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Supersymmetric electroweak radiative corrections to e+e
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This is the first of a series of three papers in which we give a complete analysis of one loop
quantum corrections to the W pair production in the context of supersymmetric electroweak theory.
We have adopted the on-mass-shell subtraction scheme of Sakakibara and previously demonstrated
the consistency of this scheme. The relevant analytic results are given, and the one-loop-corrected
differential cross section incorporating the Rnite corrections is written out. A complete computer
program for the calculations of these corrections has been developed. This program has been checked
in several ways to ensure against errors in this long calculation where many subtle cancellations are
involved. In this paper we give an outline of our model, sketch our renormalization procedure, and
give analytic and numerical results for the self-energy insertions, wave function renormalization,
and soft-photon bremsstrahlung. We find that the percentage (with respect to the tree-level) of
virtual loop corrections (considered in this paper) due to the addition of SUSY particles varies
approximately from —5.93% to —5.21%. As a comparison the percentage virtuaL corrections due to
self-energy insertions and wave function renormalization in the SM varies typically from 27.9% to
20.3'Fo. The SM total percentage virtual loop corrections varies typically from 17.4% to 19%. The
above comparison is made at the same center-of-mass energy (200 Gev). The first percentage in
this comparison is for center-of-mass angles of 10', the second being at 90 .

PACS number(s): 13.10.+q, 11.30.Pb, 12.60.Jv

I. INTRODUCTION

Supersymmetry is one of the most elegant extensions
of the standard model. It solves the hierarchy problem,
one of the major drawbacks of grand unified theories, by
introducing a fermion-boson symmetry. It is precisely
this beautiful property of supersymmetry which provides
a hope of unifying all forces of nature, and also allows
forces and matter to be treated on the same footing. As
a consequence of the Fermi-Bose symmetry, many new

degrees of freedom corresponding to the supersymmetric
partners (SP's) of the ordinary particles are predicted
by the theory. However aesthetically appealing a theory
might be, it must stand the test of experiment. Therefore
it is of crucial interest to explore all the phenomenolog-
ical implications of supersymmetric theories in order to
eventually confront experiment.

A lot of work has been done on supersymmetric phe-
nomenology [1-4]. The effect of supersymmetry on
the physical properties (such as g —2 of leptons [5],
the two-photon decay widths [6], the magnetic and the
quadrupole [7] moments of the W boson) has received
some attention. Radiative corrections in X = 1 super-
symmetry have been given in the context of neutral cur-
rent scattering ev„,' ev„, by Grifols [8] et al. and
Schwarzer [9] and for e+e; p+p by Lynn [10].
In Ref. [8] no mention is made of the renormalization
scheme adopted. Schwarzer [9] adopts the minimal sub-

traction (MS) scheme and finds the electroweak param-
eters dependence on the supersymmetric eKects to be
small; for example, a 0.002 increase is found in the value
of sin 0~(pz) at scale y, = M~ and a small decrease
of the order of few MeV in the predicted gauge boson
masses. A good review of phenomenology and work on
the radiative corrections both in and beyond the stan-
dard model may be found in [1].

The purpose of this paper (and two others) is to report
on our [ll] calculation of the one loop radiative correc-
tions to the process e+e ,'lV+W in the supersym-
metric Weinberg-Salam (WS) [or quantum Havor dynam-
ics (QFD)] model. Radiative corrections to e+e
W+W in QFD were first calculated by Lemoine a,nd
Veltman [12] and Philippe [13]. More recently they were
repeated by Bohin et al. [14], Fleischer [15] and us. The
importance of the reaction e+e -', R'+R' as a test of
the standard model cannot be overemphasized. Despite
the recent results at CERN e+e collider LEP I pointing
to the success of the standard model, the Higgs boson
and the top quark have eluded detection. Moreover the
crucial feature of the WS model, i.e. , a test of the triple
boson vertices still has to be made. One place where
the triple boson vertices will be tested is in the electron
positron annihilation into pairs of charged vector bosons
at LEP II. Another quantity to be measured (with great
precision) at LEP II is of course the W-boson mass, ex-
pected to be Ineasured within an accuracy of 100 MeV.
This coupled with the now well-determined Z-boson mass
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[16] will make it possible to detect deviations from the
standard model. This necessitates all the more that the
standard model radiative corrections (at least up to one
loop) be accurately estimated. Thus, many independent
evaluations are necessary, which will allow the experi-
mentalists to compare their results with the theoretical
predictions with some confidence. It would also be inter-
esting to estimate the change in the one-loop-corrected
differential cross section that would arise as a result of
the addition of supersymmetric (SUSY) particles. In par-
ticular one may ask the question how sensitive is the dif-
ferential cross section to the process e+e,' W+W
to the SP masses. In order to answer the latter question
we took the SP masses near their present experimental
limits and we also considered the case when most of the
SP masses are greater than the W mass.

The arrangement of this paper is as follows. A brief
description of our model is given in Sec. II . Section III
contains a discussion of the lowest-order differential cross
section. In Sec. IV we briefly review our renormalization
scheme and give a brief description of the structure of
the virtual corrections and of the systematic evaluation
of the one-loop Feynman diagrams. Section V contains
the analytic and numerical results of all the self-energy
corrections. A complete discussion of the bremsstrahlung
cross section is contained in Sec. VI. Finally the Appen-
dices contains the necessary collection of the formulas for
the virtual corrections.

II. THE MODEL

When studying the phenomenology of various pro-
cesses involving supersymmetric particles, it is conve-
nient to choose some model. However it is desir-
able to proceed in as much as possible in a roodel-
independent way. With this in mind we have chosen
to work with a softly broken supersymmetric extension
of QFD (SQFD) of Haber and Kane [2]. The complete
Lagrangian is given in [11] and will not be repeated
here, but we briefly recall the particle content of this
model [2]. It consists of the following five physical mul-

tiplets (p, p), (W, ~i, H ), (W+, ~2+, H+), (Z, z, H2),
and (Hi, Hs, ~2ReN, ~21mN, h). In the supersymmetric
(SUSY) limit these have masses 0, Miv, Miv, Mz, and
m~0 respectively. We note that here Hz is the physical
Higgs particle of QFD. The above multiplets consist of
an equal number of Bose and Fermi degrees of &eedom.
In the above multiplets u~, cu2, z, 6, are given by

&a, -&a,
~2

and

&a, +&a,

1 N

The various Higgs fields are extracted Rom

,'[H,——H,'+i(H —G )]—'[H —G ]

and

—', [H++ G+]
Ho + Ho + i(Hs + Go)]

For example H+ is defined as

2

In all our calculations we have used the above physical
component fields. We stress that we have not used the
superfield formalism for the loop calculations.

Our conventions are those of Bjorken and Drell [17].
The various notations adopted here are as follows.

(1) The metric convention (+, —,—,—) is chosen.

(2) The Wess-Zumino gauge is chosen for the vector su-

perfield (it is well known [18] that this leaves the Faddeev-
Popov ghost sector unchanged).

(3) Dimensional regularization is used with

+l (4 ~)-l (M )+0(

n = 4+m.

In using dimensional regularization in conjunction with
on-mass-shell renormalization scheme we [11] (see e.g. ,
work by P. Kalyniak and M.K. Sundaresan cited in [11])
have used g„" = n, Tr I = n consistently. Using n instead
of 4 leads to extra finite constant terms.

(4) We work in the 't Hooft —Feynman gauge.
The following abbreviations have been used: 8~

sin8iv, cia = cos8iv, ter = tan8iv, f denotes fermion, f
is a shorthand for the sfermion, GB stands for vector bo-

2
son and =' is equivalent to = z6, . We also use uppercase
to denote particles, E stands for fermion, B for boson, SF
and SB denote respectively the corresponding supersym-
metric partners of F and B. SP stands for supersymmet-
ric partners of the ordinary particles. fct is a shorthand
for finite parts of the counterterms. The subscript 1 has
been used to remind ourselves that we are working to the
first order in the coupling constant. QFD and SQFD are
acronyms for quantum flavor dynamics and supersym-
metric quantum flavor dynamics respectively.

In this paper, for the purposes of numerical evalua-
tions, we assume the following values for our set of in-
dependent input parameters [16]: o. = 1/137.035985 and
the listing of input masses in GeV given in Table I.



126 S. ALAM

Particles
me

mv

m gtt

mcl

fAg

mHo
1

Mgr
Mz

SP
m~
mz

Mass
0.000511

0
0.105658

0
1.7841

0
0.032
0.032

1.5
0.15
100.0
4.5

50, 100.0
81.0, 82.0
92,0, 93.0

Mass
15.0
35.0

SUSY Particles
me

m~
m p

m~
m)=

m gg

m~
mi
me
mS

mt
ma

mHo
3

mH~
mHo

sp

TABLE I. Listing of input masses in GeV.

Mass
45.0
30.0

45.1057
30.0

46.7841
30.0

45.032
45.032
46.5
45.15
50.0
49.5
75.0
91.0
100.0

Mass
50.0
40.0

by pz) p2, qz) and q2. The invariants of the process are
given by (when the W's are off shell)

2= 2
pi fA

. 2 2
P2 m )

gg = 83)
2 = 84)

(1)
(2)

(3)

(4)

for the on-mass R"s, 83 ——84 ——M~. The Mandelstam
variables are de6ned in the usual manner:

8 = [Pl + P2]' = [Vl + 92]',

[gl Pl ] [P2 g2]

u = [n —pi]' = [p2 —vi]',
8 + t + ll, = 2' + 83 + 84.

(5)

(6)

(7)

(8)

In terms of the center of mass (c.m. ) scattering angle3

0, the beam energy Eb, and the c.m. energy E, , the
above expressions [(5) through (8)] may be rewritten as

The following remarks are in order as to why we have

chosen this particular set of the input parameters.

(1) It is necessary to make a sensible comparison with

the results given by other authors [12—15]. For the pur-

poses of exact comparison [19,20] with the work of [14]
we take Mgr ——82.0, Mz ——93.0, and mHO ——100.0.

(2) The input masses for the supersymmetric particles
given above were inspired by the work of Baer et at. [21],
and by the experimental limits [16]. The masses given
above for the supersymmetric Higgs sector were arrived.

at by keeping in mind the recent experimental limits [16]
and the standard wisdom (that at the tree-level) mH+ )
Mgr, tAHo ) Mg, mHo ) mHo, and mHo ( Mz. In
addition to the case given above for the SUSY particles
masses we [20] also examine the case where the masses of
most SUSY particles are taken above the TV-boson mass.
However we have kept the photino mass light in both of
the cases we [20] have considered.

S=E, =4Eb,
8 84 —Bs 2g*

t = tc, +st —— 1+ —tt, ccstt),
2 8 8

Zl, = 83 + 84 + 277l —8 —t)2

(9)

where

4p21—
8

(12)

e+(p )
l

W (q)

e (p, )

e+

is the velocity of the ith particle, and p, is its four-
momenta. q* is the c.m. momentum of the S".

III. BORN CROSS SECTION

The tree-level cross section for the process e+e
W+W in QFD has been extensively quoted in literature
since its first calculation by Alles et aL [22]. Here we

establish notation, give definitions, and brieHy discuss
the unpolarized differential cross section for this process.
It is known that to get more realistic results the decay of
W's into fermion pairs must be considered. %le present
the polarization summed squared amplitudes for off-shell
W's so that it will be useful as a part of a more complete
radiative correction program for four fermion production
processes. In the limit that the R"s are on-shell our
expression reduces to the well-known result [22,12,13]. A

number of misprints in [12] have been pointed out by
Philippe [13]. The effects of polarized electron positron
beams are discussed by [15].

The momenta of the incoming positron and electron
and the outgoing W+ and W are denoted respectively

0
Hi

FIG. 1. The lowest order Feynman diagrams for the process

e+e,' M+TV and the three vertex momentum conven-

t ion.

Where we take 8 to be the angle between the electron and
the W direction.
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Mo = ig [v(pl)p" (a, + b,p5)u(p2)r„„pele2]

[+(pl)A(51 gl)J 2(at + bt Y&)u(P2)]. (»)
Here

sw [1 —4sw]
s 4[s —Mi2]

'

—1

4[s —Mg2]
'

1
Gg = —

)4t'

(14)

The contributions to the lowest order Born cross sec-
tion come f'rom the three diagrams of Figs. 1(b)—1(d).
Since the Higgs exchange contributes m2/Mw2 relative to
the remaining three it can be neglected. The contribu-
tion to lowest-order amplitude can be succinctly written
as

bg = —ag)

and

I',.~ = g, i(ps + q2). + g ~(ql —q2), + g,-(—P5 —ql) A.

(18)

In Eq. (13) we have grouped the s-channel contribu-
tions from the photon (p) and the Z boson into one
term. By using the amplitude in Eq. (13), the polar-
ization summed square amplitude is given by

Ao(s, t, ss, s4) = (a + b )A + (at + bt )Att
—2(a, at + b, bt)A, t. (19)

A„ through A, t are given by

1
- 2(ql. e) (2pl P2ql q2 2pl'qlp2'q2 2p2'qlpl'q2+2pl'qlp2'ql

8384
1

+2P2 ' q2P1 ' q2) + —ql q2(3ql q2P1 ' P2 + 8P1 ' q2P2 ' q2 + 4P1 ' q2P2 ' ql + 4P1 ' qlp2 ' q2)
84

1+ ql q2(3ql ' q2P1 ' P2 + 8pl ' qlp2 ' 'ql + 4P1 'q2P2 ' ql + 4P1 ' qlP2 q2) + 4P1 P2ql ' q2 4P1 q2P2 q2
83

12p1 Q2p2 Q1 12p1 ' g1p2 ' g2 683p1 ' p2 4p1 ' Q1p2 ' g1 684p1 p2 (20)

2
t (ql ' q2) (P2 ' q2) ( Pl ' P2ql ' q2

83S4
1

2P1 ' qlp2 ' ql + Pl ' 'q2P2 ' ql + P2 ' 'q2P1 ql) + —P2 q2[—4ql q2P1 ' P2
84

1
2P2 q2(pl ql + 2pl q2) —2P2 qlpl q2] + —[2P2 . ql(P2 ql[2pl ql

83

+pl ' q2] + Pl qlP2 q2) + ql . q2(P1 ' q2P2 ' 'ql 2P1 ' 'qlP2 ' ql 7P2 ' q2pl ' ql
—pl ' p2ql q2 —2pl ' p2p2 ' ql)] —3pl p2ql q2 + 8pl qlp2 ' q2 + 4s4pl ' p2

+2p1 p2p2 ' Q2 + 6p1 ' p2p2 . a1 (2i)

4 2
+tt s4 4P2 ' q2 + (P2 q2) Pl ' P2 + Pl ' 'qlP2 ql + 4(P2 ' q2) Pl ' q2 + Pl ' 'qlql ' q2s

S4 S3 S3
(22)

The above analytic expression will be useful as an essen-
tial part of the tree-level cross section for the four fermion
production process. For the on-shell W's (note &om now
on we take, for all numerical results, the W's to be on
shell) the tree-level difFerential cross section is expressed
as

tree-level differential cross section. The values in Table II
are in agreement with Philippe [13], taking into account
that he uses different values for the masses of the TV and
Z bosons. Also he def1nes the center-of-mass angle as
the angle between the direction of the electron and the
TV+. In Table III we compare the effect of using two dif-
ferent schemes on the tree-level differential cross section.
For a def1nition of the two schemes see the beginning of
the next section. The change4 her of approximately 11

where

4g'A P.
32%8 (24)

The de6nition of bo is as follows:

Numerical results are given in Tables II and III for the
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TABLE II. Standard model differential cross section in pb.

8 (deg)

10
30

70

110
130
150
170

(~ g) (200GeV)

155.6123
106.9359
59.3622
33.5360
20.5578
13.7370
9.8762
7.6402
6.5744

(,', ) (5OOGeV)

291.2080
33.1306
9.4963
3.7453
1.9066
1.1660
0.7161
0.3712
0.1665

(
"

8) (1000GeV)

83.0610
8.0082
2.2021
0.8379
0.4209
0.2582
0.1542
0.0684
0.0157

percent is quite substantial. This difference drops down

significantly, as expected, after the inclusion of the one
loop corrections. However there remains a non-negligible
difference which signals higher order effects.

It should be pointed out that we have not averaged
over the initial polarization states, to do so one simply
divides by a factor of 4. We note that except for Table III
for the purposes of all the analytic and numerical work

given in this and the remaining two papers [19,20] we

have used the alpha scheme.

IV. RENORMALIZATION SCHEME AND
GENERAL STRUCTURE OF QUANTUM

CORRECTIONS

In the on-mass subtraction procedure of Sakakibara
[23] [on-mass-shell renormalization scheme (OMSRS)]
the set of independent parameters in the alpha scheme is

(o. , Mw, Mz, mH,o mf m. )

and, in the G„scheme,

(G„Mw, Mz, mH. , mf, m, ),

where M~ is the W' mass, Mz is the Z mass, mHO is the
1

Higgs boson mass. my and m, represent collectively the
masses of the fermions and the supersymmetric particles
respectively. Clearly the masses of the supersymmetric
particles do not enter as independent input parameters

in the SUSY limit [11]. The renormalization conditions
are (1) the charge e is defined in the Thomson limit,
and (2) all one particles irreducible two-point functions
(including the vanishing of pZ mixing at q = 0) have

zeros at their physical masses. The ingredients needed
to generate the counter terms in OMSRS of Sakakibara
[23] are bg, b'g', SMw, SMz, bZ~, bZw, 8Zz, bZL„
and bZ~. Of these bM~, bMz, bZ~, bZ@, and bZz are
obtained from vector boson self-energies [23,11]. Sakak-
ibara [23] considered explicitly the cancellation of diver-

gences in the lepton —lepton —gauge-boson vertices. For his

problem of radiative corrections to neutral current inter-

actions, he was not concerned with the cancellation of
the divergences in the three gauge boson vertices. This
is, of course, what we need to do in our problem. We
have demonstrated the cancellation of in6nities within
our model thus exhibiting the consistency of the adopted
renormalization scheme [11]. Moreover we have shown

the cancellation of the quadratic and linear divergences
for all cases that occur in our model [11]. This is not
merely an academic exercise since with so many diagrams
to calculate one needs to check the calculation in every
possible way.

Here we give the Gnite corrections and outline the
OMSRS scheme along the way. Let us begin with the
gauge boson sector. bM~ and bMg are obtained by the
observation [23,11] that, by requiring the ghosts (c+, cz)
self-energies to vanish at q = M~ and q = M& for
c+ and cz, respectively, one guarantees that longitudi-
nal gauge boson self-energies are subtracted on the mass
shell. Using this condition one gets [23,11)

TABLE III. Standard model differential cross section in pb for the o. and the G„scheme.

8 (deg)

10
30
50
70
90
110
130
150
170
180

(„" ~ ) (200GeV)
o. scheme
155.6123
106.9359
59.3622
33.5360
20.55?8
13.73?0
9.8762
7.6402
6.5744
6.4424

(,', ) (2OOGeV)

G„scheme
175.3002
120.4653
66.8726
37.?789
23.1588
15.4749
11.1258
8.6069
7.4062
7.2575

DifFerence
bo.

-0.1123
-0.1123
-0.1123
-0.1123
-0.1123
-0.1123
-0.1123
-0.1123
-0.1123
-0.1123
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bM2 bM2 2

(4s ) E —b
M2 M2 16 2

W Z

where by is the finite part given by [Ri ——Mz/Mw,
R2 ——mH, /Mw]

2 1

by = (3 —4sw) dz in[1 —z(1 —z)Ri]
16vr2

~ o

1

dz ln[z Ri + (1 —z)R2] + 4sw
2c~ p

1
—(3 — tw +-2sw) dz ln[z + (1 —z)Ri]

I

w

[s&l

H

[sa']

W/V4 7

~

.~mdiv' y

' L. ,
-

v, z

1

dxln z2+ 1 —x R2
2 o

(26)

7r~(q') = 7r~(q2) —7r~(0), (27)

The above expression is the same as in QFD [23,11] since
we are working in the %'ess-Zumino gauge. As was men-
tioned before, supersymmetry does not alter the ghost
sector in this gauge [18].

Now we turn to the determination of bZ~, b'Zw, and
bZz in terms of self-energies of gauge bosons. To this
end we denote the bare self-energies of the photon (p),
W+, Z, and the pZ mixing amplitudes by m r(q2)g„„+

, a (q )g„„+. , respectively, where (C = W, Z, pZ).
Subtracting the gauge boson self-energies on-shell, the
renormalized self-energies are [23,11]

[sb]

'L.
-,

[54']

[sc'],-

G

[sd]

Mf'fan% P

FIG. 2. Diagrams needed to arrive at the de6nition of the
Thomson charge, i.e., to determine the counterterms bg and
bg'. These are the one particle irreducible diagrams contribut-
ing to the lepton-lepton-photon vertex.

a (q ) = a (q ) —a (Mc) —bZc(q —Mc), (28)

bZ~ = z~(0),

bZw = sr~(0) y Ywzcot gw, (30)

b Zz = 7r (0) + Yw z (cot ew —1), (31)

where

where C = W, Z. From these relations the field renor-
malization constants bZ~, bZw, and bZz are found to
be

tency check, all terms involving powers of m /Mw were
retained [23,11]. The Thomson charge was shown to be
independent of mass in SQFD [11].

We follow Sakakibara [23] and choose to determine b ZL,

by subtracting the left-handed fermion (Ts ——+1/2) on
the mass shell. Similarly bZR is fixed by subtracting the
right-handed fermion (Ts ——0) on the mass shell. This
implies that the neutrino must be subtracted on shell.
The self-energy diagrams of the neutrino are given in
Fig. 3. The contribution of each is listed in Appendix A.
From these one easily determines bZr, since [23,11]

aw(Mw2) az(Mz2) bMw2 bMz
( )WZ

W Z TV Z

bZL, = v(0). (33)

We note that in the OMSRS [23,11] the photon does not
carry an independent wave-function renormalization.

En order to determine bZR, bZL„bg, and bg' one must
first calculate the neutrino and the electron self-energies.
The counterterms bg and bg' are determined by requiring
that the photon-lepton-lepton vertex defines the physical
or the renormalized charge, Fig. 2. The charge thus
defined must then be independent of the lepton mass
m which means that bg and bg' must be independent
of the lepton mass; otherwise, the renormalized charge
would be difFerent for the muon and the electron and our
renormalization procedure would fail. For this consis- hZR —0RO+ 2~Rx -+ 2pi, (34)

The contributions of the standard particles to the neu-
trino self-energy agree with Sakakibara [23], thus provid-
ing a check on our calculations.

Since the electron is both left- and right-handed in
SQFD, the left handed coming in doublet with the neu-
trino, and we have already Axed bZL, by subtracting the
neutrino on the mass shell we must attach to each elec-
tron a finite piece fr, [23,11]. The right-handed electron
is subtracted on shell.

Calculating the electron self-energy diagrams given in
Fig. 4, and using the definitions [23,11]
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fL = 8—ZL + 0 Lo + 2crLy + 2py,

we extract 8Z~ and fL .We find that [11] fL is finite in
SQFD. Now turning to the lepton-lepton-photon vertex
corrections, we find

[2 d]
H

where C = Z, p, H~, G, G+, z, p, H2, HS, H+, h, ~, and

[2]

'e

[2'] fLz+ fg + SZLz+ ALz+ AL

fL +6ZL + AL

fL+ fL + 8ZL + AL+ A~L

fL+ fL+ bZL + AL+ AL

g
2

16~2

0,

0,

0,

0,

0,

0,

where AL, and AR are de6ned via

[4]

FIG. 3. One loop Feynman diagrams contributing to the
neutrino self-energy in SQFD.

—icy" Al, —icy" AR.

Summing over all contributions, Eqs. (36) and (37)
may be written as

bZR+AR =0,

[2]
()

G

[2a]

/

Z
I I

[2' ]

g
2

fL+ bZL+ AL =
16~2

The counterterm diagram 5 e in Fig. 12 gives

bg'
AR ——8ZR + cos ega,

bg bg'
Al ——5ZL, + —+ cot Ogr.

2g 2g

(40)

(41)

Our renormalization condition requires [23,11]

[4a]

Qe
I

6)

[4 a]
0

Hq

AR + 8ZR + cos 0~ = 0,
bg'

e
bg bg'

fL + AL + bZL + —+ cot Hgr = 0.
2g 2g

Together with Eqs. (39) and (40) this implies

(42)

0
Hi

[S]

bg' = 0,

bg

2g

g D ~

16' 2
(44)

[5'a]

FIG. 4. One loop Feynman diagrams contributing to the
electron self-energy in SQFD.

In calculating the one loop corrections to e+e
W+W in SQFD one encounters a large number of Feyn-
man diagrams. A systematic procedure was pioneered by
Passarino and Veltman [24] to deal w'ith this plethora of
integrals. Using this approach we must evaluate in di-
mensional regularization scheme integrals of the type
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A(m) =—
ix' [q2 —m'] ' (45)

= 1 1) q~ I q~qv
nr2 [q2 —m2][(q+ k)2 —m2] ' (46)

C C C .C = — d" 1 q» q„q». q&qv q~
i+2 [q2 —m2i] [(q + k) 2 —m22] [(q + ps)2 —m2s]

(47)

where p5 ——k+ p,

D D D D d" 1) q~) qpqv ) qp, qvqa

i~ [q2 —m2i][(q+ k) —m2][(q+ k+ p)2 —m2s][(q+ k+ p+ l)2 —m24]
(48)

Every such one loop integral can be decomposed in
terms of form factors [24,11]. For example consider C„
which can be written as

C„=Cggk„+ Cg2p„.

We note that the subscript 1 in the expression for the
differential cross section is used to indicate and emphasize
that we are working to the one loop order. This notation
is used in this and our other two papers [19,20].

The renormalized neutrino self-energy v in the above
expression is de6ned as

After some algebra one can express Cqq and Cq2 in terms
of the scalar integrals Co and three different Be's [24,11].
In this manner one can iteratively express all the invari-
ant functions Bg) ~ ~ ) B22) C] g) ~ ) C36) D]] ) ~ ~ ~ ) D3$3 in
terms of the scalar integrals A, Bo, Co, and Do. General
expressions for these scalar integrals were given in terms
of logarithms and spence functions by 't Hooft and Velt-
man [25]. The explicit details of this procedure may be
found in [25,11]. In [11] (we incan here notes of our the-
sis cited in [ll]) we have also given the complete expres-
sions for the in&ared (IR) singular integrals and other
relevant integrals encountered. One great advantage of
the above procedure is that it allows a consistency check
on the computer program, since some integrals such as
C23 C34 are computed in two different ways [24,11]. In
this manner we have obtained numerical consistency up
to at least eight decimal places.

v(k ) = v(k2) —v(0).

e+(p )
1

e (p ) w&(q)

e+ e+

W W

e+

Ignoring the terms proportional to the electron mass, for
QFD one has

V. THE SELF-ENERGY AND THE
WAVE«FUNCTION RENORMALIZATION

CONTRIBUTION TO THE ONE LOOP
DIFFERENTIAL CROSS SECTION

e+

W W

e+ g e+

V

In this section we give the contribution of the self-

energy insertions and the wave-function renormalization
[WFR] to the one loop differential cross section.

Consider first the neutrino contribution [Fig. 5(a)].
Contracting this with the tree-level amplitude one has

W

W

e+

e+

r' wVe

= 2v(t)4[ —(a,ay+ b, bg)A, g+ (a, + b, )A ]. ii(dcos8) i
(49)

[gl

FIG. 5. Feynman diagrams for self-energy and
wave-function corrections.
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0(«g)
10

50
70
90
110
130
150
170
180

(..':..)',
"

+0.0346
+0.0491
+0.0552
+0.0565
+0.0568
+0.0569
+0.0568
+0.0563
+0.0559
+0.0559

dCOSO

+0.4416
+0.4162
+0.3215
+0.2550
+0.2170
+0.1951
+0.1812
+0.1722
+0.1676
+0.1670

SQFD

+0.4762
+0.4653
+0.3767
+0.3115
+0.2738
+0.2520
+0.2380
+0.2285
+0.2235
+0.2229

TABLE IV. Neutrino self-energy contribution to one loop
radiative corrections in pb for center-of-mass energy of 200
GeV.

TABLE V. Electron WI R contribution to one loop radia-
tive corrections in pb for center-of-mass energy of 200 GeV.

g (d ) (
do )QFD (

d(z )sP (
g(r )SQFD

10 -5.2997 +0.4867 -4.8130
30 -3.6883 +0.3341 -3.3542
50 -2.1070 +0.1850 -1.9220
70 -1.2545 +0.1040 -1.3.505
90 -0.8252 +0.0633 -0.7619
110 -0.5945 +0.0419 -0.5526
130 -0.4574 +0.0299 -0.4275
150 -0.3733 +0.0230 -0.3503
170 -0.3315 +0.0197 -0.3118
180 -0.3263 +0.0193 -0.3070

C'(k ) = [Bo(M—w, m„k ) —Bo(Mw, m„0)
+Bi(Mw, m„k ) —Bi(Mw, m„0)] —(1/2cw) [Bo(Mz, m„, k )

Bp(Mz—, m„, , 0) + Bi(Mz, m~, , k ) —Bi(Mz, m~. , 0)],

and for SQFD, in addition to the above contribution from QFD,

v(k ) = [Bi(m , m;, k )-—Bi(m , m;, 0)] -+ (1/2cw)[Bi(m;, m-, , k ) —Bi(m;, m„-, , 0)]. (52)

2
We recall that =' is equivalent to = iss, . The numerical values for (&" s) are listed in Table IV for CM energy of

200 GeV and various CM angles. We note that (z s) in the second column in Table IV represents the QFD
QFD

contribution to the one loop (hence the subscript 1) differential cross section. Similarly (& s) in the third column

in Table &V represents the SP contribution to the one loop differential cross section. Finally the last column represents

the total contribution in SQFD.
The W-boson WFR [Fig. 5(f)] contribution is

d~ l clow(ss)
cos~ J i ( Bss

I'saw(s, )+ ).,=M„
(53)

The renormalized derivative of a is easily obtained from
the definition in Sec. IV [Eq. (28)] and the results for the
self-energy contributions listed in Appendix E. The nu-

merical values for Eq. (53) are given in Table VI. We note
that the in&ared infinite part in this expression, which is
given in Appendix E, Eq. (Ell), is cancelled against the
corresponding bremsstrahlung contribution [see next sec-
tion]. What is then given in Table VI is the finite piece.
We also note that in Table VI the first entry in the QFD
column is for the Higgs boson mass of 100 GeV, the sec-
ond entry in the same column corresponds to a Higgs
boson mass of 50 GeV. The first and second entry in the
SP column corresponds to with and without a mass split-
ting term, respectively. To get the total contribution in

When supersymmetry is broken a logarithmic infinity re-
mains in the wave-function renormalization of the W, this
term is proportional to [2sw(m-/Mw) + 2civ(m;/Mw) +
2(m-/Mw) —4cw(m-m-/Mw)]A. We note that the above
term is zero in the SUSY limit, [m~ = m~ = 0, m-
Mz, m- = Mw]. "With mass splitting refers to the case
when this term is subtracted by means of a counterterm
which contains also finite pieces. " Without mass splitting
term refers to the case when subtraction is made without the
introduction of any 6nite terms.

TABLE VI. W-boson WFR contribution to one loop radia-
tive corrections in pb for center-of-mass energy of 200 GeV.

8 (deg)

10

70
90
110
130
150
170
180

)
QFD

+3.2802,+3.0756
+2.2542, +2.1135
+1.2513,1.1733

+0.7069,+0.6628,
+0.4333,+0.4063
+0.2896,+0.2715
+0.2082,+0.1952
+0.1611,+0.1510
+0.1386,+0.1299
+0.1358,+0.1273

ct cos 8

-10.1466,-8.8322
-6.9744,-6.0694
-3.8716,-3.3693
-2.1872,-1.9034
-1.3408,-1.1668
-0.8959)-0.7797
-0.6441,-0.5606
-0.4983,-0.4336
-0.4288,-0.3731
-0.4202,-0.3657

SQFD

-7.0735,-5.7566
-4.8609,-3.9559
-2.6983,-2.1960
-1.5244,-1.2406
-0.9345,-0.7605
-0.6244,-0.5082
-0.4489,-0.3654
-0.3473,-0.2826
-0.2989,-0.2432
-0.2929,-0.2384

I

context of SQFD (i.e, third column) we have added the
second entry in the first column (i.e, Higgs boson mass of
50 GeV) to both entries in the second column, the reason
being that we have assumed a 50 GeV Higgs boson mass
in SQFD.

The self-energy insertions from Figs. 5(b)—5(e) are suc-
cessively written as
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TABLE VII. p self-energy contribution to one loop radia-

tive corrections in pb for center-of-mass energy of 200 GeV.
TABLE VIII. p-Z self-energy contribution to one loop ra-

diative corrections in pb for center-of-mass energy of 200 GeV.

8 (deg)

10
30
50
70
90
110
130
150
170
180

(..' )',
"

+2.8626
+1.0384
-0.0320
-0.5000
-0.7012
-0.7844
-0.8143
-0.8218
-0.8224
-0.8223

dcos e

-0.0032
-0.0011

+0.00004
+0.0006
+0.0008
+0.0009
+0.0009
+0.0009
+0.0009
+0.0009

der SQFD

+2.8594
+1.0373
-0.0320
-0.4994
-0.7004
-0.7835
-0.8134
-0.8209
-0.8215
-0.8214

8 (deg)

10
30
50
70

110
130
150
170
180

(
g )QFD

+0.0152,+0.0181
+0.0055,+0.0066
-0.0002,-0.0002
-0.0027,-0.0032
-0.0037,-0.0044
-0.0042,-0.0050
-0.0043,-0.0051
-0.0044,-0.0052
-0.0044,-0.0052
-0.0044,-0.0052

dcos8

+0.0966,+0.3222
+0.0350,+0.1169
-0.0011,-0.0036
-0.0169,-0.0563
-0.0237,-0.0789
-0.0265,-0.0883
-0.0265,-0.0916
-0.0277,-0.0925
-0.0277,-0.0926
-0.0277,-0.0926

SQFD

+0.1147,+0.3403
+0.0416,+0.1235
-0.0013,-0.0038
-0.0201,-0.0595
-0.0281,-0.0833
-0.0315,-0.0933
-0.0316,-0.0967
-0.0329,-0.0977
-0.0329,-0.0978
-0.0329,-0.0978

dc' i 8L= 2C ~ [a.A..—a,A.,]~~(s),
(dcosop i 8

= 24 2 [a,A„aiA.—g]a~ (s),
I d cos 8) i s 8 —M&~

(55)

Zw

= 24 ([a, (1 —4siv) —b,]A„—[aq(1 —48~) —bt]A, t)a (8),2 -Zw

(d cos 9j, [4cgr][s][s —Mzz]
(56)

zz
= 24'

2 ([a, (1 —4siv) —b, ]A» —[aq(1 —48~) —bq]A, q)a (8).
der 2 -Z

(d cos 9), 4[8 —Mz2]2

The renormalized a (i.e. , a~ z) of the p-Z self-energy
insertion is given by

2 ba~ (s) = a~ (s) —Ygrz cot 0~ + t~Miv —. (58)
g

The numerical values for Eqs. (54)—(57) are listed respec-
tively in Tables VII, VIII, IX, and X. We note that in
Tables VII, IX, and X the first entry in the QFD column
is for the Higgs boson mass of 100 GeV; the second entry
in the same column corresponds to a Higgs boson mass of
50 GeV. The 6rst and second entry in the SP column cor-
responds to having and not having a mass splitting term
respectively. To get the total contribution in context of

I

SQFD (i.e., third column) we have added the second en-

try in the first column (i.e, Higgs boson mass of 50 GeV)
to both the entries in the second column, the reason be-
ing that we have assumed a 50 GeV Higgs boson mass in
SQFD.

Now we turn to the contribution by the electron WFR
to the one-loop-corrected cross section [Fig. 5(g)]. This
is given by

i e
p d i er,

p d i e+e y+e+e Z, es
+I(dcoso) i (dcos0 j i idcoso) i&„

(59)
where

TABLE IX. Z-p self-energy contribution to one loop radia-
tive corrections in pb for center-of-mass energy of 200 GeV.

TABLE X. Z-boson self-energy contribution to one loop
radiative corrections in pb for center-of-mass energy of 200
GeV.

8 (deg)

1.0
30
50
70
90
110
130
150
170
180

(
ge )QFD

+0.0059,+0.0070
+0.0025,+0.0030
+0.0005,+0.0006
-0.0003,-0.0003
-0.0007,-0.0008
-0.0009,-0.0010
-0.0010,-0.0011
-0.0010,-0.0012
-0.0010,-0.0012
-0.0011,-0.0013

dcos8 ]
+0.0375,+0.1251
+0.0158,+0.0528
+0.0033,+0.0109
-0.0021,-0.0067
-0.0044,-0.0147
-0.0055,-0.0183
-0.0061,-0.0203
-0.0065,-0.0215
-0.0066,-0.0222
-0.0067,-0.0223

(
ge

)
SQFD

+0.0445,+0.1321
+0.0188,+0.0558
+0.0039,+0.0115
-0.0024,-0.0070
-0.0052,-0.0155
-0.0065,-0.0193
-0.0072,-0.0214
-0.0077,-0.0227
-0.0078,-0.0234
-0.0080,-0.0236

0 (deg)

10
30
50
70
90
110
130
150
170
180

)
QFD

+1.8726,+1.9374
+0.7903,+0.8177
+0.1636,+0.1693
-0.1043,-0.1079
-0.2200,-0.2276
-0.2745,-0.2840
-0.3043,-0.3148
-0.3224,-0.3336
-0.3317,-0.3431
-0.3328,-0.3444

dcos 8

-0.1438,+0.0706
-0.0607,+0.0298
-0.0126,+0.0061
+0.0080,-0.0039
+0.0169,-0.0083
+0.0211,-0.0103
+0.0234,-0.0115
+0.0248,-0.0121
+0.0255,-0.0125
+0.0256,-0.0125

SQFD

+1.7936,+2.0080
+0.7570,+0.8475
+0.1567,+0.1754
-0.0999,-0.1118
-0.2107,-0.2359
-0.2629,-0.2943
-0.2914,-0.3263
-0.3088,-0.3457
-0.3176,-0.3556
-0.3188,-0.3569
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da
!

= 4fI [{a,—b, )'A., —2{ai —bi){a, —b, )A.i+ {a,—bi)'Aii],(dcos8 j i

( d
a+e P+e~e z,e„

= C 6ZR [(Q, + b, ) A„—2(a& + b&) (a, + b, )A, & + (ai + bi) A/i]. (61)

A few remarks are in order to clarify the appearance of
the right-handed electron term in the electron WFR con-
tribution [see Eq. (59)]. As mentioned in the previous
section the right-handed electron is subtracted on shell
and does not contribute. The right-handed term in Eq.
(59) comes from the counterterm contribution considered
in [19]. This is why we have labeled it with the names
of the relevant vertices from which it arises. fct stands
for the finite parts of the counterterms [19]. We have in-
cluded it here in the electron WFR term because we need
it for the infrared cancellations considered in the next
section. bZR is written with a bar since the quadratic di-
vergence in it has been canceled in [19]. The superscript
p appearing on bZR indicates that only the photon's con-
tribution to bZR has been considered here. The quantity

, -9 M~ A2

fr, =' —
slav

—+ ln + 2 ln
-2 m

(62)

A2
~ZR = 8~ 4+ 21n (63)

For the case of SQFD, in addition to the above, one has
(we note that 2ai/c~ ——[1 —2s~~]2/2c~, see Appendix
B for a definition of ai),

fl, can be easily extracted by using the definition of fl,
given in Sec. IV and the expressions for the electron self-
energy given in Appendix B. For the case of QFD one
finds

2Q
fr. = + 2 [Bi(m;, m;, m, )] + 2s~ [Bi(m~, m;, m, )] + [Bi(m , m„-, , m-, )] —[Bi(m , m;, O-)] — [Bi(m;, m„-, o)].

cw 2c~

(64)

This [Eq. (64)] reduces in the SUSY limit to

s. 2 1 Mzf = siv —+ ill
m2e-

(65)

(p )
1

e (p)

g(q ) e+

W(q)

The numerical results for the electron WFR are listed in
Table V.

VI. BREMSSTRAHLUNG

As is well known, in order to obtain finite cross sec-
tions, in the limit of vanishing photon mass, we have to
include emission of real photons by the external charged
particles. Since the photon interacts both with the elec-
tron and the R' boson the relevant bremsstrahlung di-
agrams are displayed in Fig. 6. The charged would-be
Goldstone boson, which is a longitudinal mode of the
W boson in the 't Hooft —Feynman gauge, must also be
included as in Fig. 6.

In the soft photon approximation (i.e. , the emission
of photons with small energy) we obtain, with the help
of the Ward identity [12,11] and the assumption that
the TV's be on mass shell, the usual factorization of the
bremsstrahlung cross section [12]:

e+

do' g
dcos 0

d(ro

dcos0

Here PIC. 6. Diagrams for the process e e : 4V+lV
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b~ ——b, + bw+ b~+ b„, (67)

8 ) 1 (m m2 7r2

b =- — ln ', -ln —", ln ', '+ln-' -ln-'1- ', '+-'1-" +ln +— (68)

(69)

bg = — — —21n —
2

ln —21n —ln

(7O)

2 &Eh

LEb
(72)

The subscript B indicates that this is the bremsstrahlung
contribution to b, while subscript 6 as previously men-
tioned corresponds to the beam energy.

To the best of our knowledge, the only other places
the complete expression for the bremsstrahlung (infrared
infinite) cross section of the process e+e ,'W+W
has been given are [14,15]. The above expression [Eq.
(66) agrees with [14]. We note however the misprint in

[14] [second term of line 3 of Eq. (5.18)]. We summarize
below the steps needed to arrive at the infrared finite
expression. Consider the two infinite single logarithms
terms in the electron and the W expressions [Eqs. (68)
and (69)]. These are canceled by the WFR contributions
of the electron and the W to the e+e', W+W cross
section shown in Fig. 5(f) and 5(g). The W self-energy
(SE) contribution works out to be (including only the
infinite part, Appendix E)

e+

e+

g e+

W

W

[bj

+
C ~

e+

~gw e

~rv gg
ve

e

Y, 'Y, z

'Y. z, 'Y

(IRIV)
w(sE) o' & d&p= ——ln

dcos0 vr Mw2 dcos0 (73)
+

e

'Y. Y, z

,
'G

'Y z.'Yl

On adding this to the infinite single logarithm term in
Eq. (69) we get

+ e
e

W

[c)
W

r
e

'Y. z, 'Y
W

do w(wFR)+w(brem) o' 8 d&P= ——ln
dcos0 7t Mw Icos 0

(74)

which is finite. As can be inferred, the electron pro-
duces a similar contribution to the in&ared infinite vir-
tual (IRIV) (Appendix B) term,

e+
/

e

'Y, 7, z
'VVV~g g

IG
I

'Y z,7
[4)

FIG. 7. Combination of diagrams which cancel the infrared

in6nities in the bremsstrahlung.
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(IRIV)
d~~(WFR) O. A d00= ——ln

dcos0 vr m2 dcos0' (75)
First consider the triangle contribution; this works out
to be

which when considered along with the remaining single
logarithmic term in Eq. (68) gives

~+e(WFR)+e(bren) O' ~ dO 0= ——ln
dcos0 7r m2 dcos0'

which is again Rnite.
The double logarithm terms in Eqs. (68)—(71) need

much more work for their cancellation. Essentially cer-
tain combinations of triangle (D) and box ( ) diagrams
conspire to produce an effective IRIV term which can-
cels the corresponding infrared in6nite bremsstrahlung
(IRIB) term.

We start with the "simplest case, " that of the trian-
gle diagrams with two electrons and a photon as internal
particles, and the box diagram with two electrons, neu-

trino, and a photon as the internal particles, Fig. 7(a).

y,~e e p+ ~e e Z

= —2z —4 a, +b, 4„—a,at+ b, bt A, t . 77

Here

x = 2 —4C24 + 23(C23 + CII).

Since all C integrals can be expressed in terms of C0 and
B integrals [24,11], it can be shown that the C integrals,
which are infrared divergent (IRD), are CII «C2I and C3I.

C11 — C0 ) C21 —CO ) C31 — C0

This allows us to write the IRIV contribution of Eq. (77)
as

(V' ' «+V' '
) = —2(—)h 2la( —

) la( ) ](a, +h, )A„—(a, a, + h, b, )A„]. (79)

Let us turn now to the box contribution Fig. 7(a). We know that each Do integral can be decomposed into a D-like
term and to Co integrals [24]:

D0= G g
2

1

H, Q'

QI

Q2

Q3

Q4

(q + pI) (q +»» + p2)2

y —m2~m32

q —m1,2 2

(q + pI)' —m,',
(q+ p, + p2)' —m', ,

(q+ pI+ p2+ p3)' —m'„

(p + p)' + ',p- 2p(» +».)

2 II,g2 Q'

1

2H;gsQ*-
'

(80)

Limiting Eq. (80) to the case of Fig. 7(a) and writing only the IRD part of Do,

DIRD ~ CIRD(p p m P m )
2

t
the IRIV box contribution of Fig. 7(a) to the one loop cross section works out to be

(81)

+bt tt a at+b bt t .
e

(82)

Adding both these contributions, i.e. , Eqs. (79) and (82), the result is

dcos0 ~ A2 m2 dcos0 (83)

Using the electron part of IRIB, i.e. , Eq. (68), we immediately see that the double logarithm infinity cancels between
Eqs. (68) and (83).

Next we consider the contribution of diagrams shown in Fig. 7(b). The amplitude from the triangle graphs of Fig.
7(b) is reduced after a tedious calculation and some rearrangement to

4

16vr2, (4q& q2)(sw)["(p&)&" (a + t »)u(p2)rv &eiez]Co~ (qI q2 M~ »M~)

16m2 4
—", '~ [-(p, )&.(1 —»)u(p, )r*„„„.;.,"]CIRD(q„q„M,~, M ),
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where

~„g = ~p, X
—ging X-

Amazingly the box contribution of Fig. 7(b) generates a term which exactly cancels the unwanted term in Eq. (84),
i.e., the second term. Therefore,

ig4
, (4qi q2)(sw) [U(pi)]i(gi —1(%1)$2(ot + ~tps)tt(p2)]C() (qi, q2 Mw ~ Mw)

+, [ (p )p"(1 —p ) {p )I'*„„„",,"]C,' (q, q„M, A, M ).
16m 2 4

{s6)

~le»ly the second terms in Eqs. (84) and (86) cancel each other. The remainder is precisely what we need to cancel
the W-boson double logarithm infinity in Eq. (69). Since, on adding Eqs. (84) and (86) we factor out the tree-level
amplitude JH+ [we note that M+ = )Ho],

= —(4qi. q2)M C() (qi, q2, Mw, A, Mw).4' (87)

This yields the following cross section contribution, after substituting the infinite part of Co.

dcose 7r sPw A2 1+Pw dcos8 (ss)

Once again this cancels the double logarithm infinity in IRIB, see Eq. (69).
Now we turn to the diagrams of Fig. 7(c), i.e. , the t channel IRIV diagrams. The amplitude for the triangle

diagrams is (infrared parts only)

-~g'l, —)6(n~)(+inst&(k t&)A + &i's(ui ~i)A)(«+ 4~~)~(n~) (89)

~t2 — Xg —V P1 V21 1 1 — 1 2 —V23 P2.62 1 Qt + bt'75 V P2 (90)

After some manipulation the combined amplitude from the box diagrams in Fig. 7(c) is reduced to

~bi + ~b2 = —»a'(pi ql) —[U(pi)v" ((ie + 4&s)tt(p2)l p &&leg]Co (pi, ql, ~. » M—w)4x
—2ig —8 P1 P2.e2 1 —P1.61 2 Gt + 6t&5 V P2 Co P1) g1y mg) A, M~ (91)

We note that Vis, V22, Vi*1, and V21 in Eqs. (89) and (90) are given by

,*2 = V22 = 2Cs (pi, —qi, m„A) Mw),
Vli V21 4(pl'ql)Co (pl & ql )7ieq ~y Mw).

Adding all the contributions from diagrams in Fig 7(c), we have, from Eqs. (89), (90), and (91),

(92)

(»)

~tl + ~t2 + ~bi + ~b2 —stg'(pi. qi) —Co (pi, —qi, ~., &, Mw)~4' (94)

Once again we have obtained the factorization of the amplitude. The differential cross section arising &om the above
amplitude is

Using

~IRIV doo"' = ——(4p, . q, )Co (pi, —qi, m„A, Mw)dcos8 7r dcos0

c.'" („,-q„., i, M )=( '
)i ( )i ( '),

(95)

one may write Eq. (95) as

dcos8 ~ dcos0 A2
(97)



S. ALAN

8 (deg)
10
30
50
70
90
110
130
150
170

((~ ~)s(200 GeV), bs' ')
(-34.2446, -0.2201)
(-24.0332, -0.2247)
(-13.8036, -0.2325)
(-8.1109, -0.2419 )
(-5.1752, -0.2517 )
(-3.5939, -0.2616 )
(-2.6759, -0.2709 )
(-2.1297, -0.2787 )
(-1.8633, -0.2834 )

((,o, ) (500G V) ~ )
(-65.3503, -0.2244)
(-8.1994, -0.2475)
(-2.5477, -0.2683)
(-1.0713, -0.2860 )

(-0.5767, -0.3025 )
(-0.3718, -0.3189 )
(-0.2411, -0.3367 )
(-0.1327, -0.3574 )
(-0.0634, -0.3805 )

TABLE XI. Bremsstrahlung differential cross section in pb for various center-of-mass energies and a = O. l.

(( ) (1000 GeV), b' ' '}
(-19.5905, -0.2359)
(-2.1896, -0.2734)
(-0.6537, -0.2976 )
(-0.2653, -0.3167 )

(-0.1405, -0.3339 )
(-0.0906, -0.3511 )
(-0.0571, -0.3701 )

(-0.0270, -0.3943 )
(-0.0068, -0.4319 )

the corresponding infrared infinite bremsstrahlung contribution is [see Eq. (70)]

Again the divergences cancel as is explicit from the above two equations.
The only IRIB term which now remains is a u-channel term [see Eq. (71)]. A similar argument to that used for the

above t-channel calculation is used to cancel the remaining u-channel IRIB term in Eq. (71). Although we shall not
repeat the steps here a few remarks are in order.

(1) The two fermion line crossed box diagrams of Fig. 4(d) replace the triangle diagrams of Fig. 7(c), since there
are no u-channel virtual triangle corrections. These precisely generate a contribution similar to the one given in Eqs.
(89) and (9O).

(2) The crossed box diagrams of Fig. 7(d) take the place of the direct boxes in Fig. 7(c). The expression generated
by the diagrams of Fig. 7(d) can be obtained from Eq. (98) by replacing t ~ u in Eq. (98) and adding an overall sign
change.

Defining

Cpi ——Cp '"""'(q2, qi, Mw, A, Mw),

Cp2 —Cp
' '

(pi, —ql m ~ Mw),

Cps —Cp '"""'(pl, —q2, m„A, Mw),

the total finite contribution is now written as

Here

B,finite ~B,finite + B,finite + ~B,finite + ~B,finite + ~B,finite + ~B,finite + ~B,finite

(99)

(100)

(101)

(102)

+ln a +ln 2 +

ln ln a —ln ln a

nn„;„——
~
—

) 2)n( 2 ) 1n(n )+ 2)n( ) 1n( )
—2)n( ) 1n( —)

"-"=-(-:)(-'.'. )" (.'. .)-;"-'('„:)-; "(,', .)'-(, ', .)

~B,fi it 22e [ 4('ql q2)C01 + 4(pl. ql)C02 4(pl. q2)C02].
71

(103)

(104)

(105)

(106)

(1o8)

(109)

The Bnite bremsstrahlung difFerential cross section is
calculated for a = 0.1 and a = 0.05 and the results are
listed in Tables XI and XII respectively. These results
are plotted in Figs. 8 and 9. We recall the definition
of a from Eq. (72). As is clear from Eq. (109) we have
absorbed IR finite parts of the C integrals in the defi-

I

nition of our bremsstrahlung b, Eq. (102). Although in
the above discussion about the cancellations of infrared
divergences we have focused or written out only the infi-
nite parts [ones that have in(A) terms] it is to be under
stood that finite parts are also included. In particular this
means that whenever a C or D integral appears [19,20]
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8 (deg)
10
30
50
70
90
110
130
150
170

TABLE XII. Bremsstrahlung

((~, s)n(200 GeV), 6~g' ')
(-45.5995, -0.2930)
(-31.9715, -0.2990)
(-18.3357, -0.3089)
(-10.7547, -0.3207)
(-6.8497, -0.3332 )
(-4.7488, -0.3457 )
(-3.5308, -0.3575 )
(-2.8071, -0.3674 )
(-2.4546, -0.3733 )

((~" s)gg(500 GeV), bg
' ')

(-86.4441, -0.2968)
(-10.8196, -0.3266)
(-3.3536, -0.3531 )
(-1.4070, -0.3757 )
(-0.7558, -0.3964 )
(-0.4864, -0.4172 )
(-0.3149, -0.4397 )
(-0.1731, -0.4663 )
(-0.0826, -0.4960 )

((~ s)n(1000 GeV), hg' ')
(-25.8741, -0.3115)
(-2.8831, -0.3600 )
(-0.8610, -0.3910 )
(-0.3479, -0.4151 )
(-0.1839, -0.4369 )
(-0.1184, -0.4586 )
(-0.0744, -0.4828 )
(-0.0352, -0.5137 )
(-0.0088, -0.5622 )

differential cross section in pb for a = 0.05.

which has an internal photon line, it is to be understood
that the C and D integrals have been decomposed such
that the IR divergence is reduced [or written] in terms
of Co only and some non IR divergent pieces. Hence for
the sake of completeness in [19,20] when we give trian-
gle and box virtual corrections we include the complete
expressions (containing IR, ultraviolet infinite terms) it
should be clear that these have been canceled as indi-
cated. The complete analytic expressions for the Co will
not be repeated here; it suKces to remark that their an-
alytic computation proceeds in a parallel fashion to the
one outlined by 't Hooft and Veltman [25) (see Appendix
E of [25], in particular Eqs. E.l—E.3). We obtain expres-
sions identical to the ones given by [15]. Some comments
on the bremsstrahlung differential cross section will be
included in the next section.

VII. CONCLUSION

As stressed before there are three tests on the correct-
ness of our computations.

(1) The final results must be independent of the mass
scale and all ultraviolet pieces must drop out: this indeed
turns out to be the case [19], see also Sec. IV.

(2) The final results are independent of the photon

mass in the limit of zero photon mass.
(3) The cancellation of the linear and quadratic di-

vergences [11,2] when the SUSY particles are included
provides a check on the correctness of our calculation.

Showing the consistency of the adopted renormaliza-
tion scheme is much more than a formal exercise since it
ensures the correctness of the relative signs between the
various parts of the radiative corrections. Moreover it
acts as a check on the magnitude of the corrections. The
box diagrams are ultraviolet 6nite; however, some of the
box diagrams contain infrared infinities (see Sec. VI and
Fig. 7). This provides an excellent check on some of the
box diagrams since subtle combinations of the box and
the triangle diagrams are required (see Section VI) to
cancel the bremsstrahlung in6nities. Another precaution
that we took to check our numerical results was that we
computed some of the vertices and self-energy diagrams
by hand calculator and compared these to the results ob-
tained by the computer. The numerical calculation was
divided into several parts so that errors (if any) did not
propagate and that errors could be easily isolated and
corrected. Large logarithm terms [such as ln (m2/s)]
were cancelled by hand so as to avoid numerical insta-
bilities.

The lowest-order differential cross section with respect
to the center of mass is very asymmetric (see Fig. 10 and

-0.2 -0.2

-0.3-

-0.3-

-0.4-

-0.4-
-0.5-

-0.5
90

c.m. Angle
180

-0.6
0 90

c.m. Angle

180

FIG. 8. Angular dependence of the bremsstrahlung correc-
tions relative to the tree level differential cross section with
a = 0.1.

FIG. 9. Angular dependence of the bremsstrahlung correc-
tions relative to the tree level differential cross section with
a = 0.05.
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FIG. 10. The tree level differential cross section for three
different center-of-mass energies.

Table II). It peaks very strongly near small angles. This
peaking gets more pronounced as center-of-mass energy
is increased, as can be seen from Fig. 10. This peak-
ing comes entirely from the t-channel neutrino exchange
diagram [see Fig. 1(d)].

Next we consider the bremsstrahlung contributions to
the one-loop-corrected differential cross section. We have

given the complete finite expression for this contribu-
tion in Sec. VI [see Eq. (102)]. We note that we

have absorbed the IR finite parts of the C integrals [see
Eq. (109), also see Eqs. (99)—(101)] in the definition of
our bremsstrahlung b, Eq. (102). This is a matter of
choice since the total b can be written as a sum of the
bremsstrahlung b and the b from the virtual corrections.
The numerical results are listed in Tables XI and XII and
plotted in Figs. 10 and 9 respectively. We recall the def-

inition of the parameter a, which is the cutoK parameter
and essentially represents a measure of the 8 energy hid-

den in the soft photons. We notice from Tables XI and
XII and Figs. 10 and 9 that although there is asymmet-
ric peaking at small c.m. angles, it is less pronounced
than at the tree level. The reason for this is that the
bremsstrahlung differential cross section is related to the
tree level difFerential cross section via b [see Eq. (66)],
which is a nontrivial function of center-of-mass energy
and center-of-mass angle. In fact the absolute magnitude
of b increases with increasing the center-of-mass angle
and energy (see Tables XI and XII).

In conclusion we have reported the first part of our

[11] calculations on the radiative corrections of the pro-
cess e+e —,' R'+TV to one loop in the context of a
minimal supersymmetric extension of quantum Aavor dy-
namics. Our tree level results agree with [13,22, 15] when
one takes into account the slightly difFerent values of the
input parameters. After all the one loop radiative cor-
rections are summed [19,20] we find that the QFD part
of these corrections are in quite good agreement with
Lemoine and Veltman [12] (at the order of 1% of 8) and
at the order of —,%—10% of 8 with Bohm et al. [14].

APPENDIX A: SELF-ENERGY OF THE
ELECTRON NEUTRINO

A(m) =— (A1)

1
Bo, B„;B

i7r2

&I Vp) QI Q~

4' ™i][(~+ k)' —m2]

(A2)

We now consider the explicit derivation of the A inte-
gral. Using the definition Al and formulas for the n-
dimensional loop integrals [26] [Table B4 of [26], page
478] one obtains, after a little algebra,

m2
A(m) = m —A —1+ ln

M~2
(A3)

Next we must evaluate Bo) Bg ) B2g) and B22 where these
arise in the definitions Eq. (A2). The function B„must
be proportional to k„; this defines Bq. Similarly B2q and
B22 are defined or extracted from B„:

B'„=Bgk„,
Bp ~ —B2$kp k~ B22gg~ .

Using the above definitions, Feynman-parametric tech-
nique and dimensional regularization Bp through B22 are
evaluated [24,11] with the results

Bp ——L— (A4)

As already mentioned in Sec. IV we follow the method
of Passarino and Veltman [24] for the evaluation of the
Feynman integrals. Since our metric convention is difer-
ent from theirs, this leads to some trivial sign changes.
We have checked our results against theirs and find agree-
ment. For illustration we outline our [ll] derivations of
the A and B integrals. To this end recall the definitions
given in Eqs. (45), and (46) of the A and B integrals:

8 denotes the percentage radiative corrections. M = xm2+ (1 —x)m, —x(l —x)k', (A5)
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1 M2
Bz = —(2/2) 25+ ndnln( ),

0
(A6)

v-(k ) = (m, /Mi'v)[Bi(m-, m;, k )], (A17)

&
M2

Bm, = (l/2) ll — n'dnln(, ),
0 E Mw2

(A7)

B22 ———(1/4)(E+ 1)[mi + m2 —(1/3)k ]

+(l/2) dnM ln( z ). (A8)

p Bi ——(1/2) [
—A(mi) + A(m2) + (m2 —mi —k )Bp],

(A9)

p B2i —B22 ——(1/2)[—A(m2) + (m2 —mi —k )Bi],
(A10)

p'B21 4B22 —mi Bp A(m2)

+(1/2)[m + m —(1/3)k ]. (A11)

Expressions (Alo) and (A11) can be solved to obtain B2i
and B2~ in terms of A and Bo.

Next we turn to the neutrino self-energy. There are
three diagrams, Fig. 3, contributing to the neutrino self-
energy in QFD. It is straightforward to write out the
contributions of these. Defining v;(k )g

~

2
'~ to be the

self-energy due to the ith particle one has Fig. 3(a)]

Alternatively [24,11] one knows that the functions
B1, B21, and B22 are algebraically related to A and Bo.
One may 6nd these relations by using the de6nitions for
the A and B integrals. Once these relations are found,
and having explicit forms for the A and Bo on hand, one
may use these algebraic relations to express B1, B21, and
B22 in terms of A and Bo.

v.-(k') =' (1/2c~) [Bi(m;, m„-, k')].

We follow the notation that in each set of square brackets
all the B's have the same argument as the first B in the
brackets. We note that there are two contributions due
to the W-ino; one to the order (m, /M~). This arises
because the I/I/-ino in our model [2,11] is made of two
parts, one being the fermionic partner of the charged
Higgs scalar (II+) and the other being of course the s
partner of the R' boson.

Now a few remarks are in order, as it is well known
in SUSY theories that superficial linear divergences and
quadratic divergences cancel [2,11] among boson and
fermion degrees of freedom. We [11]have shown that the
cancellation of the quadratic and super6cial linear diver-
gences indeed occurs in our speci6c model. The strategy
we have used to show these cancellations closely paral-
lels that of Haber and Kane [2] (see Appendix E, Pt. 7
of [2]). We first write down the contributions arising to
self-energy from all the particles and then &om the very
outset we group together the contributions to a particu-
lar particle from a physical multiplet (physical multiplets
are given in Sec. I). It is then easily seen how the diver-
gences cancel within each group. An explicit example of
our method is outlined for the case of the TV self-energy
in Appendix E.

For the case of the neutrino we can follow the above
method, or, simply, if we compare the contributions to
the neutrino self-energy given in Eqs. (A12)—(A18), we
see that all the superficially linearly divergent terms can-
cel. We note that &om the de6nition of B1 it is super-
ficially linearly divergent hence we must check that all
the B1 contributions cancel. It follows immediately from
Eqs. (A12)—(A18) that all the Bi contributions cancel.

vent(k )
=' [Bp(Miv, m, k ) + By].

(2 —n)
2

(A12)

and

Similarly for diagrams 2 and 3 one obtains Fig. 3:

vG+ (k )
=' —(m, /2M@ ) [Bp (mH+, m„k ) + Bi] (A13)

APPENDIX 8: SELF-ENERGY OF THE
ELECTRON

The calculation of the self-energy diagrams for the elec-
tron is much like the neutrino case except that there are
a few additional diagrams Fig. 4. Defining

vz(k )
=' (1 /2c~)[Bp(Mz m, k ) + Bi].

(A14)

(1 —») ~ (1+»)
2

"
2

=(1/4)(2 —4 '
) b =(1/4)( —4 '

) (B1)
These results agree with Sakakibara [23], thus providing a
check on our calculations. Replacing each particle in the
self-energy loops of Fig. 3 by its s partners one obtains
the SUSY contribution to neutrino self-energy (Fig. 3,
1', 2', 2'a, and 3'). These are written respectively as

the contributions for the diagrams of Fig. 4 may be
promptly written as (we recall that = is equivalent to

16m~

v-(k ) = [Bi(m-, m;, k )], (A15) E~ ='
slav[(2 —n)(Bp(A, m„k ) + Bi)g
+nm, B,](I.+ R), (B2)

vH+ (k ) (m /2M'�) [Bp(m&+ m k ) + Bi] (A16) where a mass A has been given to the photon:
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Ew = (Bo(Mw, m, k ) + Bi])L,
2

We [11] have shown that all the superficial linear diver-
gences in the electron self-energy contributions cancel in
our supersyrnmetric model.

Z~ =' [(2 —n)(Bp(M~, m„k ) + Bi)g(a, L+ 6,R)
cw
+nm, ai bi Bp (L + R)], (84

ZG+ = —(m, /2Mw) [Bp(Mw, m, k ) + Bi])R, (85)

Za,' = (m /4Mw)[(Bo(mH, o m, k ) + Bi)g
+m.Bo](I + R), (86)

ZGo =' (m—,/4Mw) [(Bo(mGO, m„k ) + Bi)g
—m, Bp](L + R), (87)

APPENDIX C: SEI F-ENERGY OF THE PHOTON

In this and the three subsequent sections we concern
ourself with computation of self-energies of gauge mesons.
Some simple remarks are in order. First of all, as is
clear from Fig. 11, the p self-energy can be categorized
into two sets, one entirely due to fermions and the other
arising out of p interaction with W-boson (G denotes the
Goldstone boson mode associated with W and c+ are the
Faddeev-Popov ghosts corresponding to each of the lV+
and W ). One immediately writes down x (where 7r has
been defined in Sec. IV) arising from fermions:

Z~ =' 2 sw[Bi( m~ m;, k)]gL,
Z~ =' 2sw[Bi(m~, m.-, k')]JR,

Z„- =' [Bi(m-, m„-, k )]gL,
m2

Z- ='; [Bi(m-, m -. , k')])R,
M~2

m2; [Bp(mBp, m -, k') + Bi])R,
2M~2

2G
[Bi(m;, m;, k )]gL,

cw
262' [B,(m;, m;, k )]JR,
cw

m2
[B,(m;, m;, k )]gL,

2M~2

[B,(m;, m;, k )]JR,
2M~2

(88)

(89)

(81O)

(811)

~f (k') =' —) nsw Qf [(n —2) 822 (mf, mf k )
f)c

—B2ik —Bik +mfBp]. (Cl)

The gauge-boson contribution may be written down as

~GB(k') = sw [Bo(Mw, Mw, k') —12B, —12B2i + '-, ].

(C2)

Equations (Cl) and (C2) allow us to write the renormal-
ized 7t'

f+GB( ) f+GB( ) f+GB( )'

Here,

TT

k XL.~

ZHo =' —(m, /4Mw) [(Bo(mHo, m„k ) + Bi)g

+m. Bp](L + R), (812) VVV&& VVX'
/ 7

6

/
/

I \

I

W/~P

+
C
~ ~ ~

; [B,(m„-, m.-, k')]If!L,
2Mw

2M~2
[Bi(m„-,m;, k )]JR, (813)

O'M4 VVV'v

~ e ~

dV'V'v& lRJ'V'v

7

~.:= -(-.'/4M' )[(B.(-:,-., k') + B.&S
—m Bp](L+ R). (814)

e ~ P

Prem the photon contribution to the electron self-energy
we extract the infrared infinite parts

e,p.

y, = —s' 2ID(",),
A2

bZR ——' —8~ 2ln (815) FIC. 11. One loop Feynman diagrams contributing to the
photon self-energy in SQFD.
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my~+ s(0) = s~ 3 h. +—

m2
2Q'4&-( ' '(M*'»'2)

f,c

The SUSY contribution to the photon self energy is dis-
played in Fig. 11, 1' and 2'. The contribution of the
W-ino works out to be

xH+ (k ) = s~[—482'(mHA-, mH+, k ) + 2A(mH+)].

(C6)

The calculation for Fig. 11, 2' follows a similar pattern to
the charged Higgs scalar, since it is also a vector-scalar-
scalar interaction and in a renormalizable theory it has
a universal form, summing over all colors and flavors:

7r-(k )
=' ) 2s~Q&[—4B22(my, m&, k ) +2A(mf)].

f,c

Tr- (k )
=' —2ns~ [(n —2)B22 (m-, m-, k )

B2~—k —Bgk + m-Bp]

The charged Higgs boson (H+) gives

(C5)

(C7)

We have checked that quadratic, superficial quadratic,
and superficial linear divergences cancel as expected in
SUSY for the case of photon self-energy.

APPENDIX D: p —Z MIXING

We do not display the diagrams which contribute to p-Z mixing since they are identical to those of the photon
diagrams. The fermion contribution in QFD is

a& (k )
=' —$ akwQg( —Tsg —Qfsw ][(a — )B2(ssym, ym, )k—B k s—B~k +mfBs]

f,c
(Dl)

The gauge-boson contribution may be written down as

aGB (k )tg [c~k [B (Mp~, M~, k ) —12Bq —12B2q+ —]+ k[Bp(M—~, Mgr, k ) +4Bq+ 4B2)]+ 2M~Bp]. (D2)

The SUSY contributions to p —Z are now given. The contribution of the W-ino works out to be

(k )
=' —n(c& + a) )ter [(n —2)B22 (m-, m -, k ) —k (B2q + B) ) + m - Bp].

The charged Higgs boson (II+) gives

(D3)

a&+ (k )
=' —t~(1 —2s~)[—4B22(mz+, mH+, k ) + 2A(m++)].

2

Finally the sfermion contribution to the p-Z reads

(D4)

a- (k ) =') w( kTs&
—

& Q) s—w[ Q4)(Bs&s,
—my, m)+k2A(m&)].

i,f,c

We have checked that quadratic and superficial divergences (linear and quadratic) cancel as expected in SUSY for
the case of photon-Z mixing diagrams.

APPENDIX E: W SELF-ENERGY

The W-self energy diagrams can be divided into four categories: the contribution from fermions, from Higgs bosons,
f'rom the photon, and finally &om the Z boson (Fig. 12). The contribution &om the fermions may be written as

af ——' ) —[(2 —n)B22(m2, m2, k ) + k (B2 + B22)]4
doublet s,c

(E1)

The contribution &om the Higgs particle reads

a~o ——' —
[
—4B22(mHo, Mw 2

k ) 4MwBo + A(mHo)]. (E2)

The contribution &om the gauge boson (GB) sector to the W self-energy may be written as
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2 2 1 2 Mg2
Mw + 2Mz) ——Mw + -Mz + (2 4

2 ~ 2 2
aGB sW( ™W)+ cW(3 3

+3MW) ln 2
—sw [5k ( B—p(AI Mw, k )

—2Bi —2B2z) + Mw(Bo

+8Bz)] + cw[k (—3Bp(Mz, Mw, k ) —20B& —12B2&) —6(MW

Mz—)( Bp——B,)] + (
——ew) [k (—2Bo(Mz, Mw, k )

—6B, —4B2,j
2(M—w Mz) ( Bp —B,)] + (cw + 2 —sec ew) Mw Bo(Mz, Mw, k ).

We note that we have checked our results against Sakakibara [23] for the contributions from the standard particles
and found agreement. Now the contribution from the sparticles can be rvritten, from the Higgsino,

a~ ——' —[(2 —n)B22(mq) m~) k ) + k (Bq + B2q)]I (E4)

from the photino,

a- =' nsw[(2 —n)Bg2(m~, m-, k ) + k (Bg + B2g)], (E5)

from the Z-ino,

a; =' n t ~+ — 2 —n 822 m;, m-, k + I{: Bq+ B2q —nm-m;C~BO, (E6)

from H2,

aH, —' —
[
—4B22(mHo, mH+, k ) + A(mIro) + A(mH+ )],W 2 (E7)

W W

W W
~ ~ 0

~ Q
~

W
~ 0 ~

+
C

(,I
o'w+ lrwpv

C Z

/ (3
!

!
/

vv P-

~ ~ 0
~ +

Cwn~ ' wv
Z ~ ~ Z

~ 0 ~
+

C

H
I

I
I

Z Z

G/I/)/'!/
W

W

0/

I '!

W i H2 / W

0
Hl

/
I

() ~/~/
z G, z

0
Hl

(l
H2

/
I

Z

0 ~

I I
I

I

W [2l

0
IrM/9 l )re%

W ~ ~,' W

~ ~ ~

C~ ~maw ~ srI n,n
0

W . 0 W
~ +0
C

()
/

Hl
! I

I

I 0
H2

I
/

[2' ]
W

HI
I !
I I

/
/

0
Hl

I I

I

Z Z

[2]

()
G

/

[2 l

{)
H !

)

[3l [3 j

f
I

I

Z

[4]

/
I

jP /Vw
W &

' W

1 'V~, .. .

[4 l

W W

FIC. 12. One loop Feynman diagrams contributing to the
W-boson self-energy in SQFD.

FIG. 13. One loop Feynman diagrams contributing to the
Z-boson self-energy in SQFD.
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from H30,

az. ———
[
—4B» (mHo, mz+, k ) + A(mzo ) + A(mII )],W 2

and, finally &om scalar fermions,

W ~ )
doublets, c

1
2
—

[
—4B22(mi, m2, k') + A(mi) + A(m2)] .

We note that mq and m2 being respectively the masses of the down and the up sfermions.
The derivative of the renormalized a~ [Eq. (28)] which enters as the relevant quantity is easily extracted from the

above evaluations of the various a's and the definition of bZiv [see Eq. (30)]:

Ba~(s)
8=Mw

Ba~(s)
88 e=Mw~

(E10)

From the photon contribution to the W self-energy we extract the in&ared infinite part

Ba~(s)
88 s=Mw2

Sw 21n (E11)

To illustrate the cancellation of quadratic and linear divergences in our SUSY SU(2)1, x U(1)i model in the gauge-
boson sector consider the W self-energy. As is clear &om Fig. 12 we have suitably divided the various contributions
to the W self-energy to make such cancellations apparent; for example, we would expect the fermion contribution
(diagram 4 in Fig. 12) to receive such cancellations from the sfermions (diagrain 4 in Fig. 12). Considering only one
doublet of fermions for simplicity we have (taking the SUSY limit, i.e., my = my)

d"
Tp.v f +Tp,v s—f g (2m')" [q —m2i] [(q + k) —m22]

(E12)

Here

(2 — )q&q + (1 ——)(q&k + k&q„) + —k&k + [(——1)q + (——1)k q + —(mi + m2 —k )]p» (E13)

Note that in (E12) mi and m2 are the mass of the up and down fermion (sfermion). Setting n = 4+ s, it is clear
that the quadratic and linearly divergent terms are rendered harmless. Using the definitions of B's in Appendix A

and definition of a~(k2) after some algebra, one gets

a s(——B22 + —B2i + —Bi) + —(mi + m2 —k )Bpw 1 k k 1
~+'~ 2 4 4

(E14)

Hence the only divergence left is an logarithmic one which is enshrined in Bp. The Higgs-Higgsino sector gives (see
Diagrams 3 and 3 in Fig. 12), in the SUSY limit mh

——m~o = m~o, m- = mIr+ = Miv,

Here

d Q N„„
», h Pu, Hx + Pv, Hs + », H+

(2&)n [q2 m2 ][( + k)2 M2 ]'
1

(E15)

N„„(2— )q„q„+ (1 ———)(q„k„+k„q„) + k„k„+[(———1)q + (——1)k . q + —(mH, + Miv —k ) —M~]p„„

Setting n = 4+ s in (E16) it is clear again that quadratic and linear divergences cancel. Finally aH;ss,
extracted from (E16), reads

(E16)

(E17)

Similar results were found in the (p, p) and (Z, H2, z) sectors and will not be repeated here.

APPENDIX F: Z SELF-ENERGY

The contributions to the Z self-energy are given in Fig. 13. The contribution to the S self-energy from the standard
particles is found to be, &om the fermions,
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,. ([(g')'+(g )'][( —2)8 (»k') —k'(8 +8 )]+[(g )' —(g')'] (Fl)

where gv
——

2 (Ts )I, —swQf and gz~
———-(Tsf)l„see [4], from the Higgs bosons,

a .= [
—48z2( ~o, Mz, k ) —4M 8 + A(m o)],

4cw

and, &om the gauge bosons (GB's),

(F2)

z 2k cw
+GB 3

M2 M2
(I+» z ) cw" [

—Bo(Mwl Mw, k )+128q+ 1282']
4cw Mz

—1 k —Bp Mw, lw, k —4By —4B2y

MwBo(Mw, Mw, k').
~w

(F3)

The contribution from the sparticles reads

a„=' -[(2 —n)Bzz(m„-, m;, k ) + k (Bg + Bzg)],
4&w

(F4)

1 —2sz
n w+ 2 2 —n B22 m~, m~, A: + k Bq+ 82' —n 1 —28w m-m-Bp, (F5)

z = 1 2
aHo Ho

='
2 [

—4822(mHo, m~o, k ) + A(mHo) + A(mHo)],
W

(F6)

aH+ =
2 [

—4822(mH+, mH+, k ) + 2A(mH+ )],z . (1 —2sw) 2

4cw
(F7)

af ) z ([(gv) + (gA) ][ 48z2(mf mf, k ) + 2A(my)]).

mf is the mass of the sfermion.
We have checked that quadratic and superficial divergences (linear and quadratic) cancel as expected in SUSY for

the case of Z self-energy diagrams.
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