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beyond the leading order
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We present a simple and accurate analytical method for calculating the cross section for polarized
and unpolarized isolated prompt photon production in next-to-leading order, taking into account
also the next-to-leading-order fragmentation contribution in the unpolarized case. We demonstrate
the good accuracy of our method over a wide range of the isolation parameters and study the eHects

the isolation cuts have on the cross section at colliders.

PACS number(s): 13.85.gk, 12.38.Bx, 13.88.+e

I. INTRODUCTION

It has been recognized for a long time now that prompt
photon production in hadronic collisions provides impor-
tant tests of perturbative /CD and is very useful for
constraining some of its most important parameters. For
example the utility of this process for constraining the
gluon distribution of the proton is well documented and
in this context has been studied quite extensively [1—7].
More recently, interest in the possibility of using prompt
photon production for longitudinal polarization of the
proton beams in order to measure the polarized gluon
distribution b, G of the proton has been stimulated by
the surprising result of the European Muon Collabora-
tion (EMC) measurement of the spin-dependent proton
structure function gi [8] and the more recent Spin Muon
Collaboration (SMC) and E142 Collaboration results on
the neutron's gi [9,10]. In this context, first leading-
order [O(ao.,)] studies [11] and more recently next-to-
leading-order [O(an2)] studies [12—14] have been per-
formed, examining the usefulness of (inclusive) polarized
prompt photon production for settling the AG question
[15]. The results of these studies have been mainly pos-
itive although in the case of the next-to-leading-order
calculations, lack of spin-dependent structure functions
evolved in next-to-leading order has been a handicap.

In practice, when measuring the direct photon cross
section at colliders, in contrast with the case of fixed
target experiments, experimentalists must perform cuts
in order to isolate the photon signal from the hadronic
background. This is generally accomplished by requiring
that the hadronic energy in a cone around the photon
be less than a certain fraction of the photon energy. It
is necessary in order to compare theory with experiment
that the theoretical calculation incorporates the isolation
criterion as much as possible.

In the following we outline an approximate method for
calculating the isolated prompt photon cross section in
next-to-leading order which is very quick and surprisingly
accurate over quite a wide range of the isolation param-
eters. We develop this method for the "direct" contribu-
tions &om ab + lcd, a, b, c, and d referring to partons, as
well as for the next-to-leading-order fragmentation con-

tribution. We present our results, which are analytical
formulas, for both the unpolarized and the longitudinally
polarized cases. Our calculation of the isolation effects
for the unpolarized "direct" contribution is partly based
on the theoretical study of Ref. [6] where a Monte Carlo
program of [5] has been used to deal with the effects of
isolation. We shall see that our analytical approxima-
tion method has some advantages over the Monte Carlo
method. Our results for the next-to-leading-order frag-
mentation piece and the polarized isolated cross section
are entirely new. The rest of this paper is organized as
follows. In Sec. II we describe our method for dealing
with isolation. More specifically, in Sec. II A we describe
our method for calculating the effects of isolation cuts on
the "direct" (nonfragmentation) contributions. In Sec.
IIB we apply our method to the case of the fragmenta-
tion contribution in next-to-leading order. Section IIC
shows the modifications to be made in order to obtain the
corresponding results for the polarized case. In Sec. III
we present numerical results. We examine the accuracy
of our results by comparing with Monte Carlo results and
study the effects of isolation on the unpolarized prompt
photon cross section. Appendixes A.—C contain our ana-
lytical results.

II. ISOLATED PROMPT PHOTON
PRODUCTION

Experimentally, a prompt photon is considered as iso-
lated if inside a cone of half-opening angle b around the
photon the sum of the energies of accompanying hadrons
is less than eE~ where E~ is the photon's energy and e
is a small parameter of order 0.1 [16,17]. The parame-
ter e is generally called the energy resolution parameter
and the cone around the photon is the isolation cone.
Strictly speaking, the cone opening is de6ned by a radius
R of a circle, centered on the photon, in c.m. system
(c.m.s.) rapidity (rt) and azimuthal angle (P) space via

g(b, rt) 2 p (b,P)2 & R. For sinall rapidities of the prompt
photon we have R = b.

In a leading-order [O(an, )) theoretical study this ex-
perimental criterion can be easily implemented into the
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the sum correctly running over all 2 -+ 2 QCD subpro-
cesses ab ~ cd with cross sections do s~'~(s, v)/dv, and
D~ (z, M&~) being the distribution function at scale My for
the fragmentation of parton-type c into a photon which
takes the momentum &action z of the parent parton. The
functions D~(z, M&~) are of order O(a/n, ) and thus make

Eq. (1) a leading-order [O(ex+, )] contribution. In Eq.
(1), f+(x, M2) denotes as usual the Bjpirken-x distribu-
tion of parton a in a hadron A [18] at the scale M2.
Furthermore, introducing the transverse momentum pT
of the prompt photon relative to the beam axis and the
variable xT = 2pT /~S, where S = (p~ + p~), we have
defined
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Finally, the variable v is connected with the 2 —+ 2 sub-
process Mandelstam variable tq = (p —p, )2 via

t, = —s(1 —v)

calculation. Here the dominant contributions arise kom
the hard 2 + 2 subprocesses qg —+ pq and qq + pg for
which the photon and the other final state particle, which
will give rise to hadrons, are more or less back to back
and thus separated &om each other. Another leading-
order contribution comes from the fragmentation of a
final state parton into a photon and is for a collision of
two hadrons A, B with momenta p~, p~ given by

instead of Mt = O(pT) for the nonisolated case. The
constraint (4) usually leads to a strong reduction of the
size of the fragmentation contribution.

In next-to-leading order [O(ua, )] iruportant contribu-
tions to prompt photon production arise from the various
possible "direct" 2 —+ 3 processes ab —+ lcd. In contrast
to the leading-order processes qg -+ pq and qq ~ pg it
is now possible kinematically that one of the final state
partons carrying more energy than eE~ happens to be
inside the cone around the photon [Fig. 1(a)]. As men-
tioned above, such contributions have to be excluded for
the isolated cross section.

In a complete and consistent next-to-leading-order cal-
culation one also has to take into account the &agmen-
tation contribution beyond the leading order [19] which
turns out to be rather important at small xT. Here
there are contributions from all 2 -+ 3 QCD processes
where one of the outgoing partons &agments into a pho-
ton. For the isolated cross section the requirement that
the remaining hadronic energy after fragmentation be re-
stricted by eE~ again leads to the cut (4). This cut is,
however, in general not sufficient if a nonfragmenting par-
ton from the 2 ~ 3 QCD process is also radiated into the
cone around the photon which is of course possible kine-
matically [Fig. 1(b)]. This parton gives rise to additional
hadronic energy accompanying the photon which invali-
dates Eq. (4).

In the following two subsections we will present a sim-

ple, yet very accurate, approximation method for dealing
with the isolation of prompt photons in next-to-leading
order. Section II A deals with isolating the "direct" con-
tributions &om ab —+ lcd, whereas Sec. IIB is devoted
to an analysis of the isolated fragmentation contribution.
We note that there is a Monte Carlo program by Baer
et aL [5] which is able to deal with the isolation of the di-
rect contribution numerically and thus "exactly. " Never-
theless, we think that our approximation method has sev-
eral advantages. First, it is faster by orders of magnitude
since it is based on simple analytic expressions which only
need to be convoluted with parton distributions. Second,
it does not sufFer &om the large numerical Huctuations
inherent to the Monte Carlo calculation which were also
observed in Ref. [6]. Moreover, the study of the effects
of isolation on the next-to-leading-order &agmentation
contribution, which have to be included for a consistent
calculation, is entirely new. As for this contribution, a
Monte Carlo calculation would certainly be too difBcult

The effect of isolation on Eq. (1) is simply the additional
constraint [6]

1z) 1+6 (4)

which converts z;„into

1z;„=max
i

1 —V+ VW,'1+&)

and the choice of a h-dependent scale [6]

Mt = O(bpT ) (6)

FIG. 1. (a) "Direct" contribution to next-to-leading-order
prompt photon production vrith an additional parton in
the isolation cone. (b) Fragmentation contribution to
next-to-leading-order prompt photon production with an ad-
ditional parton in the isolation cone.
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A. Isolation cuts
on the "direct" contributions eb M peg

Apart from the Monte Carlo program of Baer et aL

[5] there exist two analytical calculations of the complete
next-to-leading-order corrections for the "direct" (hard)
part of inclusive prompt photon production, i.e., of the
processes ab ~ lcd [2,3,13]. These calculations have

been performed integrating over the ful/ phase space of
the outgoing unobserved particles c and d, and thus no

longer allow for isolation cuts directly. Nevertheless, they
present the most convenient starting point for the treat-
ment of the isolated "direct" cross section since the latter
can be written as the inclusive cross section minus a sub-

traction piece [6]:

g3 asol d3&inci g3 sub
E dir E dir E dir (7)

E&dso'dub/d pz being the cross section for producing a
prompt photon with energy E~ which is accompanied by
hadronic energy more than eE~ inside the cone. The
decomposition of E~d od',.", /d p~ in Eq. (7) has sev-
eral advantages. First of all, the inclusive cross section
E~d o&",c'/dsp~ is perturbatively well defined in itself in
the sense that a complete cancellation of all poles has
already taken place; i.e., infrared poles have canceled be-
tween the virtual (2 i 2) and the 2 + 3 next-to-leading-
order contributions and mass singularities have been fac-
tored into the initial state parton distributions and the
photon fragmentation functions [2,3,13]. Furthermore, as
we shall soon see, it is possible to give a simple approx-
imation for the subtraction cross section E~d ad",, /d p~
which is nevertheless very accurate.

Before starting the calculation of E~d hard";b/d p~ let us
note that in the calculation of this cross section one also
encounters mass singularities coming from the collinear
emission of the photon by an outgoing quark [21], just
as this was the case in the calculation of the next-to-
leading-order inclusive cross section E~dsod;,'i/dsp~ be-
fore factorization of the final state singularities. In
the latter case these singularities were absorbed into
the photon fragmentation functions D~(z, M&3), and the
same step has to be taken for the final state singu-
larities in E~d od";, /d p~. To be more precise, let us
first note that the collinear singularities in the difFerence

d3&isoi/dsp —E dsrrincl/dsp —E ds&sub/dsp must
cancel each other for e -+ 0 because in this limit there
is no final state parton in the cone the photon could be-
come collinear with. For e ~ 0 the photon would become
completely isolated [22]. Thus, working in dimensional

and computer-time cons»ming, and our approximation
method probably offers the only viable alternative.

In Sec. II C we shall present the corresponding results
for longitudinal polarization of the incoming hadrons.
These results will probably be important for future po-
larized high-energy colliders such as the BNL Relativistic
Heavy Ion Collider (RHIC) [20].

regularization with n = 4 —2r space-time dimensions
in order to extract the singularities, the pole structure
of E~d ad, ,'i/d p~ —E~d od",, /d p~ is, before final state
factorization, for small e schematically given by

g3 xsol

g dir
7 d3

pole

d3~ b

7 d3
poleP7

d" abmqd

abqd

x f3(x3, M ) aP~q(z)

gf (zi, M )

(8)

where denotes proper convolutions (integrations), the
precise form of which is imxnaterial for our present pur-
pose, P&q(z) = [1+ (1 —z) ]/z is the quark-to-photon
splitting function, and p an arbitrary mass scale. It be-
comes obvious that the structure of Eq. (8) corresponds
to that of Eq. (1) when the limit (4), z & 1/(1+ e), is

implemented for small e The p. ole term (8) can thus be
factored at some scale My bpT [6] into the fragmen-
tation contribution (1), giving rise to "dressed" photon
fragmentation functions D~(z, M&~) which obey a next-
to-leading-order /CD evolution equation. In practice,
we do not have to proceed via Eq. (8) to factorize the
poles appearing in the calculation of E~dsod",.b/dsp~. As
mentioned above, we want to use our previous results [13]
for inclusive prompt photon production (E~dsod, ,'i/d p~)
as the starting point for our calculation. The results
for E~dscrd;,'i/d p& in [13] are of course completely fac-
torized, i.e., do not contain any poles. Therefore, in
the calculation of E~dso'd", b/dsp~ we can simply subtract
the pole terms in the same way they were factorized in
the calculation of E~dsodi /d p~, keeping in mind that
the pole terms in E~d od;,

' /d p~ and E~d ~d";, /d p~ are
in principle factorized along with each other via Eq.
(8). It is of course crucial to perform the subtraction
of the poles in E~d Od",

b jdsp~ in the same manner as
in E~dso&,,'i/dsp~ This mean. s, in accordance with our
previous calculation [13],that we have to work in dimen-
sional regularization and to use the same factorization
scheme, namely, the modified minimal subtraction (MS)
scheme [23], for the subtraction of the collinear singulari-
ties. As was pointed out in Ref. [13],it is straightforward
to transform our results (i.e. , those for E~dsad, ,'i/dsp~'
and for E~d od;", /d p~) to a'nother factorization scheme.

We perform our actual calculation of E~d crd",.b/d p~
in the hadronic c.m.s. since this is the relevant kame for
collider experiments. In order to find a sexnianalytical
expression for E~dsod",.b/dsp~, we shall assume that b is
sxnall, i.e., that the cone around the photon, needed for
isolating it, is rather narrow [24]. As we shall see below,
the leading behavior of E~dscrd",.b/dsp~ for small b is loga-
rithmic in b which is a remnant of the final state collinear
singularities arising in the calculation of E~d o'd";,"/d p~.
%le shall also consistently keep terxns constant with re-
spect to b, since these turn out to be of numerical rel-
evance. According to our previous discussion they are
furthermore needed since they contain the dependence on
the factorization scheme which must be the same in the
calculation of E d 0'" /d p and E d n' '/d p Ail.
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remaining pieces in the subtraction cross section are sup-
pressed by powers of b and are negligible. The only ex-
ception from this occurs when e becomes very small. In
this case the subtraction cross section is dominated by
soft gluons being radiated into the cone which give rise
to a logarithmic dependence on e and eventually lead to
an in&ared divergence at e = 0 [6]. The reason for this
is simple: A completely isolated cross section, with no
hadronic energy at all in the isolation cone, is not a per-
turbatively well-defined quantity for a massless particle
[6]. Although in reality e is fixed by the experimental res-
olution, it is necessary to keep the contributions which
are logarithmically dependent on e in order to improve
the accuracy of the approximation for the subtraction
piece. Thus schematically we have the following struc-
ture of our approximated subtraction cross section:

k2 = Pk1,

with

v(1 —Iv)
p = E2/E~ =

1 —v+ vs (12)

Imposing the collinear kinematics (11), (12) on the Ina-
trix elements simpli6es these significantly. Only when
the inverse of

812 (ki + k2) 2EpE2(l cos 01)

In the small-cone approximation, b ~ 0, we can usually
set 01 = 0, i.e., sin01 = 0 and cos01 = 1, in the matrix
elements for ab —+ lcd. Then we have

d3 sub

E " = Alnb+8+Cb Inc' d'p. (9)

appears do we have to keep a finite ei. Terms 1/si2
(which only appear if particle 2 is a quark or antiquark)
lead to an angular integral of the type [26]

where the coefficients A, 8, and C are functions of the
kinematical variables. Note that A and 8 also depend
on t due to the isolation cuts. It is now our pur-
pose to extract the coefficient functions A, 8, and C.
The contributing subprocesses are the same as in the
completely inclusive calculation (E~d og /d p~) [13]:
namely, qq + egg, qg m pqg, gg m pqq, qq m pqq,
qq + pqq, qq i pq'q', and qq' i pqq'. Only the pro-
cesses with (anti)quarks in the final state can lead to con-
tributions to A and 8 whereas, as discussed above, only
the first two subprocesses which involve gluon radiation
can give inc terms and contribute to C.

For small b (small-cone approximation) the n = (4—
2~)-dimensional phase space for the process a(pi)b(p2) i

p(ki) c(k2)d(ks) with parton c being inside a cone of half-

angle b around the photon reads, in the hadronic c.m.
system (c.m.s.) &arne [26],

dR3
dV dtU

i4 )'(1—V+VW)"' '
(4Ir) I (1 —2v) ( s j ( 1 —v+ vtv )

x
i

( vtv(1 —v)

i VW(1 —V) )
xv' ' [Iv(1 —v)] (1 —Iv)I

x d82 sin 02 d0181
0 0

(10)

where we have defined

1+ —„ti
8

ll1

s+t,

ki ——E~(1,1,0, . . . , 0)
k2 ——E2 (1,cos OI, siii 8I cos 82, . . .)

with tI ——(pi —ki), ui ——(p2 —ki), where pi, p2,
and k1 are the momenta of the incoming partons and
the photon. Furthermore, 01 and 02 are the polar and
azimuthal angles of k2 with respect to k1. i.e.,

f

ear
b g1—2~

d82 sin 02 d01
0 0 1 cos 01

B!——w—,
—

! b 1+ O(b' ) (l3)
1 /'1 1)

i2 2j

P&&(l —v + vtv, 7 )
(vi~)'—

x ! s,
dv ( 1 —v+ vtv

(14)

where

P~q(z, 7.) = 1+ (1 —z) —Tz

is the n-dimensionaL splitting function for the quark-to-

[where B(z,y) is the P function], which gives rise to
the expected collinear singularities. As discussed above,
these are removed by the factorization procedure. The
factor b 2 in Eq. (13), when expanded in powers of 7',

leads to a logarithmic behavior of the subtraction cross
section for small b, i.e., allows for the extraction of the
coefficient function A in Eq. (9). It is also straightfor-
ward to keep all terms having a constant behavior with
respect to b, which are the terms corresponding to 8 in

Eq. (9). These can arise only &om terms w/si2 in the
matrix elements, &om factors such as (1 —Iv) 2 in the
expression for the n-dimensional 2 i 3 phase space (10),
or from finite (with respect to 7 -+ 0) contributions from
factorization. As can be easily seen, all other terms in
the matrix elements are suppressed by powers of b after
phase space integration.

The general structure of the 6nal result for

E~d o&";, /dspz (disregarding for the moment the b2 inc

pieces) can be anticipated. After iinposing the collinear
limit on the various 2 —+ 3 matrix elements containing
quarks in the 6nal state and integrating over phase space
via Eq. (13) one obtains
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-„abmqd
photon transition, and the do. (s, y, r)/dy are the
cross sections for the processes ab ~ qd in n dimensions.
MS factorization is carried out by subtracting a term
proportional to

1 (
P&&(1 —v + vtv)

(Myz

-„ab-+qd

i
s, , r i, (16)

dv ( '1 —v+viv' )
where Pzq(z) is the four-dimensional splitting function
to be obtained by setting r = 0 in Eq. (15). Taking
the difference of Eqs. (14) and (16) and expanding in

the pole terms cancel out as well as all terms pro-
-„ab-+qd

portional to r in do (s, y, r)/dy which are equally
present in Eqs. (14) and (16). This is not true, however,
for the 7-dependent terms in the quark-to-photon split-
ting functions in Eqs. (14) and (16). Thus the structure
of the final factorized result for E~d oz",, /dsp~ (without
the b inc pieces) is

d30.sub 1 V e(1+e)

d pw i +PT
g vw+~~, vw/s

xzif~(zi)M')z2fs(z2, M )
drab

x viv(1 —v) i
dv dB)

(19)

where

VTV

VQJ

1 —V
')

1 —v
(20)

the logarithmic piece being a remainder of the 1/r poles,
and the nonlogarithmic piece corresponding to the term
proportional to r in Eq. (15). Equation (18) shows an-
other reason why it is crucial to keep the terms constant
with respect to b: Choosing a scale of order bpT elimi-
nates h from the logarithm in Eq. (18) turning this loga-
rithm into a term which is also constant with respect to
b. Explicitly our results read

d3 ~sub d~abmqd
E der

~ d3p ~ dv
abqd

aP~e(z)

3 f (zi, M )fb(z2, M )

(17)

and the subscript 1 indicates that Eq. (19) does not
contain the ln e pieces. The integration limits in Eq. (19)
stem &om the condition which defines our subtraction
cross section: namely,

with

P~~(z) = ln 2 + z, (18)
1+ (1 —z)2 vz(1 —iv)2E'b'

z

v(1 —iv)
E2 =E, & eE~

1 —v+ vm

For the various subprocesses we have [28]

for qq m egg,
for qg ~ pqg,
for gg ~ pqq,
for qq -+ pqq,

0
2 dn~~-+~+ I ~I

dvdw 2x 1 v + vw e2
I (s y) + ~~ (s y) ~

foi' qq ~ pqq
(22)

where y = viv/(1 —v+viv) and e~ and e' are the charges of
q and q'. The final states in Eq. (22) have been properly
symmetrized in order to account for the possibility of par-
ticle d radiating the photon in the reaction ab —+ lcd. For
convenience we list the cross sections der ~'~(s, y)/dy in

Appendix A.
Let us now turn to the extraction of the inc pieces.

This problem was already partly considered in Ref. [6].
As mentioned before, the inc pieces arise &om soft glu-
ons being radiated into the cone; i.e., they can only come
&om the qq ~ egg and qg + pqg subprocesses which
have final state gluons. The procedure is as before: We
consider the 2 + 3 matrix elements in the limit when a fi-
nal state gluon becomes collinear to the outgoing prompt
photon. In contrast to quarks being collinear to the pho-
ton, no 1/r poles can arise &om gluons inside the cone

since there is no direct photon gluon coupling. This
means that the inc terms are not accompanied by in/
factors. It is therefore sufEcient to consider the 2 -+ 3
matrix elements in four dimensions. Instead of Eq. (13)
we only need the trivial phase space integral

b2m
dO =— d&2 Hgd8g ——

)
o o 2

(23)

which shows that the lne pieces are suppressed by b

[29] for small b. As was noted in [6] the logarithms of e
arise &om terms 1/Ez in the matrix elements, where
E~ is the gluon energy. Since according to Eq. (12)
E~ (1—iv) in the collinear limit, we find that the matrix
elements have the structure f (v, iv)/(1 —iv) in the small-
cone approximation after phase space integration, where
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f(v, vi) is a function regular at vi = 1. The integration
limits for the v and the ur integration are as in Eq. (19).
For small e we may write

~l(1+E) f (V Qi)
dv de)

V W+ ', VW/v 1 —tU

(
dvf(v, l)ln( [, (24)

vw
'

Ev —&~)
where, apart from the leading inc term, we have kept
a nonleading term in the logarithm which derives from
the lower limit of the m integration and turns out to be
crucial for a good accuracy if e is not very small. The rea-
son for this is that we are dealing with the subtraction
cross section: In principle we want to subtract all con-
tributions &om gluons being inside the cone around the
photon with energy taryer than eE» [see Eq. (7)]. These
can be both soft (ui -+ 1) and hard (tu small) gluons,
which explains that the presence of the lower m integra-
tion limit in the logarithm in Eq. (24) is needed for a
good approximation. Nevertheless, we do not try to con-
sistently keep the other nonleading contributions (with
respect to e) since these can also arise &om quarks being
inside the cone, i.e., from terms in the matrix elements
which do not behave like 1/(1 —w). We therefore an-
ticipate that our approximation is probably better with
respect to h (where we were able to consistently keep all
constant pieces) than it is with respect to e. However, it
turns out in the numerical evaluation (i.e., by comparing
with Monte Carlo results) that the inc pieces are of mi-

nor importance for the subtraction cross section over a
wide range of e and b.

We now give our final result for the inc contributions
[i.e., the coefficient C in Eq. (9)]:

d~ '
x z2 fs(z2, M')

vugg(1

—v) s (28)

into Eq. (7) yields the direct piece of the isolated prompt
photon cross section. The subprocess cross sections
do /dvdur for the inclusive cross section were published
in a compact analytical form in Ref. [13].

As mentioned at the beginning of this section, the ge-
ometrical cone around the photon with half-opening an-

gle b, which we have used to derive our results, does
not strictly correspond to the experimental isolation cone
which is defined by the restriction g(hrI) + (b P) & R
in rapidity and azimuthal angle space. Comparing these
two definitions for the isolation cone, one easily derives,
in the small-cone approximation [30,31],

b= R
cosh'

(29)

to be inserted into our previous expressions, Eqs. (18)
and (26) [32]. Obviously, at zero rapidity, we have b = R.

B. Isolation cuts on the next-to-leading-order
fragmentation contribution

the gluon can be radiated collinear to the photon at vari-
ous possible legs in the process qq -+ pg(g) [qg ~ pq(g)].
Adding up E»dscr&",P/. d p» and E»dso&", b/dsp» from

Eqs. (19) and (25) gives the final expression for the sub-
traction cross section and completes our calculation of
the isolation efkcts in the direct reactions O.b ~ lcd.
Inserting E»dscr&";,b/d p» + E»dso&";, '/d p» together
with

gs~incl 1

, ) dv d~z, f.(z»M')
~ Pp +P~

b VW VW/v

d3 sub 1 V

E» " =
4 ) dvzif (zi, M )

Pp 2 +PT g vw

„do'
xz2fs(z2, M )v(1 —v)s

dv
(25)

where

do,'.
v(1 —v)s ' = —na, ln

~

2C+ C& N& vv T for qq ~ egg
C ' N

0 otherwise,

with v1 ——1 —v and

Tqq=V +(1 V)

Tqs 1+ (1 v) (27)

which are essentially the Born cross sections for prompt
photon production. Furthermore, x1 and x2 are defined
as in Eq. (2), setting z = 1 there. The color structure
of do, /dv for qq [qg] scattering stems from the fact that

g3 xsol
frag

p~

z &1/(1+a) d3 sub
frag frag

d P~ EPPES
{30)

where F»d o& ~ +'
/d p» is the next-to-leading-order

fragmentation cross section with the {insufficient) z cut

In this section we want to extend our method to the
case of next-to-leading-order fragmentation. The proce-
dure is quite similar to that outlined in the last subsec-
tion. Again it is very convenient to start by introducing
a subtraction piece. In Eq. (4) we have introduced a
cut on the &agmentation variable z which expresses that
the remaining hadronic energy after fragmentation is re-
stricted by rE~. As we pointed out in the beginning of
Sec. II, the cut (4) is in general no longer sufficient if
a nonfragmenting parton is also radiated into the cone
[Fig. 1(b)] since this gives rise to additional hadronic
energy. If this happens, we have to make sure that the
sum of the energies of the fragmentation remnants p/us
the energy of the additional non&agmenting particle be
smaller than ~E~. We therefore set up our calculation of
the isolated next-to-leading-order fragmentation contri-
bution E»dsor", '/d Ip» in the following way:
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(4) implemented, and E~dso&"~/dsp~ is the fragmenta-
tion subtraction cross section which is the cross section
for an additional particle being inside the cone, satisfying
the conditions

E~ = zEi
I I = ]. —zEI

but

Er", & eE~ [equivalent to Eq. (4)]

E~' + E2 & eE7 (31)

FIG. 2. De6nitions for the energies of the involved parti-
cles in a next-to-leading-order fragmentation process with an
additional parton in the isolation cone.

Ef g
and E2 being the energies of the &agmentation rem-

nant and the additional parton (see Fig. 2). We shall
again evaluate E~dso&"~ /d p~ in the small-cone approx-
imation which essentia y means that particle "2" is al-
most collinear with particle "1" in Fig. 2. In this ap-
proximation we have, according to Eq. (12),

Eg = (1 —z)Ei ——

Equation (31) then turns into

1 —z
(33)

v(1 —ur)
2 — 1

1 —v+ vm
(32) 1

z(1+&) &
1 —v+ vm

(34)

where Eq ——E~/z is the energy of the fragmenting parton
before the fragmentation process takes place (see Fig. 2).
Rm'thermore, we have

We are now in the position to write down the general ex-

pressions for E~d 0&,
+''/—dsp~ and E~dso&," / p~:

»1/(1+~)
frag

7 g3p

1 1—(1—V)/z 1

) dz dv
'rrpT~

S max(1 —V+VW, ~~, ) VW/s VW/ze

g&abmc
xf~(x&) M')fs(*2) M')D~(z, M~)s

(35)

g3 sub 1 1—(1—V)/z 1

dz dv de)
d pq mp2 8

~ (I—v+vw, ,i.) Jvlv/ /vw/

drab-+c
x f (zg, M )fs(z2) M )D,"(z,My)i „0~

(36)

where V and W are defined as in Eq. (2) and

ZvtU

1 —V
z(1 —v)

(37)

E~d or',"b/d p~ vanish for e ~ 0 due to the constraint
z & 1/(1+ e). Since furthermore the fragmentation func-
tions will tend to vanish at z = 1, the fragmentation
contribution is for small e suppressed proportional to t

with a & 1 [6]. In comparison to Eq. (9), the basic
structure of E~dsor',"b /dsp~ is for small e and b given by

The subprocess cross sections do s~'/dvdvr for the var-
ious contributing 2 m 3 QCD subprocesses with par-
ticle c being observed, needed for the calculation of
E~dso&,

'
/dsp~, h—ave been calculated by Aversa et

al. [33] and are available in a FORTRAN code. They are of
course factorized and thus &ee of singularities and per-
turbatively well defined just as E~d o&;,'~/d p~ in Eq. (7)'
is. We shall now calculate the subprocess cross sections
dos ' jdvdtu for the subtraction piece in the small-cone
approximation. Let us first state what kind of terms are
expected in the Bnal result. The first thing to note is
that E~d 0" '/dsp~ as well as E~d err' ~ +'

/d p~ and

inh(A+A'lne)+ 8+CD in&

with new coefficients A, A', 8, and C. We have antic-
ipated the presence of an e lnblne contribution in Eq.
(38). We shall restrict ourselves to the extraction of the
coefficients A, A', and 8 and neglect the contribution
&om C which should be less important. This view is sup-
ported by the fact that the term Cbz inc in Eq. (9) also
turns out to be numerically rather small. Therefore the
neglect of the e b'2 inc (a & 1) terms here [34] (which
are rather hard to calculate) might slightly inHuence the
accuracy of E~dsrrg /d p~, but will be completely im-
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material for the full final cross section for isolated prompt
photon production. The remaining contributions corre-
sponding to the coefficients A, A', and 8 are quite easy to
calculate. The principal way to extract these is to take
the matrix elements for the 2 m 3 QCD subprocesses
(with all possible choices for the observed final state par-
ton) published in [35], impose on them the collinear kine-
matics worked out in the last subsection, and integrate
them over phase space via Eqs. (10) and (13). In this
way one encounters final state collinear (1/r) singulari-
ties which are removed by factorization. The justification
for this is similar to the discussion accompanying Eq. (8):
Before the factorization of final state mass singularities
has taken place, the pole structure of E~dsog '/d p~ =

given by

d3 isol
frag

d p~ pole

~ & &/(~+~)

E frag

d p~ pole

drab —+cd
2T——p

QV
abcde

8f (zi, M ) fb(z2, M )

So.P,.(z') 8 D;(z, M&)

d30 sub
frag' d'p.

pole

(39)

a typical graphical representation given by Fig. 3.
The contribution from (39) is absorbed in (1), lead-

ing again to a next-to-leading-order fragmentation
function D~ (z, M&~) . In our present calculation we

can therefore just subtract the poles since those in

E~d 0'& ~ +'
/dsp~ (for which we take the results of

Aversa et at. [33]) are also already factored out. We

only have to make sure that we use the same factor-
ization scheme as that in Ref. [33]. In the correspond-
ing FDRTRAN code there is an option to choose the MS
scheme. We therefore calculate our fragmentation sub-
traction cross section also in the MS scheme just; as we

did for the direct piece in the last subsection. Taking
a look at Eqs. (14)—(18) and the simple structure of
Eq. (22) emerging from these equations, it is now rather
straightforward to obtain the final result. One has to col-
lect all suitable combinations of splitting functions times
2 ~ 2 QCD cross sections. As before, the inh pieces
(corresponding to coefficients A, A') are remnants of the
factorized collinear singularities and thus have the same
structure as the 1/r pole terms did. In the MS scheme the
nonlogarithmic pieces (coefficient 8) can again only stem
&om the w terms in the n-dimensional splitting functions.
Since we have, in n = 4 —2r dimensions for z & 1 [5],

1+z —r(1 —z)Pqq(z, r) = Cy
1 —z

1
Pqq(z, 7-) = 2+ (1 z)2

2(l —r)-
1 + (1 —z)2

Pqq(z, r) = C~ —rz

1 —z
Pgg(z, r) = 2' + + z(1 —z)

1 —z z

we are led to the functions [cf. Eqs. (15) and (18)]

& "(1—~)'E'~2 l

z + (1 —z)2 t v2(1 —tv)2Ei2h2~
ln

l

2
I

Mf2

1+z
'Pqq(z) = C~ ln

gg Z

+z(1 —z)

1 + (1 —z) v (1 —vi) E,b 2

'Pgq z = Cp

z 1 —z
+ + z(1 —z)'Pgg(z) = 2'

W

(v2(1 —w) E2g21
x ln (41)

2~ 1 —v+ vm

$0.9g~gQ
x Pgg(1 —'v + vtv) (s, y)

d~lg~Qg
yPgq(l —v + viv) (s, y)

dy
(42)

to be used in Eq. (36) with y = vtv/(1 —v + viv). The
two terms in Eq. (42) correspond to Figs. 4(a) and 4(b).
One observes that the diagonal splitting function 'Psg(z)
appears in the result which produces a 1/(1 —tv) term,
for e m 0 ultimately giving rise to e inb inc terms as

(where Ei ——E~/z), which will appear in the final result.
Considering, for example, the process qg m gX ~ pX',
the final state gluon fragmenting into the photon, one
has [cf. Eq. (22)]

do~~ g n, v8

QVdQJ

——Pq
1

r

FIG. 3. Typical final state pole contribution in a
next to lead-ing-order f-ragmentation process [cf. Eq. (39)j.

FIG. 4. Graphical representations for the toro contribu-
tions to do&~~ ~/dvdvi in the small-cone approximation, corre-
sponding to Eq. (42). The functions 7 ~g and P~q are deBned
in Eq. (41).
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promised ia Eq. (38). Siace the structure of the final
results is very simple, it is possible to write down the
dobe~'/dvdiv for all subprocesses without using the 2 ~
3 matrix elements calculated in [35] at all. As a check we
have used these matrix elements for several subprocesses
and integrated them in the small-cone approximation.
After MS factorization the Gnal result always turned out
to be the same. We collect the results for all subprocesses
in Appendix B [28]. Let us note that in order to account
for the experimental deGnition of the isolation cone, the
expression for b given in Eq. (29) should again be used
in Eq. (41) [32].

C. Isolated prompt photon production
arith longitudinally polarised beams

In this subsection we want to briefiy show how our
results need to be modified in order to deal with longi-
tudinal polarizatioa of the incoming hadrons. This issue
should become relevant at future high-eaergy colliders
such as RHIC where it will be possible to perform exper-
iments with two colliding longitudinally polarized hadron
beams. Only a few replacements are necessary in our pre-
vious formulas to make them suitable for the polarized
case. The quantity of interest now is the cross section
difference

dsho dsn(++) dso (+—)
& ds+ & dsp

'r
dan

(43)

E~d o (hih2)/d p~ denoting the cross section for the pro-
duction of a prompt photon by incoming hadrons with
helicities hi and h2. Let us also introduce the polarized
parton distributions

b,f (z, M ) = (f ) (z, M ) —(f ) (x, M ), (44)

Note, however, that we must not change the photon &ag-
mentation function D;r(z, M&2) in our previous equations
since we are dealing with unpolarized prompt photons
and only the initial state is polarized. The same is true
for the functions 'P~q(z) in Eq. (18) and 7;z (i,j = q, g)
in Eq. (41). These functions also refer to the final state
and thus have to be kept.

The subprocess cross sections db, cr /dvdut for the di-
rect part of inclusive polarized prompt photon. produc-
tion needed in the polarized versions of Eqs. (7) and
(28) were recently calculated in Refs. [12,13] in the MS
scheme. Ia the latter calculation [13] the (consistent) 't
Hooft —Veltman —Breitenlohner —Maison (tHVBM) scheme
[36] was used to deal with ps and e„„~ in n = 4 —2v di-
mensions. Making the modifications (45) and (46) in Eqs.
(19), (22), and (25)—(27) aow enables us to perform isola-
tion cuts also on the direct piece of the polarized prompt
photon cross section. We present the db o ' (s, y)/dy
(which we now need) in Appendix C. Let us note that
our results do not depend on the ps scheme chosen be-
cause the function P~q(z') ia Eq. (18) does not, since it
is unpolarized.

Unfortunately, the next-to-leading-order &agmenta-
tion contribution cannot yet be calculated for the polar-
ized case. The reason is that the cross sections for all the
polarized 2 -+ 3 /CD subprocesses are not known up to
now [37]. Nevertheless, it is straightforward by using the
results of Appendix C to obtain the polarized subtrac-
tioa piece subprocess cross sections dbobs~'/dvdiv [to
be used in the polarized version of Eq. (36)]. Again,
these results do not depend on the treatment of ps.
They will become relevant when the other ingredient

Eq. (30)], can one day be calculated.

III. NUMERICAL RESULTS

f (K, M) Qf A( M2)

and

cr ', 40

for all parton distributions and cross sections. The latter
replacement corresponds to hadronic as well as subpro-
cess cross sections, b, being defined as in Eq. (43) as the
difference of cross sections for the two diferent relative
settings of the incoming particles helicities. Analogously,
we have to replace Tqq and Tqs in Eq. (27) by

Tqq ETqq Tqq: [v + (1 v) ]T;ET =1 —(1 —v)

where (f+) deaotes the distribution of parton type a
with positive (aegative) helicity in hadron A with positive
helicity. It should be noted that taking the sum instead
of the difference in Eqs. (43) and (44) one recovers the
usual unpolarized quantities E~d cr/d p~ and f (x, M2)
introduced before. We can now easily adapt the cross
sections in Eqs. (1), (19), (22), (25), (26), (28), (35), aad
(36) to the polarized case by making the replacemeats

We shall now present some numerical results for our
approximation method for unpolarized isolated prompt
photon production. It is not the purpose of this study
to make quantitative comparisons with existing col-
lider data on isolated prompt photon production [16,17].
Rather, we want to test the accuracy of our method and
show the general size of the isolation effects for the direct
and the &agmentation contribution in next-to-leading or-
der. We reserve the actual comparison with data for a
future publication [38].

The Gist thing we want to study is the accuracy of
our approximation method for the direct contribution to
isolated prompt photon production. For this purpose
we have to compare with the "exact" numerical solution
&om a Monte Carlo program. Since the program of Baer
et aL [5] is not &eely distributed, we have set up our own
Monte Carlo code which calculates the subtraction piece
E~d og, /d p~ in Eq. (7). For this program we have
used our own results [13] for the unintegrated 2 M 3
matrix elements for ab m lcd. The actual Monte Carlo
calculation is performed following the lines outlined in
Ref. [5]. We have assumed a very small cone around
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the photon with opening b, « b which is located inside
the isolation cone and is concentric to it. Inside the very
small cone we can safely calculate everything analytically
as outlined in the last section and can perform the MS
factorization of final state mass singularities [39]. For
the rest of the calculation we can now use the matrix
elements in four dimensions and numerically integrate
them over phase space, taking care of the proper isolation
constraints. We have checked that the final Monte Carlo
results are independent of the collinear cutofF 6, over a
wide range of b, values, as they must be.

For our numerical evaluation of E~d os";, /d p~ we
use the Gliick-Reya-Vogt (GRV) parton distributions in
next-to-leading order [40] which have been found to be
in perfect agreement with recent data &om the DESY ep
collider HERA for F2P [41,42]. For consistency we calcu-
late the strong coupling a, (p ) (iu being the renormal-
ization scale) using the two-loop expression for it and
taking the Ag~D values and threshold conventions deter-
mined along with the structure functions in Ref. [40). We
perform our calculations by setting Ny ——5, neglecting,
however, the contributions &om b quarks. We study the
case of pp collisions at v S = 1 TeV which is a typical
value for recent pp colliders. We choose p = M = pT
for the renormalization and (initial state) factorization
scales and Mf = 6pT for the fragmentation scale unless
otherwise stated. In Figs. 5(a) and 5(b) we show the

relative deviation

as a function of b and e for two values of the transverse
momentum, pT ——20 GeV and pT ——50 GeV, at zero
rapidity, g = 0, where 6 = R [see Eq. (29)]. One
can easily see that the accuracy of our approximation
for the subtraction cross section E~dscrd",. b/dsp~ is much
better than 10'%%uo over a wide range of values for 6 and

It should be emphasized that the subtraction cross
section is only a subdominant part of the full isolated
cross section (see below). Therefore our approximation
for E~d og,, /d p~ is generally far better than 10%. Ac-
cording to Figs. 5(a) and 5(b) the approximation for
E~d o&",, /d p~ tends to break down at large s and, in
particular, at very large b which of course is expected.
Nevertheless, even for b = 0.7 and e = 0.2 it is still
very good. It should be stressed that the Monte Carlo
program is very computer-time consuming [43] and has
Buctuations which are sometimes even of the order of the
accuracy of our approximation method. This can be seen
in Figs. 5(a) and 5(b) which have not been smoothed.
For these reasons our approximation is very convenient.

At larger pz the approximation seems to become
slightly worse. This is, however, no drawback since the
subtraction piece becomes rather small and eventually
negligible at large pT. This is shown in Fig. 6 where we
have plotted the ratio

0.00-

—0.05

E,d'crs", b/d'p,
ds&isol/dsp

d3&sub/dsp

$3~incl/$3p E ds~sub/esp (48)

o.oo
0.

O.&~ 0.8

0.0 vs pT for fixed 6 = 0.4 and e = 0.1. We have calculated
I4;, using our approximation method for E~dsos",,b/dsp~
(solid line) and also using our Monte Carlo program

0.20

0.2S

R@,
0.20

0.1 0
0.15

0.00 0.10

0.00 O.OS

0.25

F1G. 5. (a) The relative deviation D defined in Eq (47)
as a function of the isolation parameters b and e at VS = &

TeV, pg ——20 GeV, and q = 0. We have chosen p = M = pT,
but Mf = bpT. (b) Same as in (a), but for pT = 50 GeV.

0 2S SO 7S 100 I2S ISO

p I:GeVI

I"IG. 6. The ratio Rd;, of subtraction cross section and iso-
lated cross section for the direct case, defined as in Eq. (48),
as a function of pT. The solid line corresponds to using our
approximatiou for E~d oz";, /d p~, whereas the dashed one
refers to R~d os";, /d p~ calculated by the Monte Carlo pro-
gram. The scales are chosen as in Fig. 5.
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(dashed line). As can be seen, both results are again very
similar. The ratio R~;, has decreased to less than 5% al-

ready at pT —50 GeV. An error of roughly 10% in our
approximation for E~d o&";b/d p~ at this p~ thus leads to
an overall error in E~dscr~gl/dsp~ of about 0.5% which
is certainly completely negligible. Note, however, that
E~d o&;",'/d p~ is important at small pT, exactly where
our approximation is most accurate. From Fig. 6 one in-
fers that E~dso&",, /dsp~ is negative. This feature stems
from the logarithm in Eq. (18) which gives a negative
contribution. The effect of subtracting E~d oz";b/d p~
from E~dso&";,' /d p~ is thus to increase the cross section
[44].

As mentioned above, b and R are no longer equal at
nonzero rapidities. According to the jet studies of Refs.
[30,31], R = 6 cosh@, not b', is the relevant quantity that
must be small for the small-cone approximation to be
a good approximation. Thus at large g, h must be very
small in order to make b cosh g still small. We have found
this criterion to be confirmed by our results. At rapidity
iv = 1 our approximation starts to break down already at
b 0.6.

The success of our approximation method for the direct
piece implies that our approximation also works for the
next-to-leading-order fragmentation contribution. We do
not attempt to check the accuracy of our approximation
for this contribution numerically by a Monte Carlo pro-
gram since this is a rather hard task and needless in view
of our results for the direct piece. From now on we shall
solely use our approximations for the subtraction cross
sections.

We now show some results for the effects of isolation on
the next-to-leading-order fragmentation contribution. In
addition to the distributions and parameters used before,
we use the next-to-leading-order photon fragmentation
functions of Gliick, Reya, and Vogt [45] which we trans-
form from the deep inelastic p scattering (DIS~) scheme
to the MS scheme as described in Ref. [45]. For the cal-

culation of E~dso& ~ +')/d p~ we use the program of
[33]. Figure 7 shows the ratio [cf. Eq. (30))

~S I I I I
J

s I I I i I I I I i I I I I i I I I s ) I I I I0

frag

0.4— pp R = 1 TeV qW

0.3—

0.2—

0.1—

' 0 2S SO 7S 100 12S 1SO

FIG. 7. The ratio Bf, z of subtraction cross section and iso-
lated cross section for the next-to-leading-order fragmentation
case, defined as in Eq. (49), as a function of pT, calculated
using our approximation method.

E~d ~rag/d p~

d ~,
~~ +')/8 p —E~d ~"b/d p

(49)

vs pT for b' = 0.4 and e = 0.1. It becomes obvious that the
infiuence of the subtraction piece is again small at large
pT but important at small pT. As for the direct case,
the subtraction piece is again negative, thus enhancing
the cross section. From FiLs. 6 and 7 one also infers
that Rr, g ) Rg;, , i.e., in the case of fragmentation the
subtraction piece is more important relative to the cross
section it is subtracted from. To study the relative im-
portance of the full isolated fragmentation contribution,
Fig. 8 shows the ratio

B-= E~d or",og/d p
E d3aisol/d3p + E d3~isol /d3p

E dsoq", ,'/dsp —E dsos"b/dsp + E dso' . '
/dsp —E—dso'"b/dsp

(50)

as a function ofpz for the above values for b and ~. Figure
8 shows that the in8uence of the isolated next-to-leading-
order &agmentation contribution on the full cross section
for isolated prompt photon production is substantial at
small p~ but not dominant.

Despite the fact that both subtraction pieces
E~d og, /d p~ and E~d of," /dsp~ are negative and
thus increase the cross section when they are sub-
tracted, the full isolated cross section E~dscr" l/dsp~ =

E~d erg /d p~+ E~dso'P l/dsp~ is smaller than the full
inclusive cross section (i.e., the full cross section with-
out any isolation cut), as it of course must be. The
reason for this is that the isolated fragmentation cross
section E~d o'a. /d p~ is strongly reduced by the con-
straint (4) and much smaller than it would be without
any isolation cut. This can be seen most clearly in Fig.
9 where we compare the isolated (solid lines, including of
course the subtraction pieces) and the inclusive (dashed
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FIG. 8. The ratio R of isolated fragmentation contribution
and full isolated cross section as defined in Eq. (50), as a
function of p~.
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lines) cross sections, showing the direct and the fragmen-
tation contributions individually, as well as their sums
(i.e. , the full cross sections). The isolated cross sections
have been calculated as before assuming 8 = 0.4 and
e = 0.1. For the inclusive cross sections we have used the
expression in Eq. (28) for the direct piece and the one
in Eq. (35) for the fragmentation contribution, taking of
course z;„= 1 —V + VS' there for the lower limit of
the z integration. We have chosen p = M = My ——pT
for the inclusive calculation. For a better comparison, all
curves in Fig. 9 have been normalized by the full inclu-
sive (i.e., direct + fragmentation) cross section. Figure
9 clearly shows the strong reduction of the fragmenta-
tion contribution caused by introducing the isolation cut.
This stems, as mentioned above, from the z cut (4) and
obviously cannot be compensated by the enhancement
due to the negative subtraction cross sections. In this
way the full isolated cross section remains indeed smaller

FIG. 10. Dependence of the full isolated cross section
E„d a P'/d 'p~ + E~d erg" /d p~ on the energy resolution e

at 6xed cone size b = 0.4 for pT
——20 GeV, 50 GeV, and 100

GeV. As before we have chosen ~S = 1 TeV, g = 0, and the
scales p = M = p~, My ——bpT.

than the full inclusive one (see upper two lines in Fig. 9),
as it must be.

In Figs. 10 and ll we show our results for the depen-
dence of E~dsog, ,i/dsp~ + E~dso&,' i /dsp» on the param-
eters e and b, which was also calculated in Ref. [6] where
the program of Baer et al. [5] was used. We use three dif-
ferent values for pT, pT = 20, 50, and 100 GeV at fixed
h = 0.4 (for Fig. 10) or fixed ~ = 0.1 (for Fig. 11). We
can reproduce the rather Hat behavior found in [6] which
once more demonstrates the correctness of our results.

Finally we briefiy study the dependence of our results
on the choice for the &agmentation scale My. As we dis-
cussed in Sec. II A, the dependence on the fragmentation
scale would. drop out completely from E~d cr&',, /d p~
(which dominates the full isolated cross section) if it were
possible to set e = 0 there. For e g 0 but small we
thus anticipate a very weak dependence on My. This
can be seen in Fig. 12 where we show the full iso-
lated cross section for prompt photon production (i.e. ,

E~dso&';, i/dsp~ + E~dso&,''/dsp~) in next-to-leading or-

0.8—
10 I I ( I I I i I I I l I I I

o 06

0.4

r
/I

CI

~\

inclusive

isolated
{40.4,E~0.1)— p =20 GeV

E=0.1

fragnantation

0 2S 50 7S 100 125 1S0

p LGeVl
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C4
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O.i =—

0.01 =
p =SO GeV

T

FIG. 9. Comparison of isolated (solid lines, calculated as
before) and inclusive (dashed lines) results for the direct,
the fragmentation, and the full (direct + fragmentation)
cross sections. The inclusive cross sections have been cal-
culated according to Eqs. (28) aud (35) and using the scales

p = M = My ——pT. A11 results have been divided by the full
inclusive cross section for an easier comparison.

0.001 =
p =100 GeV
TQ

i i & l i i & l » i l i i & l

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 11. Same as in Fig. 10, but nom as a function of the
cone size b at fixed ~ = 0.1.
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FIG. 12. Dependence of the full isolated cross section
o Q' /d pp + Eyd o f z /d p» on the choice for the frag-

mentation scale My for pz ——20 GeV and 50 GeV at fixed
6 = 0.4 and e = 0.1. We have set My = (bpT and vary g
between 0.1 and 3. As before we have chosen v 8 = 1 TeV,
0 = 0, and the renormalization/(initial state) factorization
scales p, = M = pT .

do«« . C~& +
y c s

2 u

N~ st

do'
( )

1 7t'a

(
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der as a function of My for two 6xed values of pT and
fixed p = M = pT, using again 8 = 0.4 and e = O. l. The
result is obviously a straight line over a wide range of Mf
values.

As mentioned above, we reserve a comparison with ex-
isting collider data [16,17] on isolated prompt photon pro-
duction to a forthcoming publication [38].
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APPENDIX A: 2 -+ 2 +CD CROSS SECTIONS

where CF = 4/3, Nc = 3, and Ny is the number of active
Qavors.

APPENDIX B:FINAL RESULTS
FOR THE FRAGMENTATION SUBTRACTION

CROSS SECTION

In this appendix we present the cross sections
dos~~'/dvdm [to be used in Eq. (36)) for the various
processes ab —+ cx, where parton c fragments into the
photon. We order the processes in the same way as it
was done in the FORTRAN code of Ref. [33]. Defining the
common factor

In this appendix we collect the unpolarized 2 ~ 2 /CD
cross sections do ~~'s(s, y)/dy for the processes ab -+ cd
(see for example [46]), to be used in Eq. (22) and in our
analytical results for the fragmentation subtraction cross
section in Appendix B. Using t:—(p —p, ) = —s(l —y)
and u = (p~ —p, )z = —sy we have

2m 1 —v+ vm

and using the functions 'P;~ (i,, j = q, g) defined in Eq.
(41), we have [28]
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where z = 1 —v + vm and y = vm/(1 —v + vw), with
do ' (s, y)/dy given in Eq. (Al).

APPENDIX C: RESULTS
FOR THE POLARIZED CASE

In this appendix we finally collect our results for
the case of longitudinal polarization. For this pur-

pose we only need to know the polarized counterparts
dDo ~~'s(s, y)/dy of the cross sections do s ' (s, y)/dy
presented in Appendix A. According to the discus-
sion in Sec. IIC we then only have to replace the
do ' (s, y)/dy by the dAo ~ (s, y)/dy in the rele-
vant Eqs. (22) and (Bl) to obtain the polarized sub-
traction piece subprocess cross sections dh, os /dvdm and
dAos '/dvdm. The cross sections db, o b 's(s, y)/dy
read [46]
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