~) with P+ =&—2P .
FIG. 1. Kinematics for semiinclusive one-jet production in

lepton-hadron DIS.

PJ'=(P, O, O, P), (4)

Q2 q2

The space components of the momentum of the incoming
nucleon are along the positive z axis,

The momentum of the observed final-state parton, I",
can be given as

l2
I"=,I,I, (9)

21

consistent with l =0, where we fix its minus component
l and transverse components l~. In this paper we are
only concerned with larger I~. The incident and final leper

tonic momenta L"and L'" are related by

and the nucleus has momentum

P„"=AP",

with A the atomic number.
In light-cone coordinates, we have

+ & 0q+= —(q +q')=
&2 ~2 ' (6a)

qI'=L" —L'",
(L) =0

(L') =0,
so that

2L q= —
Q

(10a)

(10b)

(10c)

qua=0

1 0 z
(6b)

(6c)

This leads to
' 1/2

2
L+ Q

2

N —1
2P q

(12a)

01
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I R
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e
e
C

' 1/2
W

2 2Pq'
L "=+2L +L cosP,

L~=Y2L+l sing,

(12b)

(12c)

(12d)
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FICx. 2. Leading-order cut diagrams for soft rescattering in
lepton-hadron DIS. L„M, and R stand for three possible cuts:
left, rniddle, and right, respectively.

FIG. 3. Cut diagram in Fig. 2, diagram (1), with detailed la-

beling of parton momenta. The quark line of momentum I be-
comes a jet or fragments into an observed particle. A cut
through the right (R }in this diagram is not shown.
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where

to =2(P L)

is related to the angle between P and L, while P is the az-
imuthal angle between L~ and Ij, with /~ chosen to lie
along the x axis.

We are now ready to describe the basic processes at the
partonic level that lead to nuclear enhancement.

III.COLLINEAR EXPANSION
FOR ADDITIONAL SOFT SCATTERING

There are two sorts of double scattering processes that
contribute to nuclear enhancement in DIS. The first is
double hard scattering, which has been studied previous-
ly [13,14], although from a somewhat difFerent point of
view from the one we will take below. More details about

I

our treatment of double hard scattering will be given in
Sec. V. In the second sort of double scattering process,
the large momentum transfer occurs in a single hard
scattering, but an outgoing high-pT parton absorbs a soft
gluon, which modifies the overall cross section, without
bringing in a large additional momentum. We will refer
to this process as soft rescattering below and will concen
trate on it first.

At lowest order, the partonic cross section correspond-
ing to soft rescattering includes ten diagrams, and each
diagram has three cuts, labeled by L, M, and R, respec-
tively, as shown in Fig. 2. By convention, a cut is
identified by a vertical line through the propagators in
the figure that represent the final state (referred to as cut
lines below). I.et us consider one of these figures, Fig. 2,
diagram (1), in detail to show how the fomalism works.

The example is shown in Fig. 3. Its contribution to the
cross section can be written as

d o a e 4

E qs EMq d I 1

dL' 2qrto (2qr)" Q'

L„„=Tr[gy„g'y„],
K3 4 4

(2qr) (2qr) (2m )

XTrI 8" ~"(K&,Kz, K3)( A
~
T [f(z, ) A&(z2) 3 (z3)]g(0) ~

3 )],

(14a)

(14b)

(14c)

K, =x,P+n, (15a)
I

where aEM is the electromagnetic fine-structure constant,
and i and q denote the observed parton momentum and
the momentum transfer, as above. For brevity, we will
simplify for now to the case of one quark flavor, with
electric charge e in units of electron charge. In Sec.
VIII, we will return to the realistic case of multiple quark
flavors. The motnenta K„K2,and K3 are marked in Fig.
3. In Eq. (14c), 8" ~" corresponds to the hard subpro-
cess. f is the quark field and A the gluon field. We
suppress color indices, which may be handled in a
straightforward manner [21].

To pick up the leading contributions to the nuclear
enhancement, we expand the parton momenta at the fol-
lowing values:

K2 =x2P+n+Kz~, (15b)

K3=x3P+n+K3L . (15c}

This is known as a collinear expansion [22,17]. The
minus components of the E, give even smaller contribu-
tions in 8 and will be neglected. In addition, K&~ depen-
dence in 8 will not be associated with A enhancement
and we drop it as well. Later, we will show that x2 and

x3 can be fixed by poles as functions of K2~ (or K3j) and
IJ and that they vanish when Kz~ and K3j go to zero.

Once we have dropped the K,~ and K, (i =1,2, 3}
dependence in 8, their integrals give 5 functions and al-
low us rewrite Eq (14c) as.

P+dx, P+dx2 d K2~ P+dx3 d K3j
dz, dz2 d z2~dz3 d z3j

2qr 2qr (2~)2 2' (2qr)2
+ + ~ +tx&P zl tx2P z2 —tK2J Z2J 3P z3 lK3J Z3JXe e e e e

XTr[8"~"(x,P,K„K,)( A
~ g(z, ) A p(z, ) A (z, )g(0) ~

A ) ] .
(16)

Here we drop the time-ordering symbol, because eventually these fields will be restricted to the light cone, where they
commute [18]. We now apply the collinear expansion as follows.

First of all, we expand the hard part in momenta about the collinear direction:
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a8&' (x,P', Z„x,P+)8" ~"(x P+ K K )=8"~'(x P+ x P+ x P+)+ (K —x P+)
2p 2l

a8&' (x,P+,x,P+,SC, )
+ (K3 x—3P+ )

BK3

(18)

with

1 B 8" ~"(x P+ IC E )
(17)

2 BIC~ BK3 K2~ =K3J OJ

where we did not list explicitly terms such as 8 8" ~'/c)Kz and c} 8"'~'/BE3, because, for reasons that will become
clear below, they do not contribute physical double scattering. We will return to this point at the end of this section.
The factor (E, x,P—+ } in Eq. (17}can be written as

(IC; x;P +—) =co c' E,

P np
~P=g P-

Pn
In this discussion we will confine ourselves to experiments with unpolarized beams. Thus odd-twist contributions, e.g.,
the second and third terms in Eq. (17), vanish on taking a spin average. In addition, the leading term,
8" ~'(x~P+, xzP+, x3P+) does not contribute to A enhancement because it is independent of transverse momenta.

Later, in Sec. IV C, we will come back to this point in detail.
Next, by using

A = A ~ +P
P n

we expand the matrix element in the vector field components,

& All('(y~ )Ap(zz)A (z3)Q(0)IA &=co 'cop~& Alg(y~ )A&(z, )A (z, )g(0)l A &

+co & Alg(y, )n A (zz)A, (z3)g(0)l A )
, Pp

(20)

+ co/'& Alg(y& ) Ac(rz)2n A(z3)g(0)IA )P'n

P PI3+
2 & Alt((y& )n A(zz)n A(z3)f(0)l A ) .

(P n}
(21)

It will be shown at the end of Sec. VI that because of the requirement of Lorentz boost invariance for the matrix ele-

ments, in a covariant gauge, as is used in this paper [17,18j, terms associated with co A .(z, ) are suppressed by 1/P
compared to those with n A (z; ). This makes the last term in Eq. (21),

[P P&/(P n) ]& Alg(y& )n A (z2)n A(z3)g(0)l A ),
the dominant one. Therefore, in such a gauge, nuclear enhancement comes entirely from the single term

P+dx, P+dx2 d Kz P+dx3 d X3J8'" =— dP &
dz2 d z2j dz3 d z3J

2 2n2m '(2~) 2n' (2~}
+ + +

1 g 1 2 2
—iK2l 2i ix3 P z3 —iK3j z3JXe e e e e

XTr
a'8&' (x,P+,SC, Z, )

BK2 BK3

P PI3
X m K&.co~ K3

(Pn}.K2~ =K3J 0~

X & A lg(y, )n A (z2)n. A(z3)g(0)l A ) (22)

To derive a factorized form for W", we treat Eq. (22) in the following three steps.
(i) Ignoring the efFect of twist higher than four, the Dirac trace in Eq. (22) can be separated into two,
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a28&'"(x P+ K K )

BK2 BK3
( A lg(yl )n ~ A(z2}n ~ A(z3)ltl(0)l A )

K2J K3l OJ

2

[Tr[8" ~ (x,P+,K2,K3)p]] lz z o Tr[( A lg(y, )3' ~ A (z2)n ~ A(z3)g(0)l A )] . (23)
4(P n). BK2,BK3

I

(ii) We integrate by parts in z2 and z3 to change the momenta K2 ~ and K3 ~ into derivatives on fields, 8/BZ2 and

a/az,',
z2l z3Je " "e " "co K2p'coo E3 .Tr A y) n ~ A z2 n ~ A z3 0 A

1 B[n A (z2)] B[n ~ A (z3)]
d z d z e

'
2e 22 22Tr (A lltl(y )Q l((0)l A )(,)2 p e 2i 3J. cr' (24)

(iii) The E22 and E32 integrals now only act on the exponential factors e " "e " " and thus give fi functions.
The result of these steps is

1 p' ~ y 1 y2 y3
d d xl 3'1 2 P2 3 P3d d d + — + — +8'""=——a) pa) e e

8 p 2~ 2~ z~

x [Tr[P" "(x,P+,K2, K3 }PP P&)] lK

8 n A(z2) 8 n A(z3)
XTr A ), , 0 A

Bz z3 z2
(25)

Because the values of x l, x2, and x3 will be fixed by 5 functions and poles of the hard part 8" ~"(x lP, K2,K~) (we will
ixj P y

&
ix2P y2 ix3P y3 ~ ~

exhibit this shortly in Sec. IV), we move the exponentials and integrals fdx, dx2dx3e ' ' e ' 'e ' ' inside
the derivative of 8 /BK2 BK3,

dy, dy2 dy3 8 n A(z2) 8 n A(z3}

2 Z3

X
BK2 BK3

ix&P+y
&

ix2P+y2 ix3P+y3
QX)QX2QX38 e e

XTr[8" ~"(xlP+,K2,K3)PP Pp]
'

2l 3l l
(26)

Note that the derivatives act on the Kz dependence in the exponentials as well, once the x; integrals are carried out as
contour integrations.

As mentioned above (see Sec. VI for more details}, in a covariant gauge, terms with co A .(z; } are suppressed com-
pared to those with n A (z, ). So we have, keeping only the minimal number of fields,

co PF+ (y2 )=co P, [n. A (—z2)]l — n [co P A .(z2)]l' BZ2P' 2 &2 Bz 2 &2

=a) P, [n.A(z2)]l' azp'
2 2

co F+ .(y3 ):—co, [n ~ A(z3)]laz3' z3=y3
a In. [co A (z3)]

az3

(27a)

=co, [n.A(z, )]l
az3

(27b)

Then the matrix element in Eq. (26) becomes, up to power-suppressed corrections,

)F, (y )F .(y )y(0)l» . (28)
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In principle, we can expand matrix elements such as
these as

&F, (y, )F+. (y, ))

C]lip 7l +C2npPl +C37lp7l

C.=.—.—&F., (y,
—)F„(y,—) &

=(F F )

d~C~= (F+;(y2 )F+) (y3 ))
2

+C4n n ~ +C5d ~ ~, (29) ,'(F—+,(y, )F+'(y3 )), (31e)

where

d
p ~ = ll

p
71 ~ + ll

p
n ~ gp ~

Then we have

C, =n'n (F+;(yz )F+~(y3 ))
=

& F++F+ &=0-

C2=n'n (F+, (y2 )F+ (y3 ))

=(F+ F++)=0,
C3 n'n (F+;(y2 )F+ (y3

=&F++F++ &=o

(30)

(31a)

(31b)

(31c)

where the expectation values are all in the nuclear state
~
A ). For the C4n n term, we have

p "'" 'W aK2p 3'

82

BK2 BK3

Because of the approximation that K~ =K3 =0, i.e.,
Eqs. (15b) and (15c), the hard part 8" '(x&P+, K2, K3)
is independent of K2 and K3 . Thus

a2 [8&"(x,P+,K, ,K, )]=0,
M2 BK3

and the C4n .n ~ term vanishes in our approximations.
Therefore, W" turns out to be

8'"'= — Tr A y, F+, y2 F+' y, 0

~2 ~ + — + — +ix&P y& ix2P y2 ix3P y3
dx&dx2dx3e e e

M2j dK3

XTr[8" ~"(x)P+,K2, K3)PP Pp)
'

2l 3l

where we observe

I I

co& co~ d~& =d (33)

Equation (32) has been derived at lowest order in the
hard scattering. As it stands, of course, it is not gauge in-
variant. Gauge invariance is incorporated at higher or-
ders and leading power by taking into account diagrams
involving more fields n A, which will form ordered ex-
ponentials between the physical fields shown in (32), as
discussed, for instance, in [17]. Such fields, however, can-
not correspond to physical rescatterings, since they can
be eliminated by a change of gauge. This is the reason
why we neglected terms in the collinear expansion [Eq.
(17)] that involved two derivatives with respect to Kz and
none with respect to EC3, or vice versa. Such a term
would involve only three physical fields instead of four.
As we shall see in See. VI, four physical fields are re-
quired to produce nuclear enhancement.

IV. CALCULATIQN QF THE HARD PART

A. Combining cut diagrams

Now we are ready to discuss the calculation of the
hard part,

+ + +' 2 Zx] x2 x3e e e

XTr[A'" ~ (x)P+,K~ K3)PP Pp) .

As an example, we still work with Fig. 3. In the follow-
ing calculation, two important points should be anticipat-
ed.

First, as is shown in the diagram, after a hard scatter-
ing the outgoing parton interacts with two more soft
gluons from the nucleus. Thus, in evaluating the cross
section, we encounter one phase space 5 function and two
virtual propagators involving the x,-'s. The poles of these
propagators will fix x2 and x3 to be functions of the
transverse momenta E;z. Then the x2 and x3 will vanish

x,P+y, ,P+y,
in the limit E,~~O. Therefore e ' ' and e
will reduce to unity eventually. In the absence of y
dependent phases, we may expect a significant contribu-
tion from the free integrals Jdy2 dy3 . This will be the

origin of the A enhancement.
In addition we will find a cancellation by summing

over the three cut diagrams, Figs. 3(L), 3(M), and 3(R),
corresponding to final-state cuts on the left, middle, and
right of the diagram in Fig. 3, respectively. This cancel-
lation eliminates the twist-two and even some twist-four
terms contained in Eq. (16). Nevertheless, certain twist-
four terms will survive. Along with the lack of y
dependent phases, this is another necessary condition for
3 enhancement.
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In the case that the cut is on the left, as shown in Fig. 3(L), we have

Tr[8~"(x,P+,K2,K3)PP Pp]

Tr [Py'[~+(x2+x3)P y—]y'[E+(x2+x3)P]
(I —q) [I +(x2+x3)P+ —q] [[I+(x2+x3)P+] —ie]

P'(1+x2P+Ei )Ply"(E ti)y—g]X (2m. ) 5~(l )5+[(x,P++q —I) ],[[I+x~P++Ki] —tej

where we have taken ECz = —E3~ =E~ by momentum conservation. We now define

—1
TrI Py'[1+(x2+x3 )P ti]

(I —q) [I +(x~+x3)P+ —q]

Xy"[f+(x2+x3)P]Pg+x2P+ gi)PEy"(E—tI)yz],

(34)

(35)

where the index 1 —L denotes that it belongs to the pro-
cess shown in Fig. 3(L). P, "L includes off-shell propaga-
tors only, and so it is a smooth function of the x s, which
can be fixed by the relevant poles and the 5 function.
Once the values of the x; have been fixed, I ",

"I can be
pulled out of the integrals fdx, dx2dx3 as a finite con-
stant tensor. Thus I ~&"

L does not yield any A enhance-
ment.

To get the cross section, we must compute 24 di6'erent
I",."„with i =I—8 and a =L, M, and R, each corre-
sponding to an individual cut diagram shown in Fig. 2.
To write them as symbols I'",", instead of their full ex-
pressions in the text will be more convenient, since they
do not play an important role in the A dependence. For
all of the left-cut diagrams in Fig. 2, the remaining fac-
tors in Tr[P" ~"PP Ptj], fortunately, have a common
form. It includes two final-state 5 functions, two propa-
gators, which can go on shell, and three exponentials,

5[(x,P++q —l)2]= 25 x, +1 Q

s+t+Q s+t+Q
(37a)

1

[I +(x2+x 3
)P+ ] —is

1

[I +x2P++K~ ] —is

(37b)
t [(xz+—x3)+islt]

(37c)
1

t [x2+ [(K—~ +21j K~ )It+i e jt ] ]

where

As we shall see, the quantity B [Eq. (36)] controls the A

enhancement with which we are concerned.
To evaluate Eq. (36), note that

B=(2m) 5+(I )5—+[(x,P++q —I) ]

lxl p+y
1

Ex2P+y 2 ix3P+y 3Xe e e

x
[I +(x2+x3)P+ ] —ie

s=(P+q) =2P+q —Q~,

t= (P —I) = 2—P+I—
u =—(I —q)

(38a)

(38b)

(38c)

x
[I +x2P++Kz ] —is

(36)
Now we can rewrite the integral J dx, dx, dx, BI';",as

+ oo + oo (2n. )dx, dx2dx3BI )"
L,

= dx, dxqd(x2+x3) 5 I+-
oo oo 2l

l2
1

21 s+t+Q s+t+Q

with

ix "+ + +ixlP yl ix2P (y2 —
y3 ) i(x2+x3)P y3e e 1—L

4t [(x2+x3)—ie'] Ix2 —[( Kj +21~.Kj )It +i s'] J— (39)

&0.2P+I (40)

We see that both variables x2 and x2+x3 have poles in the upper half complex plane. So after fixing x& from
5(x, +u l(s +t +Q )), we can carry out the other integrals fdx2dx3 by using contour integrations in x2 and xz+x3,
closing at infinity, and circling the poles, to get
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T, I =fdx, dx2dx3e ' ' e ' 'e ' ' Tr[8", t'(x, P+,K2K3)pP P&]

= —g 5 I4 dxt (2m) +
t 2l

l

21 (s+t+Q ) s+t+Q

where

p+y K J +2EJ lj
Xe ' 'exp i

2l
(3 2 3 3 } @y2 3 3 )@y3

X =Z
3 3

(41)

Kj+2Ki li
x = x2 3 (42)

The Dirac trace of I ]& L includes a factor

[r+(x', +xo)p]p(r+xop+SC, )pr=t2r .

A little algebra then gives

2t Tr[p(r tf)y"r—y "(r tt)—]ppv

(43}

(44)

We see that after the integrals of fdx2dx3, for fixed P and q, I ",
"

I is a function of I only, so that we can denote
I &,= r&"(I).

Figure 3(R), with the cut on the right, can be treated by a similar procedure. The essential difference is in the signs of
the is's and in the 5 function. The l function in T","I fixes x, = u l(s + t +Q ), whereas the 5 function in T","z fixes

x, +x2+x3 = u l(s +t +Q ). This difference will consequently influence the pole structure in T, tt and then make its
8 functions in they, different from those in T, " t [see Eq. (41)]. We find

T) „=fdx, dx2dx3e ' ' e ' ' e ' ' Tr[8) tt(x, P+,K2,K3}PP Ptt]

dx 4 l
4 i(2m)

~ I+ i 1
~

u

21 21 (s+t+Q2) s+t+Q2

ix&P+y
&Xe ' 'exp i

21
X =X

3 3

EC~2+2Eq lq

"2 2
(4&)

where x2 and x3 are the same as in T, L. It is easy to show that I ",
'

z =I ",
' I, which is a function of I only, as shown

in Eq. (44).
When the cut is through the middle [Fig. 3(M)], we have a slightly different result

T( M= f dx)dx2dx3e ' ' e ' ' e ' ' Tr[P) M(x, P+,K2 K3)PP Pt3]

dxi (2n)g4 g I+
t2 21

l2

21 (s+t+Q ) s+t+Q
lX') P

Xe ' 'exp i
E~ —2K~.l~

(y3 y2 ) &(y2 —
y& )&(y3 ) 0,

2 2

X =X
3 3

(46)

where

X) =X, —X2,wo

E j 2K~. l~
X — X2 3

l=l —x I'+ —E2

u =(I—q}

(47a)

(47b)

(47c)

(47d)

The differences in the 8 functions between (41), (45), and
(46},and in the exponential of T, ~ relative to T, I and

T& z, result from differences in the phase space 5 func-
tions and in the pole structure of the x s between the
three T's. Moreover, it is easy to 6nd that I ~& ~ is also
given by Eq. (44), apart from replacing the I with I, i.e.,
I ",

"
( I ) = I ",

"
( I I )—:I ", '( I }.
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B. K& expansion

At this stage, we are ready to expand T& I, T,
and T, z in E~ to make contact with the general factor-
ized expression Eq. (32). To do so, we need first to ex-
pand the exponentials in T, I [Eq. (41)] and T, z [Eq.
(45)],

where u =yz —y3, u =yz +y3, and we omit the g
fields and indices of the F's. This term [Eq. (48)] may be
eliminated by using the fact that the fields commute on
the light cone [18]. In other words, on the light cone we
have

&AIF(u}F(0)IA &=&AIF(0}F(u)IA &

exp i
Kj +2K' li

yz y3
=& AIF( —u)F(o)IA &,

and in T, I [Eq. (46}],

so that

u AFuFO A u

exp i
Kj 2Kj —lj

yz u AF uFO A u=O.

In both cases the linear term in the Taylor expansion
gives a matrix element

f dyz dy3 & A IF(yz }F(y3 )I A &(yz y3 )

v u AF uFO A u, 48

Up to terms that vanish faster than Ej, we may therefore
replace exp[i((K~ —2K~.I~ }/2l )(y 3

—
yz ) ] by

exp[i((K~+2K, .l~)/21 )(yz —y, )] in T, I, which

makes the exponentials in the three T's the same.
%e can now combine the three cut diagrams of Fig. 3

to get

d" i (2n. )
Ti t. + Ti st-+ Ti t-t

= g-—
21

X I'","L5 x, +

l~
2

ix I+y+
1 1

21 (s+t+Q )
r

Kj +2K' li
, +t+Q '"P ' 21- y' y

X[8(yz —
yz )8(y3 )+8(y3 —

yz )8(yz —y, )—8(yz —y, }8(yz )]

+ I ",
"I 5 x, +

s+t+Q
—I ~)" ~5 x, +

s+t+Q 8(yz —
y& )8(y3 )

(49)

where we have taken I ~& L
=I ~&" z, as is noted before. The exponential in K~ is suppressed in the final line, because it

only contributes at the order of K~. Corrections to Eq. (49) are either further power suppressed or lack A enhance-
ment.

C. Origin of A enhancement

Let us now study the range of the y; integrals in Eq. (49). The factor

[8(yz —y3 )8(y3 )+8(yz —
yz }8(yz —yi }—8(yz —yi )8(y3 }]

is equivalent to the restrictions

ly i I
& ly2 I

& ly 3 I
.

(50)

(51)

This means that the y2 and y 3 integrals are limited by y &, which gives no A enhancement because of the rapidly oscil-

lating exponential e ' ' . Since we are only concerned with terms including A enhancement, the first term in Eq.
(49) can be ignored, leaving

dx ) (2~)4
T, I+T, ~+T, „=—g J z 5 1+—

t2 2l

2
I-X ~+y+

1 I

21 (s +t +Qz)

X I ~) L5 x, + s+t+Q ~r —M& x)+ s+t+Q 8(yz —
y& )8(y3 ), (52)

where u is given by Eq. (47d). Referring to the expression for W" in Eq. (32), we recognize that these 8 functions are
exactly the conditions for final-state interactions.

If we fix ECz =0 before doing the contour integral, we get u =u and
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I ",
" (x,P+,x P+,x P+)=I"," (x,P+,x P+,x P+), (53)

so that the second term in Eq. (49) also vanishes. This shows that the twist-two term in the collinear expansion [see
Eqs. (17) and (21) in Sec. III]

p + + +"(,P+, P+, P+), ( Alp(y, } A(, ) ~ A(, )y(O)lA )
P n.

does not contribute to A enhancement. In fact, it reduces to an eikonal term for the twist-two distribution,
( A

l g(z, )P(0) l
A ) [19].

For a process in which the observed outgoing parton does not absorb soft gluons directly, we may expect no A

enhancement even from its twist-four term like Eq. (32). An example at this order is shown in Fig. 4, where the soft
gluons are absorbed by the "unobserved" final-state parton of momentum x,P+q. Repeating the same procedure as
above, for the three cut diagrams of Fig. 4 we find, in place of Eq. (49),

a=L, M, R

= —g dx, 514 (2m)

2l

j'2 5,+
21 (s+t+Q ) s+t+Q

p+y+ E J 2EJ lJ +
2

Xe ' ' exp i P+(y2 —y3 ) I ~L"

s+t+Q
X [8(y, —y, )8(y, )+8(y, —y, )8(y, —y, ) —8(y, —y, )8(y, )],

which, by Eq. (51), does not contribute to A enhance-
ment. We see that every cut diagram in Fig. 4 individual-

ly has at least one free integral, which may contribute to
A enhancement, but when we sum over the three cut dia-
grams, the combination of the step functions produces a
restriction that confines the integral to a small region
compared to the nuclear size. Outside this small region,
the integrals of the three cut diagrams cancel. Thus the
cancellation in the sum over cuts eliminates A enhance-
ment in this process. We may think of this as due to the
cancellation of final-state interactions whenever the soft
scatterings do not affect the momentum of the observed

I

particle. On the other hand, in Fig. 3(M), K~ fiows

through two poles and one final-state 5 function. This
leads to a relation between K~ and x& which makes the
result of Fig. 3(M) different from that of Figs. 3(L} and
3(R). In this case the final-state interactions affect the ob-

served particle momentum directly, and Fig. 3 survives
the cancellation between different cuts.

D. Summary of soft rescattering

In summary, the A enhancement in 8'"' from Fig. 3

turns out to be

4
8'~'= — Tr 3 y, F+j y2 F+ y3 0 A

16 2m 2m 2m

(2n)
5

21

2
lX)P

21 (s+t+Q )

X I","L5 x, +
s+t+Q

—I ~) ~5 x)+ s+t+Q 8(y2 —
y& )8(yq ), (55)

where

a2
V2

~+2i~+ K2~ = —
K3~—=K]

If we define

(56)

M (x)—:I dy2 e ' ' Tr (A lg(y, ) F+~(y2 )F+ (y3 —)g(0)IA & 8(y~ —y) )8(y3 )
2m 2~ 1 2 +l 2 (57)

then

4 4" '51+—
16~ 2l—

j' 2

, v' [r~,M, (x)—r~ M, (x)]l
21 t'(s + t +Q')

(58)



50 ANOMALOUS NUCLEAR ENHANCEMENT IN DEEPLY. . . 1961

where

s+t+Q

s+t+Q

(59a}

(59b)

+
xiP

oooooooooooooooi,
+ Cx,P -C

x&P +q—C

+ +
xgP +Ki'

,
x3P —Ki jiXP

lr

ooooooooooooooapoooooooooooooooo
+XP

x,P +q—C
-' XP +q—C

Even though this expression is based on the example
shown in Fig. 3, it is easy to check that it also applies to
all of the diagrams in Fig. 2, so that we only need to cal-
culate the I"; I and I"; M for each individual diagram
with i =1-8.

Using current conservation q„8"~"=q„&~ =0, the
leptonic tensor [Eq. (14b)] L„„=Tr [Eye"E'y'], with
L„' =L„—q„, can be replaced by

(XP
+ + ~I, +

x~P x2P +Ki
,

xeP -Ki
o', 'O

oooooooooooooo(i, oooooooooooooogpoooooooooooooooo' X

x)P C + y * XP —C

x&P +q—C
'

x&P +q —C
' XP +q—C

L„„=4 2L„L — g„, (60)

where L„and L, are defined in Eqs. (12a)—(12d) (Sec.
II}.Combining Eqs. (58), (60), and (14a), we find

FIG. 4. Sample diagram for soft rescattering that does not
contribute to anomalous nuclear enhancement, because the soft
rescattering is not on the observed parton line. Here we define
X:—x

&
+x2+x3. As in Fig. 3, we suppress a cut on the right.

2 8
qg aEMas eq

EL,'EI,3 3 4 2 Vx 2[F~ jg(u v)Mq(x) F~' Llu v)M (x)]dL'dl' wQ t (s+t+Q );

+ [N; jg(u )Mq(x ) —N; L (u)Mq(x)]
E~ =0 (61)

where we define

v —=2(L I), v —=2(L l ), (62)

and where a, =—g /4qr. The index i goes from 1 to 8 cor-
responding to the eight diagrams in Fig. 2, and

I

include an appropriate color factor, whose staightfor-
ward calculation [21] is omitted here, but which is given
in Table I. These color factors are computed assuming
that the pairs of quark and gluon fields in I individually
form color singlets, since they can be widely separated in
the nucleus.F;,(u, v) =L„L,I ", ,

N;, (u) = —g„„I";", ,

(63a)

(63b) E. Four-gluou case

with a =L and M. The results for F; L and N; L are
given in Table I. The expressions for F; M and N;
can also be simply read from Table I by replacing u and u

with u and v. Note that the F;, and N;, in Eq. (61)
I

A similar formulation applies to the four-gluon case,
where the two soft gluons play the same roles as above,
but two hard gluons replace the two hard quarks (or anti-
quarks),

der aEMa, e ~o M (x)
t. / d, 3 i3 4 2( Q2) ~ K~ ( —M

Mg(x)
F; L(u, v)

Q2 Mg(x ) Mg(x)+ N; M(u) —N; L(u)r —M (64)

where the relevant matrix element is

Mg(x) P+dy, dy3 „p+~-=f dy2 e ' ' (A~A (y, )F+j(y2 )F+ (y3 )A~(0)~A)8(yz —y, }8(y3 ) (65a)

or, equivalently,
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TABLE I. Subprocess cross sections for the hard-quark —soft-gluon case, where y=Q +u+xt .Note that every N, and F;
shouldbe multiplied by acolor factor. They are CF =

9 fori =1—4and CF =
2

fori =5—8.
t

Fig. 2
diagram No. Terms

Fi

Results

8t y
x [—x( s+t+Q~)]—4t U [(s+t +Q')(u+ Q')+wu]

(2) N2
St' Q'r
x y( s+t+Q )2

2t2
[xw [t (u +Q')+ w (u +Q') ]+v [u (s +Q')+ Q'( w —t) ] ]

QP

(43

(6)

N4

F4

N5

Fq

St' [—x(s+t+Q )]
X y

4t w (Q'+ u
—xw)

y2
St

4Ut
(Q +u —xw)(s+t+Q2)'

Q
St' Q'(s+t+Q')
X yt
2t

[2 xw[t(v +Q')+w Q]+(u+Q )[ Q't+(—s+Q')v+w(u —Q')]]
XP

Ns
St xt
X

—4t wv

dy ( dy2 dy3 t„~p+y,—
xMs(x) =

2~ p+ 2m

(y~ )F+t(y2 )F+ (y3 )F+~(0)~A )

(! for i=2
Itttttttttttttt\II ~ IO& IIII~

$ for i=1
~ 'I ~IIIIIIIII~I~IIII~ II IVI ~ I

f for i=4
r r
:-f for i=3

XO(y, —y, )6)(y, ) . (65b)
(2)

The definitions of the I's and Ãs are as above, but the in-
dices i =9, 10 correspond to the last two diagrams in Fig.
2. The results and relevant color factors are listed in
Table II.

V. DOUBI K HARD SCATTERING

L for i=6
r ttI%rr
~ r~ r~ r

~Itt ~ I~IIIII~ ~I~ IIII~ I ~ IIIOO

Ir
$ for i=5

(3)

I ~It r
f for i=8

OIIIIOI ~ II~Ittttt ~III~ ~ Itt ~ ~ r
'~

,'-:5 for i=7

(4)

In DIS, double hard scatterings are allowed by the ki-
nematics at the same order as soft rescattering. The vir-
tual photon has spacelike momentum q & 0, and so it can

TABLE II. Subprocess cross section for the four-gluon case,
where the color factors are CF =—' for i =9,10.

t

!$ for i=10
I I ~Og I~ IIIIII ~IIIIIII ~ IIIIIP ~r

:-$ for i=9
~It ~ ~

$ for i=12
rtt ~IIII~ II~ II~Itttttt ~ ~I~ I' ~ I~ ~ I

/ for i=11

Fig. 2
diagram no.

{103

Terms

N1o

Fio

Results

, s+t+Q'
St —t

z Q+u —xw4t w
t

8t s+t+Q
4t w s+t+0

E for i=14
~ '~IIII~III~ II~Itt ~ IIIIIIIII ~ ~I~ OO I ~I~

E for i=13

:L for i=16
~ IIIIII~ I~I~I~I~I~IIIIII~ II

E for i=15
~I~ I ~ I~II~

FICx. 5. Leading-order cut diagrams for double hard reseat-
tering in lepton-hadron DIS. The parton of momentum I is ob-
served in the final state. There are 8 diagrams and total of 16
(i = 1,2, ..., 16) possibilities for the observed parton.
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be absorbed by an on-shell initial quark with large
momentum xttP+ to form an on-shell intermediate

quark, which may in turn be scattered by another nuclear
parton, also with large longitudinal momentum
(x —x& )P+ with x given by Eq. (59a).

The propagators of the intermediate on-shell quarks
have poles in the corresponding Feynman diagrams, and
these poles can eliminate phases and produce A enhance-
ment in much the same way as for soft rescattering. The
process is rather straightforward, and the physical mech-
anism is revealed directly in the cut diagrams, which are
shown in Fig. 5.

Three notable properties in the calculations of double
hard scatterings should be mentioned.

(i) The leading behavior of all of the double hard
scatterings is twist-four.

(ii) For every individual double hard scattering contrib-
uting to A enhancement, the cut is only through the mid-
dle of the cut diagram, and so there is no need of cancel-
lation between cuts. This makes the calculations much
simpler than for the case of soft rescattering, discussed in
Sec. III.

(iii) It is easy to see that the hard part of a double hard
I

scattering, 8P', is always of a common form

~P"=Treaty"(xttI'+g)E;(xttE+g)y"]), (66)

where the matrix E, depends on each individual subpro-
cess with index i =1—16 illustrated in Fig. 5. (There are
eight diagrams in Fig. 5, but each diagram gives two con-
tributions, depending on which particle is observed. } We
see that the k, is always placed between two on-shell

lines carrying the same momentum x~P++q, which

gives us the benefit that, even without knowing the
specific farm of E;, we have, for any double hard scatter-
ing process,

2L„L, g—„„PP"=Q X —X+—N, , (67)

with, as in Eq. (63b), N, —:g„,PP—"and X—:w/(s +Q ),
where w is defined in Eq. (13).

The double hard scatterings occur for both four-quark
cases and twa-gluon + two-quark cases. The four-quark
double hard scatterings include four sorts of processes
shown in Fig. 5, diagrams (1) and (2}, respectively. For
Fig. 5, diagram (1), we have

d 2aEMa, eq 1
EL, E( X2—X+— 8;qqM qq(x),

dL' dl wQ (s+Q ) (s+t+Q )

with i = I and 2, where the relevant matrix elements are

qq
4 ) + P3 ixSPy )i(z —z&)P+(y2 y3 )

e

r

X A Tr —
y& 0 y2 — y3 A

tf

(68)

+ A y&
— 0 Tr — y2 y3 A y2 —

y& 8 y3 (69)

Here and below, we use a tilde on the o's, N's, and M's to identify double hard scattering. The two matrix elements
carrespond to scattering from quarks and/or antiquarks at different locations in the nucleus. The Tr proceeding the

yff/ combination indicates that there are no free Dirac indices. A summation over the indices of gtf 1f) combinations is
understood.

Similarly, for Fig. 5, diagram (2), we have

d02 2apMa eq 1
EL, EI X'—X+—N, qqMqq(x), . (70)

dL' dl wQ (s+Q ) (s+t+Q ) 2

with i =3 and 4, and

3 ) + 4 3 (x&P y) (( —&)P (y&
—

y3e
2 2

X A Tr —0(y& )0(0) Tr —0(yr )0(yr ) A)
tf — tf

+ A Tr —yi 0 y2 y
tf

+ A y, — 0 Tr — y2 y3 A
tf

+ A
tf (71)
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The other kind of double hard scattering at lowest order has two nuclear quarks and two gluons in its cut diagram.
It includes 12 individual processes shown in Fig. 5, diagrams (3)—(8). The cross section is

do, '~

dL' dl

with i =1—12, and

X' —X+—N, «M«(x),
wQ (s+Q ) (s+t+Q )

(72)

M«(x)—:f P+dy q
2m

n+a
y1 I(~ —

& I'+(y2 —
y3 )

2

x x Tr P(yi(—&i(yi(a'(z~ (i((0( x)2

+ A yl- —Aly2 Aly3 0 A ey2 —y1 ey3 (73)

The results for N;«(i =1—4) and N;~s (i =1—12) and
their color factors are given in Table III. At lowest or-
der, double hard scattering cannot occur with four gluon

fields.

VI. A DEPENDENCE AND MATRIX ELEMENTS

We have argued above that matrix elements such as
Ms(x) [Eq. (57)] grow as A . In this section, we will

I

explore this claim, basing it on ideas of color confinement
and approximate translational invariance within the nu-
cleus. We also brie6y discuss the relative sizes of matrix
elements involving transverse and longitudinal com-
ponents of the gluon field and justify our assertion, made
after Eq. (21), that in soft rescatterings the fields co A ~

may be neglected compared to n A (in covariant gauges).
All the twist-four matrix elements identified above in-

clude two pairs of field operators, for example,

TABLE III. Subprocess cross section for double scattering, where y—:Q'+ u +xt.

Fig. 6
diagram No. Terms

—qq
1

CF

1

12

16t (s + Q~)2

( s+t +Qi)y

Results

(2)

(4)

Nqq
2

—qq
3

N 4

N 1

N 2

3

Nqg
4

Nqg
5

N 6

N 7

Nqf
9

Nqg
10

N 11

12

1

12

1

32

1

32

1

4

1

4

16(s + t +Q~)(s +Q~)~

ty—16(s Q+'}~[(s Q+) +t ]
(s+t+Q )—16(s+Q~)2[(s+ ~) +(2s+t+Q ) ]

t'r
16(s+Q )'

16(s+Q )'

s+t+Q—16t
16(s + t +Q'}
0
0

2 ( —16)(s+Q )'

s+t+Q

2
16(s+Q )'

16(s +Q')t
s+t+Q'

2
16(s +Q~}(s + t + Q~}

t
8[ 5t(s+Q2)+4(s+t+—Q ) ](s+Q')

(s+t+Q )
8[5(s+t+Q~}(s+Q'7+4t ](s+Q~)

t2
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F+~(yz )F+ (y3 ) and P(y& )g(0) in M (x) [Eq. (57)].
Given confinement, we believe that there are no long-
distance color correlations in a nucleus. Therefore, in the
matrix elements consisting of these field operators, we re-
quire

lyz
—

yz 1«Rg,
Iy( I «R„,

(74)

(75)

where R„ is the nuclear radius. Without these restric-
tions, at least two free integrals would remain in the
W""'s, for example, Eq. (55), suggesting that the cross
section would grow as A instead of A . The pair of
operators F+~(y z )F+ (y 3 },however, are a Lorentz sca-
lar and color singlet, and so we may expect that its expec-
tation at fixed y2

—y3 &(R„ is relatively independent
of y3 . Then the remaining free integral f dy 3 should be

of order A ' . In addition, to be consistent with the par-
ton model, we may suggest that for fixed y3 the nuclear
matrix element (P„IP'„)= 5 (P„—P'„)

A A (78}

f dy& e ' '
P(y& )g(0). As indicated above, the latter

pair of operators is restricted to a small region by oscilla-
ix1~ y1

tions of the phase e ' ' and the former by color
confinement. Now let us consider the matrix element of
0 between nuclear coordinate eigenstates (XI and IX').
The following assumption embodies the idea of approxi-
mate translation invariance in a large nucleus:

( X I 0(z) IX' ) =Co ( X I

X' )8(R„—
I
X—Z

I ), (77)

where C0 is an arbitrary constant, independent of Z, X
and X'. That is, we assume that the expectation value of
0(Z) is a constant if the point Z is inside the nucleus and
zero if it is outside. In addition, the action of the
almost-local operator 0 does not "move" the nucleus as a
whole. Naturally, corrections to (77) are important, but
we do not expect them to grow with A.

We normalize the nuclear state independently of A by

y e ' ' A y, F+i y2 F+' y, 0 A

(76)

grows linearly with A. Of course, the proportionality is
approximate and does not exclude all deviations from ex-
act linearity, but only those deviations that grow with A.
We justify this claim in terms of the following discussion.

Let 0(Z) be a local operator at point Z or a pair of
operators integrated over a region around Z that does not
grow with the nuclear radius. Relevant examples of the
latter case are, for us, fdyz F+j(yz )F+ (y3 ) and

or, equivalently,

+2cog /A;p
Pq X =

3~z
e

(2n )
(79}

where Pz and co& are the momentum and the energy of
the nucleus. As we will now show, the assumption Eq.
(77) combined with the normalization Eq. (79) leads to
( P„I 0,Oz I

P'„) ~ A, with 0, and Oz operators of the

type just discussed above.
Now let us expand our typical four-field expectation

value in terms of a complete set of states,

(P„I0,(y)0 (0)IP„)= fd x,d x d x (P„Ix,&(x, lo, (y)Ix, )(x,IO, (0)Ix, )&x,IP'„&+. . . , (80)

where the terms that are suppressed involve excited states of the nucleus, not expressible in terms of the coordinate
eigenstates IX ).Then, applying the assumption Eq. (77}to 0& and Oz, we get

(Pg IO)OzIPg ) =Co Co fd'X&d'Xzd'X3&P& IX&)&X&IXz)&XzlXz)&X3IP'& )e(R& —IX&—yl)e(R„—IxzI), (8l)
I

where again we suppress the contributions of excited states. By the normalization Eq. (79) and ( X, IXz ) =5 (X,—Xz),
we have

I

(P~IO)OzIPq ) =Co Co fd X,e(Rq —IX)—yI)8(R„—IXzI) .
A(2m)

(82)

As long as IyI (2R„, this scales as the nuclear volume
and hence as A. Equally, important, the expectation is
independent of the distance between the operators, and
the dependence on the operators factorizes into the con-
stants C~ C~ .

1 2

The consequences of this reasoning for matrix elements
such as M~(x) are now straightforward. If, for instance,
we have chosen 0, =I, the identity operator above, with

Oz= fdy, e ' ' g(y, )g(0), we would conclude that
C2 was proportional to the quark parton distribution in
the nucleus. The effect of inserting the soft-gluon com-

bination fdyz F+j(yz )F+ (y3 ), at fixed y3, however,

is summarized simply by a multiplicative factor. Then,
for y =y3 in the minus direction, the integral over y in

Eq. (82) reduces precisely to the geometrical estimates of
double scattering found, for instance, in the papers of
Ref. [13] and gives an extra overall factor A'~, again
times overall constants.

In summary, the matrix element M~(x }differs from the
quark distribution q (x) in the same nucleus by an overall
factor, which we denote A. below. Indeed, this factor
should be the same whether the hard parton is a quark, as
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in M (x) [Eq. (57)], or a gluon, as in M (x) [Eq. (65a)].
Thus we take as phenomenological expressions for the
twist-four matrix elements that occur in soft rescattering
the following [16,21]:

VII. PHOTOPRODUCTION

In photoproduction, the incident photon is real, and so
q„q"=0. As a result, we cannot use the kinematics of
Sec. II. The relevant Mandelstarn variables are now

M (x)= A I
A. q(x),

M~(x) G (x)

(83)

(84)
s=(p+q) =2P+q

u =—(1 —q) = —21+q

(88)

(89)

Here A, has units of mass squared. In Ref. [21] we
showed that the dijet momentum imbalance in photopro-
duction [9] is consistent with A, in the range 0.05—0.1

GeV .
For the twist-four matrix elements that occur in double

hard scattering [Sec. V, Eqs. (69), (71), and (73)], we

adopt the model of Ref. [24] and take

MP(XB,X —xB ) =CA q(xB )q(x —xB ),
II (XB X XB } A q(XB )q(X XB }

G(x —xB)
M~s(x, x —x )=CA I q(x )

X Xg

(85a)

(85b)

(85c)

f dy, A+(y, . ) and f dy; to 'A
(y; ), (86)

where q(x) is a normal twist-two quark (or antiquark)
distribution, G (x) is a corresponding gluon distribution,
and C is constant in GeV, C=(0.35/8ng ) GeV, with

y= 1.1-1.25.
In Sec. III we needed to compare the integ rais

(A+=n A),

while t is unchanged compared to Eq. (38b).
At the order we consider, A enhancement in photopro-

duction comes entirely from additional soft scatterings;
double hard scattering does not contribute to the nuclear

dependence in photoproduction.
The procedure for computing the single-jet cross sec-

tion do /d 1 in spin-averaged photoproduction is essen-

tially identical to that for DIS. The resulting lowest-

order cross sections have been given in Ref. [16]. They
can also be derived directly from the DIS results [Eq.
(64)] in the following manner.

Consider the definitions of F; and N; in Eqs. (63a) and

(63b) and of the leptonic tensor L„[Eq.(60)]. To derive

the photoproduction single-jet cross section from the DIS
cross section, we need to (i) replace the lepton tensor L„„
by a sum over photon polarizations, —g„, and hence

[see Eqs (60)—(63b}]drop all F; terms and divide N, terms

by e Q /2; (ii) multiply by Q (2n) to eliminate the extra
factors associated with the exchanged photon and the

phase space of the outgoing lepton in DIS; and (iii} re-

place w [Eq. (13)] by s =(q+p) . The result of this pro-
cedure is the cross section given in Ref. [16]:

inserted in matrix elements, to identify terms that con-
tribute to A enhancement in the collinear expansion of
Eq. (21). We claimed that in a covariant gauge the first is

larger than the second by a power of I'+ in the center-
of-mass frame of Sec. II. In the following, we justify this
claim.

We note first that the first integral fdy; A (y; ) in

Eq. (86) is boost invariant in a covariant gauge, while the
other is not. To compare them we rewrite the second in-

tegral as

fdy; co A (y; )= fdy; P+cu A (y; ).a

d crag aaM(m. a, ) H~

dl st (s+t)
Mq(x ) M~(x)

aEM(ma, ) Hg Ms(x ) Mg(x)
p2

st (s+t) ' x X

for the hard-quark —soft-gluon case and

(90)

(91)

Now the right side of Eq. (87), apart from a factor of
1/P+, is boost invariant. The two boost-invariant in-

tegrals

f dy; A+(y,. ) and f dy, P+co 'A, (y. ,).
have magnitudes set by nucleon and nuclear scales. Now,
however, the integral fdy; co 'A '(y,. ) appears with an

explicit additional factor 1/P+, which wi11 have to com-
bine to form a large invariant 1/t —1/u —.. . in the
cross section. Thus, terms associated with co A+(y; )

are suppressed by a power of the large momentum
transfer compared with n. A terms in covariant gauge.

for the hard-gluon —soft-gluon case, where

X —1

2@2
$ s+t

s+t s

and

2 1 —t s+t0 =4t
2% s+t —t

(93)

with X =3 the number of colors. Here color factors are
included in Eqs. (92) and (93).
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VIII. NUMERICAL RESULTS

A. Preparing for computation

For convenience of numerical computation, we reex-
press the derivative Vz in Eqs. (61) and (64) in terms of

in variants. To do this we expand, for example,
N;(u)M&(x) and F;(u, v)M (x) in Eq. (61) in terms of
(u —u) and (v —v). Recall that u and v are defined in Eqs.
(38c}and (62), respectively, and that x is specified for soft
rescattering by Eq. (59a). This procedure gives

BN, (u} 1 BM (x)
N;(u, v)M (x)=N;(u)M (x)+(u —u) M (x)— N;(u)s+t+Q'

, B'N,.(u)+—(u —u) M (x)—
Bu

BN, (u) BM, (x) 1 B'M, (x)
+

2 zN;(u)s+t+g' Bu B» (s+t+g')' ' Bx' (94)

F, (u, v )M (x ) =Fi(u)M&(x)+(u —u)
BF (u u) 1 BM (x)

M (x)— F;(u, v)s+t+Q'
B F;(u, v) BF;(u, v) BMq(x)+—(u —u) M (x)—

2 Bu2 s+t+Q2
B'M, (x) „BF;(u,u) 1 „,B'F;(u, v)

+ F;(u, v) +(v —u) M (x)+—(v —v) M (x)(s+t+g')' ' ' Bx' ~ ' 2 Bu'

B F, (u, v) BF,(u, v) BM (x)
+—(u —u)(u —u ) Mz(x)—

2 BuBu ~ s+t+Q~ Bv Bx
(95)

In addition, we need the identities

Vz (u —u)=4
x&t

2
'2

Vz [(u —u)2]=8
xzt

W
V (u —v)= —4—,

Vz [(u —v) ]=8 —lz+Lz

'2

(96a)

(96b)

(96c)

(96d)

2

V [(u —u)(v —v)]= —8 —1 +/ L
x txg

(96e)

«mbi»ng Eqs. (94) and (96a)-(96e) with Eq. (61), we have for the hard-quark —soft-gluon case in DIS,

E qg
dtr

dL' dl

&EM&, g2 BN;(u)
2Q M (x)—

wg t (s+t+Q2) xzt Bu

BM (x)
N;(u)s+t+g' ' Bx

n2
2

B N;(u)+ l~
'

M (x)—
Bu'

BN;(u) BM (x)
s+t+Q~ Bu Bx

B Mq(x)+ N, (u)(s+t+Q )2

n2 BF;(u,v)
+8 ' Mq(x)—

xzt Bu

B2F,(u, u)+
x~t

BM (x)
zF;(u, v)s+t+g' ' '

Bx

BF;(u, u) BM (x)
s+t +Q2 Bu Bx
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BF;(u,v)
M (x)+ —li+Li

t t '

a'M, (x)
+ — F;(u, v)(s+t+Q )»

8 F,.(u, u)
M (x)

BU

—I +1 .I.Q'

B

& F;(u, u) 1 BF;(u, ) BM ( )
M (x)—

s+t +Q2 Bv»
(97)

In this expression we will use the (hard-quark —soft-gluon) twist-four distribution function [Eq. (83)]

M (x)=A ~
A, ge q&(x),

f
(98)

where e is the electric charge of a quark with flavor f =u, d, s, . . . in units of electron charge. As mentioned above,

k has been estimated in Ref. [21] to be of order 0.05 —0.1 GeV .
Similarly for the four-gluon case in DIS, we 6nd

2 2do aEMa,

dL' dl wQ t (s+t+Q ) ~f
e

8 [Ms(x)/x]
Bx

Q2 I

xst(s+t+Q') (s+t+Q )

g2 8[M (x)/x] g2 li~

xst(s+t+Q')» x&t (s+t+Q')'

BF, (u) M (x) g2 (w/t)l +l L BF;(v) 8[M (x)/x]+
t Bu x xst s+t+Q ~u»

8[Ms(x)/x] g2+» x&t
X 2QN;

+8 F;(v)
a'[M, (x)/x]

»

(99)

From Table III, we note that in the four-gluon case the N; —=N; L are functions of s, t, and Q only, while the F;:F;—
are functions of s, t, Q, w, and v. Both the F, and the N, are independent of u.

Reducing to photoproduction, we have

@
do
dl

2aEM(ma, )
g[eq 4q (x, A)]H + ge 4 (x A)H

st (s+t) (100)

where

8[M, (x)/x]
4(x, A}= +

t s+t — »
', a'[M, (x)/x]

t(s+t)—12 (101)

MP=CA g[e qI(xs)qI(x —xs)],
f

Mll =CA~~ g g[e q/(x )]q/, (x )

(102a)

(102b)

with i =q& and g corresponding to hard-quark —soft-
gluon and four-gluon cases, respectively. The H and H
have been given by Eqs. (92) and (93) in Sec. VII.

The expressions for double hard scattering, given
above in Eqs. (68)—(73), are straightforward to evaluate
numerically, using distributions with multiple quark
flavors, generalizing Eqs. (85a}—(85c),

B. Phenomenological estimates

do i(A) do«3(A} do i(A)

d 1 671 d I
(103)

For the purposes of numerical evaluation, we simply
choose the scaling parton distributions for q&(x) and

G(x), which are specified in Ref. [25]. The isospin ratio
of the nuclear target is assumed as Z/A =0.4.

Numerical estimates have been given for photoproduc-
tion cross sections in Ref. [16] (with the estimate
A, =0.04 GeV ). Here we shall present results for high-

pT jets in DIS. The representative kinematic dependence
of parameter o.—l, is computed from the definition

. G(x —xs)M~s= CA ~3 ge ~
q (xs )

. f f B
8

(102c) where we take A =200 and where o. , is the leading-

power nucleon Born cross section.
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The leading power processes include ten diagrams
similar to those of the additional soft scattering process-
es. These diagrams may be found from Fig. 2 by simply

ignoring the extra soft gluons. Their cross sections for
DIS take the form

and at representative values of xs. The beam energy

used in our calculation is 470 GeV. Each graph shows a
for AAz=0. 1 GeV (solid line) and 0.04 GeV (dashed

line). These two values were chosen to bracket the range
of A, suggested by data on dijet transverse momentum

dL' dl3;, (2n) wQ (s+t+Q )

X[4F; +Q N; ]M;(x), (104)

where F; =F, /t and N; =N, /t, with F, and N, given in

Tables I and II for i =1-10. In Eq. (104), when

i =1,...8, M, ( x)=g fe P & (x) is given by the twist-
ef ef /p

two quark distribution function in the proton,
1.6—

(
I

( ( (

I
J (

Q = 50 GeV

xi = 0.01

t~ = 4.0 {GeV/c)

(10S)

For i =9, 10, M, (x)=(gfe' )[P & (x)/x] is given by the
iaaf

twist-two gluon distribution function in the proton divid-

edbyx,

1.2—

~ 2

dl dQ d wxs2 dl3dL'3

(107)

where (t(l is the azimuthal angle of lt, while P is the rela-

tive azimuthal angle between L't and lt. We choose the
independent variables to be lt, xF, Q, and x~, where lt
and xz depend on the momentum of the observed parton
and Q and x~ depend on the momentum of the final lep-
ton. xz and xB are given explicitly by

xp= 2l3/t s, xs =
s+Q

(108)

Note that in the kinematics of Sec. II, xF is positive for a
jet moving in the forward direction of the photon. In
terms of l~, x~, Q, and xs, the Mandelstam variable t
has the form

1 XB
1/2

2XB Xg

e s (AiA (y )At(0)iA ) .g (x) p+
x 277

(106)

As in the case of twist-four, these leading-power cross
sections for DIS can also be reduced to photoproduction
straightforwardly.

For DIS, we shall present a for the differential eros~

section

2 I

1.8—

I I I I I I I I

Q = 50 GeV

xB = 001
xq = —0.4

1.6—

1.4—

1.2

I

2

2 I

1.8—

I I I I I I I I I

3 4

(GeVjc)

Q = 60 Gev (c)
xB = 0.03
xp = —0,4

1.6—

1.4—

1.2—

2 2.5 3 3.5
ti (GeV/c)

I

I

I

I

I

I

tI—
I

I

I

I

, I

I

I—
I

I

I

I

I

I I:
I

I II I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

'I

I

I

I

I

I

I

I

I;I I

1/2 '

1 —XB lr
x~+4

xs Q~
(109)

which is useful for the computation.
Figures 6, 7, and 8 show a, calculated in the above

manner for DIS at Q =S, 10, and 30 GeV, respectively,

FICs. 6. Behavior of a, defined in Eq. (103), at Q =5 GeV .
The dot-dashed line is the edge of phase space, i.e., xp & 1 0.
The solid and dashed lines correspond to A, =0.1 and 0.04
GeV, respectively. (a) a as a function of xF at l1 =4.0 GeV and

xz =0.01; (b) a as a function of lj at xF = —0.4 and xz =0.01;
(c) a as a function of I& at xF = —0.4 and x& =0.03.
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iinbalance in photoproduciton [9,21]. The curves show
the following general trends.

(i) a is generally in the range 1.1 —1.3, depending on ((,

and the kinematic variables.

(ii) a decreases mildly with li at fixed x„, followed by
an increase near the edge of phase space, which is indi-
cated in the figures by a vertical dot-dashed line.

(iii) a decreases with x~ at fixed li, again with an up-
turn near the edge of phase space.

2
I

o = 100 Gev (o)
XB = 0.03

(, = 4.0 (GeV/c)
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FIG. 7. Behavior of a, defined in Eq. (103), at g ~= 10 GeV'.
As in Fig. 6, the dot-dashed line is the edge of phase space,
x,„„=1.0, and the solid and dashed lines correspond to
((, =0.1 and 0.04 GeV2, respectively. (a) a as a function of x(; at
1~=4.0 GeV and x&=0.03; (b) a as a function of lj at
xz= —0.4 and x&=0.03; (c) a as a function of I, at xF=0.0
and x& =0.03.
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FIG. 8. Behavior of a, defined in Eq. (103), at Q =30 GeV'.
As in Fig. 6, the dot-dashed line is the edge of phase space,
x „„„=1.0, and the solid and dashed lines correspond to
((. =0.1 and 0.04 GeV, respectively. (a) a as a function of x(; at
1j =4.0 GeV and x& =0.1; (b) a as a function of 1& at xF = —0.4
and x& =0.1; (c) a as a function of 1, at xF =0.0 and x& =0.1.
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We may attribute the decrease with /~ as an expected
feature of a higher-twist process. The upturn at the edge
of phase space comes from derivatives on the matrix ele-
ments M~ (x }and Ms (x) with respect to x in Eqs. (97) and
(99).

We may note that x = ( —u) l(s + t +Q ) is generically
larger than xs =Q /(s +Q ), and we do not expect sha-

dowing to influence the main features of our results in the
kinematic regions we show. Of course, in the larger con-
text, the interplay of multiple scattering and shadowing is
an interesting and challenging problem. Finally, we note
that the double hard scattering contribution (Sec. V) is
relatively small with the model matrix elements of Eq.
(85c), giving a contribution to the cross section of the or-
der of 10'.

The methods developed here can, we anticipate, be ex-

tended to other cross sections which exhibit nuclear
enhancement. Progress in this direction is underway.
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