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Abstract

This biennial review summarizes much of Particle Physics. Using data from previous editions, plus 2300 new

measurements from 700 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks,
mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos,
monopoles, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables.
We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors,

probability, and statistics. A booklet is available containing the Summary Tables and abbreviated versions of some
of the other sections of this full Review.

tThe publication of the Review of Particle Properties is supported by the Director, Office of Energy Research, Office of High Energy and
Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and by the
U.S. National Science Foundation under Agreement No. PHY-9320551. Partial funding to cover the cost of this Review is also provided by
the European Laboratory for Particle Physics (CERN), the Italian National Institute of Nuclear Physics (INFN), and by an implementing
arrangement between the governments of Japan (Monbusho) and the United States (DOE) on cooperative research and development.
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INTRODUCTION

1. Overview

The Review of Particle Properties and the abbreviated
version, the Particle Physics Booklet, are reviews of the
field of Particle Physics. This complete Review includes
a compilation/evaluation of data on particle properties,
called the “Full Listings.” These Listings include 2300 new
measurements from 700 papers, in addition to the 12,000
measurements from 3500 papers that first appeared in
previous editions. Both books include Summary Tables with
our best values and limits for particle properties such as
masses, widths or lifetimes, and branching fractions, as well
as reviews, tables, and figures on a variety of topics. We
also give an extensive summary of searches for hypothetical
particles.

The Review and the Booklet are published in even-
numbered years. This edition is an updating through
December 1993 (and, in some areas, well into 1994). As
described in the section “Using Particle Physics Databases”
following this introduction, the content of this Review is
available on the World-Wide Web, and there is a public
access database allowing user-designed searches.

The Summary Tables give our best values of the
properties of the particles we consider to be well established,
a summary of search limits for hypothetical particles, and a
summary of experimental tests of conservation laws.

The Full Listings contain all the data used to get the
values given in the Summary Tables. Other measurements
considered recent enough or important enough to mention,
but which for one reason or another are not used to get
the best values, appear separately just beneath the data
we do use for the Summary Tables. The Full Listings also
give information on unconfirmed particles and on particle
searches, as well as short “minireviews” on subjects of
particular interest or controversy.

The Full Listings were once an archive of all published
data on particle properties. This is no longer possible
because of the large quantity of data. We refer interested
readers to earlier editions for data now considered to be
obsolete.

We organize the particles into five categories:

Gauge and Higgs bosons

Leptons and quarks

Mesons

Baryons

Searches for free quarks, monopoles,

supersymmetry, compositeness, etc.

The last category is for searches for particles that do not
belong to the previous groups; searches for heavy charged
leptons and massive neutrinos, for example, are with the
leptons.

In addition to the compilations of measurements and
best values, we give a long section of “Reviews, Tables, and
Plots,” a quick reference for the practicing particle physicist.

In Sec. 2 of this Introduction, we list the main areas of
responsibility of the authors, and also list our large number
of consultants, without whom we would not have been
able to produce this Review. In Sec. 3, we mention briefly
the naming scheme for hadrons. In Sec. 4, we discuss our
procedures for choosing among measurements of particle

properties and for obtaining best values of the properties
from the measurements.

The accuracy and usefulness of this Review depend in
large part on interaction between its users and the authors.
We appreciate comments, criticisms, and suggestions
for improvements of any kind. Please send them to the
appropriate author, according to the list of responsibilities
in Sec. 2 below, or to

Particle Data Group, MS 50-308
Lawrence Berkeley Laboratory
Berkeley, CA 94720, USA

Or send them via computer mail to

PDGQLBL.GOV on INTERNET or
LBL::PDG on HEPNET, or
PDG@LBL on BITNET.

To order a copy of the Review or the Particle Physics
Booklet from North and South America, Australia, and the
Far East, write to

Particle Data Group, MS 50-308
Lawrence Berkeley Laboratory
Berkeley, CA 94720, USA

To order more than one copy of the Review or more than
five Booklets, write to

Technical Information Division, MS 50B-2265
Lawrence Berkeley Laboratory
Berkeley, CA 94720, USA

From all other areas, write to

CERN Scientific Information Service
CH-1211 Geneva 23
Switzerland

2. Authors and consultants

The authors’ main areas of responsibility are as follows
(an asterisk indicates the person to contact with questions
or comments):

Gauge and Higgs bosons

v C. Grab, C.G. Wohl*

Gluons D.E. Groom*

Graviton D.E. Groom* R.E. Shrock

W,Z R.M. Barnett,* C. Caso,
G. Conforto, A. Gurtu

Higgs bosons R.M. Barnett,* K. Hikasa,

H. Murayama
K. Hikasa, T.G. Trippe*
R.M. Barnett,* K. Hikasa,
H. Murayama, K. Olive

Heavy bosons
Axions

Leptons and quarks

Neutrinos D.E. Groom,* K. Olive,
R.E. Shrock

e, C. Grab, C.G. Wohl*

Vr, T D.E. Groom,* K.G. Hayes

Quarks R.M. Barnett,* A. Manohar

Top quark K. Hikasa, S. Kawabata,

T.G. Trippe*
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Mesons
N D.E. Groom, C. Grab, C.G. Wohl*
Unstable mesons M. Aguilar-Benitez, C. Caso,

S. Eidelman, J.J. Hernandez,

L. Montanet, F.C. Porter,

M. Roos,* N.A. Térnqvist

K (stable) C. Grab, T.G. Trippe*
D (stable) R.J. Morrison, R.H. Schindler,
C.G. Wohl*
B (stable) R.J. Morrison, R.H. Schindler,
T.G. Trippe*
Baryons

C. Grab, R.H. Schindler,
C.G. Wohl*

R.L. Crawford, G. Hohler,
D.M. Manley, C.G. Wohl*,
R.L. Workman

Stable baryons

Unstable baryons

Miscellaneous searches

Quark & monopole D.E. Groom,* J. Stone

Supersymmetric R.M. Barnett,* K. Hikasa,
H. Murayama, K. Olive

Compositeness K. Hikasa, T.G. Trippe*

Other K. Hikasa, T.G. Trippe*

Reviews, tables, figures, and formulae

R.M. Barnett, D.E. Groom,* T.G. Trippe, C.G. Wohl

Technical support
B. Armstrong, K. Gieselmann, P. Lantero, G.S. Wagman

We have also relied on the expertise of the following
people for advice on particular topics:

o L. Addis (SLAC)

e M. Artuso (Syracuse University)

e V. Balakin (Novosibirsk)

e V.I. Balbekov (Serpukhov)

e T. Barnes (University of Tennessee)

e O. Beibel (RWTH, Aachen)

e D. Besson (Cornell University)

e S. Bethke (RWTH, Aachen)

e V. Bharadwaj (Fermilab)

e S. Bilenky (Joint Inst. for Nuclear Research, Dubna)
e M. Billing (Cornell University)

e G. Brianti (CERN)

¢ E. Browne

e J.N. Butler (Fermilab)

e R.N. Cahn (LBL)

e M. Chanowitz (LBL)

e A. Chao (SSC)

e Z. Chuang (IHEP, Beijing)

e E.D. Commins (University of California, Berkeley)
e COMPAS Group (IHEP, Serpukhov)

e O. Dahl (LBL)

e R.H. Dalitz (Oxford University)

e J. Donoghue (University of Massachusetts, Amherst)
e J. Dorfan (SLAC)

e S. Ecklund (SLAC)

¢ J. Ellis (CERN)

e J. Erler (University of Pennsylvania)

e L. Evans (CERN)

e V.V. Ezhela (Serpukhov)

e W. Fetscher (ETH, Ziirich)

e V. Flaminio (University of Pisa)

e R. Flores (University of Minnesota)

e W. Frazer (University of California, Berkeley)
e S. Freedman (LBL and UC, Berkeley)

e R. Frosch (ETH, Ziirich)

e A. Garren (UCLA)

e J. Gasser (University of Bern)

o S. Geer (Fermilab)

e H.-J. Gerber (ETH, Ziirich)

e F.J. Gilman (SSC)

o H.A. Gould (LBL)

e N.A. Greenhouse (LBL)

e H.E. Haber (University of California, Santa Cruz)
e R. Hagstrom (ANL)

e 1. Hinchliffe (LBL)

e H. Hirayama (KEK)

e P. Ivanov (Novosibirsk)

e Yu.M. Ivanov (Petersburg Nuclear Physics Inst.)
e J.D. Jackson (LBL)

e F. James (CERN)

e D. Karlen (Carleton University)

¢ R.W. Kenney (LBL)

e M. Klein (DESY)

e K. Kleinknecht (Universitat Dortmund)

e S. Kurokawa (KEK)

e R. Kutschke (Cornell University)

e P. Langacker (University of Pennsylvania)
e D. Lanske (RWTH, Aachen)

e H. Leutwyler (University of Bern)

e M. Luty (LBL)

e G.R. Lynch (LBL)

e W.C. Martin (NIST)

o G. Moneti (Syracuse University)

o D. Morgan (Rutherford Appleton Lab)

o T. Nakada (PSI)

e K. Nakamura (Inst. Cosmic Ray Research, U. of Tokyo)

e W.R. Nelson (SLAC)

e Y. Oyanagi (University of Tsukuba, Japan)

e S.I. Parker (University of Hawaii)

e M.R. Pennington (University of Durham)

o M. Perl (SLAC)

e M. Peskin (SLAC)

e J. Primack (University of California, Santa Cruz)
e I. Protopopov (Novosibirsk)

e H.S. Pruys (Ziirich University)

e H. Quinn (SLAC)

e B. Renk (Universitat Mainz)

e J. Richman (University of California, Santa Barbara)
o B.L. Roberts (Boston University)

e B.P. Roe (University of Michigan)

e N.A. Roe (LBL)

e M. Ronan (LBL)

e L. Rosenberg (Stanford University)

e S. Rudaz (University of Minnesota)

e D. Schaile (CERN)

e D. Schramm (University of Chicago)
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o V. Serbo (Novosibirsk State University)

e Yu. Shatunov (Novosibirsk)

® J.G. Smith (University of Colorado)

e E.M. Standish, Jr. (Jet Propulsion Lab., Pasadena)
o S. Stone (Cornell University)

e M. Suzuki (LBL)

e Y. Takaiwa (KEK)

e B.N. Taylor (U.S. National Bureau of Standards)
e G.H. Trilling (LBL)

e R.D. Tripp (LBL)

e M.S. Turner (Fermilab)

e G. Vignola (Frascati)

e M. Virchaux (Saclay)

e P. von Handel (DESY)

e R. Voss (CERN)

e H. Wahl (CERN)

e S.R. Wasserbaech (University of Washington)

o S. Willenbrock (University of Illinois)

e M.S. Witherell (University of California, Santa Barbara)
e L. Wolfenstein (Carnegie-Mellon University)

e B.N. Taylor (NIST)

In addition, the Particle Data Group benefits greatly
from the assistance of some 700 physicists who are asked
to verify every piece of data entered into this Review. Of
special value is the advice of the PDG Advisory Committee
which meets annually and thoroughly reviews all aspects of
our operation. The members of the 1993 committee were:

W. Toki (Colorado State University), Chair
D. Schaile (CERN)

P. Kreitz (SLAC)

P. Langacker (University of Pennsylvania)
M. Turner (Fermilab)

3. Naming scheme for hadrons

We introduced in the 1986 edition [2] a new naming
scheme for the hadrons. Changes from older terminology
affected mainly the heavier mesons made of u, d, and s
quarks. Otherwise, the only important change to known
hadrons was that the F* became the DE. None of the
lightest pseudoscalar or vector mesons changed names, nor
did the ¢ or bb mesons (we do, however, now use X, for the
c¢ X states), nor did any of the established baryons. The
Summary Tables give both the new and old names whenever
a change has occurred.

The scheme is described in “Naming Scheme for
Hadrons” (p. 1323) of this Review.

We give here our conventions on type-setting style.
Particle symbols are italic (or slanted) characters: e”, p,
A 70 Ky, D7, b. Charge is indicated by a superscript:
B~, A**. Charge is not normally indicated for p, n, or
the quarks, and is optional for neutral isosinglets: 7 or 7°.
Antiparticles and particles are distinguished by charge for
charged leptons and mesons: 7+, K~. Otherwise, distinct
antiparticles are indicated by a bar (overline): 7y, t, B, fo,

and T (the antiparticle of the Z~).

4. Procedures

4.1. Selection and treatment of data: The Full List-
ings contain all relevant data known to us that are published
in journals. With very few exceptions, we do not include
results from preprints or conference reports. Nor do we
include data that are of historical importance only (the
Listings are not an archival record). We search every volume
of 20 journals through our cutoff date for relevant data. We
also include later published papers that are sent to us by the
authors (or others).

In the Full Listings, we clearly separate measurements
that are used to calculate or estimate values given in the
Summary Tables from measurements that are not used. We
give explanatory comments in many such cases. Among the
reasons a measurement might be excluded are the following;:

e It is superseded by or included in later results.

e No error is given.

e It involves assumptions we question.

e It has a poor signal-to-noise ratio, low statistical
significance, or is otherwise of poorer quality than other
data available.

e It is clearly inconsistent with other results that appear
to be more reliable. Usually we then state the criterion,
which sometimes is quite subjective, for selecting “more
reliable” data for averaging. See Sec. 4.

e It is not independent of other results.

o It is not the best limit (see below).

e It is quoted from a preprint or a conference report.

In some cases, none of the measurements is entirely
reliable and no average is calculated. For example, the
masses of many of the baryon resonances, obtained from
partial-wave analyses, are quoted as estimated ranges
thought to probably include the true values, rather than as
averages with errors. This is discussed in the Baryon Full
Listings.

For upper limits, we normally quote in the Summary
Tables the strongest limit. We do not average or combine
upper limits except in a very few cases where they may be
re-expressed as measured numbers with Gaussian errors.

As is customary, we assume that particle and antiparticle
share the same spin, mass, and mean life. The Tests of
Conservation Laws table, following the Summary Tables,
lists tests of C PT as well as other conservation laws.

We use the following indicators in the Full Listings to
tell how we get values from the tabulated measurements:

e OUR AVERAGE—From a weighted average of selected
data.

® OUR FIT—From a constrained or overdetermined multi-
parameter fit of selected data.

® OUR EVALUATION—Not from a direct measurement, but
evaluated from measurements of related quantities.

e OUR ESTIMATE—Based on the observed range of the
data. Not from a formal statistical procedure.

e OUR LIMIT—TFor special cases where the limit is evaluated
by us from measured ratios or other data. Not from a
direct measurement.

An experimentalist who sees indications of a particle will
of course want to know what has been seen in that region in
the past. Hence we include in the Full Listings all reported
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states that, in our opinion, have sufficient statistical merit
and that have not been disproved by more reliable data.
However, we promote to the Summary Tables only those
states that we feel are well established. This judgment is, of
course, somewhat subjective and no precise criteria can be
given. For more detailed discussions, see the minireviews in
the Full Listings.

4.2. Averages and fits: We divide this discussion
on obtaining averages and errors into three sections:
(1) treatment of errors; (2) unconstrained averaging;
(3) constrained fits.

4.2.1. Treatment of errors: In what follows, the “error”
6 means that the range = + 6z is intended to be a 68.3%
confidence interval about the central value z. We treat
this error as if it were Gaussian. Thus when the error is
Gaussian, 6z is the usual one standard deviation (10). Many
experimenters now give statistical and systematic errors
separately, in which case we usually quote both errors, with
the statistical error first. For averages and fits, we then add
the the two errors in quadrature and use this combined error
for 6z.

When experimenters quote asymmetric errors (6z)"
and (6z) for a measurement z, the error that we use
for that measurement in making an average or a fit with
other measurements is a continuous function of these three
quantities. When the resultant average or fit T is less than
z—(6x)~, we use (6z)”; when it is greater than =+ (6z)*, we
use (6x)*. In between, the error we use is a linear function
of . Since the errors we use are functions of the result, we
iterate to get the final result. Asymmetric output errors are
determined from the input errors assuming a linear relation
between the input and output quantities.

In fitting or averaging, we usually do not include
correlations between different measurements, but we try
to select data in such a way as to reduce correlations.
Correlated errors are, however, treated explicitly when there
are a number of results of the form A; + o; == A that have
identical systematic errors A. In this case, one can first
average the A; £ 0; and then combine the resulting statistical
error with A. One obtains, however, the same result by
averaging A; + (07 + A?)1/2, where A; = oA (1/a) 2.
This procedure has the advantage that, with the modified
systematic errors A;, each measurement may be treated
as independent and averaged in the usual way with other
data. Therefore, when appropriate, we adopt this procedure.
We tabulate A and invoke an automated procedure that
computes A; before averaging and we include a note saying
that there are common systematic errors.

Another common case of correlated errors occurs when
experimenters measure two quantities and then quote the
two and their difference, e.g., mi, mq, and A = my — m;.
We cannot enter all of mj, my and A into a constrained fit
because they are not independent. In some cases, it is a good
approximation to ignore the quantity with the largest error
and put the other two into the fit. However, in some cases
correlations are such that the errors on mj, ms and A are
comparable and none of the three values can be ignored. In
this case, we put all three values into the fit and invoke an
automated procedure to increase the errors prior to fitting
such that the three quantities can be treated as independent

measurements in the constrained fit. We include a note
saying that this has been done.

4.2.2. Unconstrained averaging: To average data, we use
a standard weighted least-squares procedure and in some
cases, discussed below, increase the errors with a “scale
factor.” We begin by assuming that measurements of a given
quantity are uncorrelated, and calculate a weighted average
and error as

— —_ Zi'wi T \-1/2
T+ 6T = R + (Cwi)™ 7, (1)

where
w; = 1/(6:1:i)2 .

Here z; and éx; are the value and error reported by the
1th experiment, and the sums run over the N experiments.
We then calculate X2 = Y w;(Z — z;)% and compare it
with N — 1, which is the expectation value of X? if the
measurements are from a Gaussian distribution.

If X2/(N — 1) is less than or equal to 1, and there are no
known problems with the data, we accept the results.

If X2/(N — 1) is very large, we may choose not to use the
average at all. Alternatively, we may quote the calculated
average, but then make an educated guess of the error, a
conservative estimate designed to take into account known
problems with the data.

Finally, if X2/(N — 1) is greater than 1, but not greatly
so, we still average the data, but then also do the following:

(a) We increase our quoted error, §Z in Eq. (1), by a
scale factor S defined as

s =DE/N -1

(2)
Our reasoning is as follows. The large value of the X? is
likely to be due to underestimation of errors in at least one
of the experiments. Not knowing which of the errors are
underestimated, we assume they are all underestimated by
the same factor S. If we scale up all the input errors by this
factor, the X2 becomes N — 1, and of course the output error
OT scales up by the same factor. See Ref. 3.

When combining data with widely varying errors, we
modify this procedure slightly. We evaluate S using only the
experiments with smaller errors. Our cutoff or ceiling on éz;
is arbitrarily chosen to be

8o = 3NY2 63 |

where 6T is the unscaled error of the mean of all the
experiments. Our reasoning is that although the low-
precision experiments have little influence on the values T
and 6Z, they can make significant contributions to the X2,
and the contribution of the high-precision experiments thus
tends to be obscured. Note that if each experiment has the
same error 8z;, then 6Z is éxi/N1/2, so each éz; is well
below the cutoff. (More often, however, we simply exclude
measurements with relatively large errors from averages and
fits: new, precise data chase out old, imprecise data.)

Our scaling procedure has the property that if there
are two values with comparable errors separated by much
more than their stated errors (with or without a number of
other values of lower accuracy), the scaled-up error 6 T is
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approximately half the interval between the two discrepant
values.

We emphasize that our scaling procedure for errors in
no way affects central values. And if you wish to recover the
unscaled error 6Z, simply divide the quoted error by S.

(b) If the number M of experiments with an error smaller
than & is at least three, and if X2/(M — 1) is greater than
1.25, we show in the Full Listings an ideogram of the data.
Fig. 1 is an example. Sometimes one or two data points
lie apart from the main body; other times the data split
into two or more groups. We extract no numbers from these
ideograms; they are simply visual aids, which the reader may
use as he or she sees fit.

WEIGHTED AVERAGE
0.006+0.018 (Error scaled by 1.3)

- - SMITH 75BWIRE 0.3
-------- NIEBERGALL 74 ASPK 1.3
--------- FACKLER 73 OSPK 0.1
--------- HART 73 OSPK 0.3
---------- MALLARY 73 OSPK 4.4
-------- BURGUN 72 HBC 02
--------- GRAHAM 72 OSPK 0.4
—+—> MANN 72 HBC 33
—— -WEBBER 71 HBC 74

- -+ -CHO 70 DBC 16
---------- BENNETT 69 CNTR 1.1
- -LITTENBERG 69 OSPK 0.3

- JAMES 68 HBC 0.9

v FELDMAN 67BOSPK 0.3
------ AUBERT 65 HLBC 0.1

v - BALDO-... 65 HLBC

T N0 FRANZINI 65 HBC 0.2

x 22.0

N (Conf dence Level = 0.107)

-0.4 -0.2 0.0 0.4

Figure 1: A typical ideogram. The “data point” at
the top shows the position of the weighted average,
while the width of the error bar (and the shaded
pattern beneath it) shows the error in the average
after scaling by the factor S. The column on the right
gives the X2 contribution of each of the experiments.
Note that the next-to-last experiment, denoted by
the incomplete error flag (L), is not used in the
calculation of S (see the text).

Each measurement in an ideogram is represented by
a Gaussian with a central value z;, error 6z;, and area
proportional to 1/8x;. The choice of 1/éz; for the area is
somewhat arbitrary. With this choice, the center of gravity
of the ideogram corresponds to an average that uses weights
1/6x; rather than the (1/6z;)? actually used in the averages.
This may be appropriate when some of the experiments
have seriously underestimated systematic errors. However,
since for this choice of area the height of the Gaussian for
each measurement is proportional to (1/6z;)?, the peak
position of the ideogram will often favor the high-precision
measurements at least as much as does the least-squares
average. See our 1986 edition [2] for a detailed discussion of
the use of ideograms.

4.2.3. Constrained fits: Except for trivial cases, all
branching ratios and rate measurements are analyzed by
making a simultaneous least-squares fit to all the data and
extracting the partial decay fractions P;, the partial widths
T';, the full width T (or mean life), and the associated error
matrix.

Assume, for example, that a state has m partial decay
fractions P;, where Y P; = 1. These have been measured
in N, different ratios R,, where, e.g., Ri = Pi/P,, Ry
= P,/P;s, etc. [We can handle any ratio R of the form
S @i P/ Y Bi P;, where o; and 3; are constants, usually 1 or
0. The forms R = P,Pj and R = (P;P;)!/? are also allowed.]
Further assume that each ratio R has been measured by Ny,
experiments (we designate each experiment with a subscript
k, e.g., Rix). We then find the best values of the fractions P;
by minimizing the X? as a function of the m — 1 independent

parameters:
) , 3)

2’: Z (Rrk -
ko \ R

where the R, are the measured values and R, are the fitted
values of the branching ratios.

In addition to the fitted values P;, we calculate an error
matrix (6P; §P;). We tabulate the diagonal elements of
§P; = (6 P; 6 P;)1/? (except that some errors are scaled as
discussed below). In the Full Listings, we give the complete
correlation matrix; we also calculate the fitted value of
each ratio, for comparison with the input data, and list it
above the relevant input, along with a simple unconstrained
average of the same input.

Three comments on the example above:

(1) There was no connection assumed between mea-
surements of the full width and the branching ratios. But
often we also have information on partial widths ['; as well
as the total width I'. In this case we must introduce I’
as a parameter in the fit, along with the P;, and we give
correlation matrices for the widths in the Full Listings.

(2) We do not allow for correlations between input
data. We do try to pick those ratios and widths that are as
independent and as close to the original data as possible.
When one experiment measures all the branching fractions
and constrains their sum to be one, we leave one of them
(usually the least well-determined one) out of the fit to make
the set of input data more nearly independent.

(3) We calculate scale factors for both the R, and
P; when the measurements for any R give a larger-than-
expected contribution to the X2. According to Eq. (3), the
double sum for X2 is first summed over experiments k = 1
to Ni, leaving a single sum over ratios X? = 3~ X2. One
is tempted to define a scale factor for the ratio = as S2 =
X2/(x?). However, since (X?) is not a fixed quantity (it is
somewhere between Nj and Ni_;), we do not know how to
evaluate this expression. Instead we define

2

2_L§ (Rr — Rr)

S - 5 )
"~ Nk & (6Rwt)? — (OR,)?

where 8R, is the fitted error for ratio r. With this definition
the expected value of S2 is one.

The fit is redone using errors for the branching ratios
that are scaled by the larger of S, and unity, from which new

(4)
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and often larger errors 6?2-/ are obtained. The scale factors

we finally list in such cases are defined by S; = 6?,( /6P;.
However, in line with our policy of not letting S affect the
central values, we give the values of P; obtained from the
original (unscaled) fit.

There is one special case in which the errors that are
obtained by the preceding procedure may be changed. When
a fitted branching ratio (or rate) P; turns out to be less than

three standard deviations (6?{ ) from zero, a new smaller
error (6}_:’;’)' is calculated on the low side by requiring

the area under the Gaussian between P; — (6 ﬁi”)‘ and P;
to be 68.3% of the area between zero and P;. A similar
correction is made for branching fractions that are within
three standard deviations of one. This keeps the quoted
errors from overlapping the boundary of the physical region.

4.3. Discussion: The problem of averaging data con-
taining discrepant values is nicely discussed by Taylor in
Ref. 4. He considers a number of algorithms that attempt
to incorporate inconsistent data into a meaningful average.
However, it is difficult to develop a procedure that handles
simultaneously in a reasonable way two basic types of sit-
uations: (a) data that lie apart from the main body of the
data are incorrect (contain unreported errors); and (b) the
opposite—it is the main body of data that is incorrect.
Unfortunately, as Taylor shows, case (b) is not infrequent.
He concludes that the choice of procedure is less significant
than the initial choice of data to include or exclude.

We place much emphasis on this choice of data. Often we
solicit the help of outside experts (consultants). Sometimes,
however, it is simply impossible to determine which of
a set of discrepant measurements are correct. Our scale-
factor technique is an attempt to address this ignorance by
increasing the error. In effect, we are saying that present
experiments do not allow a precise determination of this
quantity because of unresolvable discrepancies, and one must
await further measurements. The reader is warned of this
situation by the size of the scale factor, and if he or she
desires can go back to the literature (via the Full Listings)
and redo the average with a different choice of data.

Our situation is less severe than most of the cases Taylor
considers, such as estimates of the fundamental constants
like ki, étc. Most of the errors in his case are dominated by
systematic effects. For our data, statistical errors are often
at least as large as systematic errors, and statistical errors
are usually easier to estimate. A notable exception occurs in
partial-wave analyses, where different techniques applied to
the same data yield different results. In this case, as stated
earlier, we often do not make an average but just quote a
range of values.

A brief history of early Particle Data Group averages
is given in Ref. 3. Figure 0.2 shows some histories of our
values of a few particle properties. Sometimes large changes
occur. These usually reflect the introduction of significant
new data or the discarding of older data. Older data are
discarded in favor of newer data when it is felt that the newer
data have smaller systematic errors, or have more checks
on systematic errors, or have made corrections unknown
at the time of the older experiments, or simply have much
smaller errors. Sometimes, the scale factor becomes large
near the time at which a large jump takes place, reflecting
the uncertainty introduced by the new and inconsistent data.

By and large, however, a full scan of our history plots shows
a dull progression toward greater precision at central values
quite consistent with the first data points shown.

We conclude that the reliability of the combination of
experimental data and our averaging procedures is usually
good, but it is important to be aware that fluctuations
outside of the quoted errors can and do occur.
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Revised by G.S. Wagman and B. Armstrong, June 1994

The Full Listings in this Review of Particle Properties,
as well as other particle physics databases, are computer
accessible. Some of the databases help find papers of interest,
while others contain actual numerical data. Here we describe
some databases maintained at LBL, SLAC, CERN, Durham,
IHEP, KEK, and Yukawa, and how to start using them.

1. High-Energy Physics Databases

This section describes publicly accessible databases
of interest to high-energy physicists. See Table 1 for
availability, contacts, and user guides. For databases that
are derived from other databases, see also the description of
the originating database. See Section 2 for information on
accessing these databases.

RPP contains the Full Listings from this Review
of Particle Properties. Through user-friendly menus,
users may query by paper, particle, mass range,
quantum numbers, or detector, and can select specific
properties or classes of properties like masses or
decay parameters. All other relevant information
(e.g., footnotes and references) is included. Complete
instructions are available online. The database is
completely updated in the Summer of even-numbered
years before publication of the Review, and is less
thoroughly updated in the Summer of odd-numbered
years.

The Particle Data Group provides, through the
World-Wide Web (see Section 2.2), full-text PostScript
of the Review of Particle Properties, excluding the Full
Listings. For example, users may access the articles,
tables, figures, and formulae.

Other High-Energy Physics Databases:

e BOOKS contains bibliographic summaries of more than
20,000 textbooks, conference proceedings, lecture-notes,
monographs, and serials covering high-energy physics
and related subjects.

e CONF (CERN), a subset of LIB, contains forthcom-
ing conferences of interest for high-energy physics and
accelerator research and contains past conferences back
to 1986.

e CONF (SLAC) contains almost 5,000 listings of con-
ferences, schools, and meetings of interest to high-energy
physicists. Information on forthcoming conferences is
entered regularly, with detailed descriptions and links to
further World-Wide Web information when available.

e CS, regularly updated from the REACTIONS
database, contains data from CERN-HERA, UCRL,
and LBL cross-section compilations covering 1950 to the
present.

e DIR, the Directory of Research Institutes in High
Energy Physics, contains addresses, telephone, fax,
and telex numbers, and e-mail nodes, as well as brief
information on research programs and accelerators.

To obtain DIR in a Filemaker PRO format for Macintosh

computers, contact the SIS Secretariat at CERN or
Wolfgang Simon (ISI@CERNVM.CERN.CH).

e DOCUMENTS contains two groups of keys:

(1) Bibliographic: ID, references, year of preprinting
or publication, authors and affiliations, document title,
experiment number, collaboration name, and related
references.

(2) Topical: beam particle, target particle, reactions,
particles in the final states of reactions, momenta in
initial states, types of data obtained, particles whose
property has been measured, accelerator and/or detector,
and initial state polarization.

It covers 1895 to the present, with coverage since
1950 being more complete, and is updated monthly. The
report “A Guide to Experimental Elementary Particle
Physics Literature” [1] is produced from it.

E-MAIL IDS, derived from HEPNA MES, contains
e-mail addresses of many people working in high-energy
physics.

e EXPERIMENTS contains summaries of approved ex-
periments at major laboratories. It covers approximately
1975 to the present, with coverage since 1980 being more
complete. It is searchable by experiment number, au-
thor, accelerator, detector, reaction, beam momentum,
journal paper, and other items. The report “Current
Experiments in Elementary Particle Physics” [2] is
produced from it.

HEP-PREPRINT is a collection of bulletin board
archives reserved for high-energy physics preprints. It in-
cludes HEP-EX for experimental HEP preprints (since
April 1994), HEP-LAT for lattice/computational
preprints (since December 1991), HEP-PH for parti-
cle phenomenology preprints (since March 1992), and
HEP-TH for string/conformal/field theory preprints
(since August 1991). Other archives are described in the
HELP facility of these archives.

HEP (SPIRES-HEP), a joint project of the SLAC

and DESY libraries, contains 270,000 bibliographic

entries on particle physics papers (journal articles,
preprints, reports, theses, etc.). It covers 1974 to the
present and is updated daily. It is searchable by author,
institution, title, topic, report number, citation, bulletin
board number, and other bibliographic items. It is an
indexing and access tool (via the World-Wide Web)
to more than 12,000 full-text PostScript documents,
including bulletin board articles processed jointly by the

SLAC and DESY libraries and the CERN publication

group.

e HEPNAMES contains 23,000 e-mail addresses of
many people working in high-energy physics.

e INSTITUTIONS contains 3,000 addresses and, often,
phone and fax numbers of high-energy physics-related
institutions.

e LIB contains the CERN library’s catalogue of books,

reports, preprints, and other information.

e PP contains information on particle properties derived
from the Summary Tables in this Review of Particle
Properties.



1186 Using high-energy physics databases

Table 1. Summary of High-Energy Physics Databases

AVAILABILITY USER

NAME SYSTEM RESPONSIBILITY* CONTACT GUIDE
BOOKS SPIRES WWW,QSPIRES,SLAC, Yukawa a,b c
CONF (CERN)! ALICE WWW,CERN d e
CONF (SLAC)! SPIRES WWW ,QSPIRES,SLAC, Yukawa £b c
CS? PPDS IHEP,LBL g ah
DIR ALICE WWW,CERN d i
DOCUMENTS3 PPDS IHEP,LBL g ah
E-MAIL IDS* BDMS WWW,DURHAM,CERN j ji
EXPERIMENTS?® BDMS WWW,DURHAM,CERN j 4
EXPERIMENTS?® PPDS IHEP 9 ah
EXPERIMENTSS SPIRES WWW,QSPIRES,SLAC, Yukawa kb c
HEP-PREPRINT — WWW,FTP,EMAIL ! m
HEP (SPIRES-HEP)® SPIRES WWW,QSPIRES,SLAC,DESY KEK,Yukawa  n,0,p, c
HEPNAMES SPIRES WWW,QSPIRES,SLAC, Yukawa b c
INSTITUTIONS' SPIRES WWW,QSPIRES,SLAC, Yukawa b c
LIB ALICE WWW,CERN d e
PP? PPDS IHEP,LBL g a.h
PREP ALICE WWW,CERN d e
REACTION DATA?® BDMS WWW,DURHAM,CERN j ji
REACTIONS"® PPDS IHEP,LBL g 9,h
RPP! MENU-DRIVEN WWW,LBL h —
SLACPPF/CITATIONS!? BDMS WWW,DURHAM,CERN j 50
VOCABULARY ! PPDS IHEP,LBL g g.h

* Institutions listed in BOLD are responsible for the content of the database.
(continued)
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Table 1 (continuation)

1 CONF (CERN) and CONF (SLAC) are similar in nature, but are not identical.
2 Updated mainly from REACTIONS and maintained by the [HEP COMPAS Group.

3 Maintained by the [HEP COMPAS Group with input from the LBL Particle Data Group, ITEP, and JINR.
Bibliographic data is extracted from SPIRES-HEP and LIB.

4 Derived from HEPNAMES.
5 Maintained by SLAC, transferred to other institutions. (Ref. 2).
6 Maintained by SLAC in collaboration with the DESY HEP Index Group, transferred to other institutions nightly.
7 Maintained by SLAC in collaboration with the LBL Particle Data Group.

8 Derived from the Summary Tables in this Review of Particle Properties; maintained by the IHEP COMPAS Group.
9 Maintained by the HEP Database Group at Durham; data exchanged twice yearly with IHEP.

10 Maintained by the IHEP COMPAS Group with input from ITEP; data exchanged twice yearly with Durham.

11 Derived from the Full Listings in this Review of Particle Properties.

12 A subset of SPIRES-HEP.

13 Maintained by the IHEP COMPAS Group with input from RPP and EXPERIMENTS.

a: LIBRARY@SLAC. STANFORD . EDU (SLAC Library, MS-82, P.O. Box 4349, Stanford, CA 94309, USA)
b: AOKIQHEP.S.KANAZAWA-U.AC.JP (Ken-Ichi Aoki, Yukawa Inst., Kyoto Univ., Kyoto 606, Japan)

c: TECHPUBQSLAC . STANFORD . EDU (Order: “Guide to QSPIRES and the Particle Physics Databases on SLACVM,”
SLAC-393 Report, by Hrvoje Gali¢)

d: MALICEQVXLIB.CERN.CH
e: LIBDESKQCERN.CH
f: CONF@SLAC. STANFORD . EDU (Georgia Row, SLAC Library, MS-82, P.O. Box 4349, Stanford, CA 94309, USA)

g: ALEKHIN@MX . THEP . SU or EZHELA@MX . IHEP.SU (Sergey Alekhin or Vladimir Ezhela, IHEP, Protvino, Moscow Region,
Russian Federation, RU-142284)

h: PDGQLBL. GOV (Particle Data Group, LBL, 50-308, Berkeley, CA 94720, USA)
i: ANTON@CERNVM. CERN.CH (Anna Anton, CERN Library, CH-1211 Geneva 23 Switzerland)

J: M.R.WHALLEYQDURHAM. AC.UK (Mike Whalley, Durham Univ., South Rd., Durham City, DH1 3LE, UK)
or RGR@V2.RL.AC.UK (Dick Roberts, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon. 0OX11 0QX, UK)

k: EXPBASE@SLAC. STANFORD . EDU (Hrvoje Galié, SLAC, MS-82, P.O. Box 4349, Stanford, CA 94309, USA)

l: HEP-EXQXXX.LANL. GOV, HEP-LATQFTP.SCRI.FSU.EDU, HEP-PH@XXX .LANL. GOV, or HEP-TH@XXX.LANL.GOV
(Send e-mail with subject COMMENT)

m: HEP-EXQXXX.LANL.GOV, HEP-LATQFTP.SCRI.FSU.EDU, HEP-PHOXXX.LANL.GOV, or HEP-TH@XXX.LANL.GOV
(Send e-mail with subject HELP and no message.)

: HEPQSLAC. STANFORD . EDU (SLAC Library, MS-82, P.O. Box 4349, Stanford, CA 94309, USA)

: LOOHTP@DSYIBM.DESY.DE (Hartmut Preissner, DESY, Notkestrasse 85, D-22603 Hamburg, Germany)

: MIURAQKEKVAX . KEK. JP (Yasuko Miura, KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305, Japan)

: HEPNAMES@SLAC . STANFORD . EDU (Hrvoje Gali¢, SLAC, MS-82, P.O. Box 4349, Stanford, CA 94309, USA)
r- LIRYG@SLAC . STANFORD . EDU (Robert Gex, SLAC, MS-82, P.O. Box 4349, Stanford, CA 94309, USA)

Qs o 3
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e PREP, a subset of LIB, contains entries for preprints,
reports, conference papers, theses, etc. It covers all
preprints and reports received in the CERN Library
since 1980. It also has publication details for all papers
published with CERN as an affiliation and for many
conference papers published in proceedings since about
1987.

REACTION DATA is a compilation of numerical ex-
perimental particle physics reaction data, including data
from 2-body (and quasi-2-body) scattering, ete™ annihi-
lation, and inclusive hadron, photon, and lepton physics
such as total and differential cross sections, fragmen-
tation functions, structure functions, and polarization
measurements.

REACTIONS, in conjunction with REACTION
DATA, contains numerical data on reactions: differ-
ential and total cross sections, structure functions,
polarization measurements, and other quantities. It
covers 1952 to the present and is updated approximately
quarterly.

¢ SLACPPF/CITATIONS, a subset of the SPIRES-
HEP literature-searching guide, contains references to
papers and preprints since 1980, being comprised of
the SLAC PPF (preprint) records with PPA (published
references to PPF) updates compiled by the SLAC
library. Many journal publications compiled by the
DESY library are also included.

e VOCABULARY controls usage of particle names,
accelerator names, detector names, and data descriptors
in all PPDS databases.

2. Accessing the High-Energy Physics Databases

2.1. Menu-Driven RPP Database at LBL

To access the RPP database on INTERNET: TELNET
MUSE.LBL.GOV (131.243.48.11) or on DECNET: SET
HOST MUSE (42062). Then login to the captive account
PDG_PUBLIC (a password is not required).

2.2.
Web
Many databases, including several of the high-energy physics
databases discussed above, are accessible via the World-Wide
Web (W3 or WWW) (see Table 1), which is an INTERNET-
based wide-area hypermedia information retrieval system.
There are several browsers available (WWW line-mode
browser, NCSA’s Mosaic browser for X Windows, SLAC’s
MidasWWW browser for X Windows, Cello browser for
MSDOS, etc..) that may already be installed at your
institution; if not, try TELNET INFO.CERN.CH, which will
connect you to WWW and will explain how to acquire the
browsers.

Databases on the INTERNET/World- Wide

Much of this Review of Particle Properties can be
accessed through the World-Wide Web link

http://www-pdg.1lbl.gov/

2.3. Library Databases on ALICE at CERN
The CERN Library ALICE databases are accessible through
the World-Wide Web link

http://www.cern.ch/

This link and the subsequent “Preprints” link also
provide access to full-text preprints received since 1994 from
bulletin board archives and from scanned papers.

To access ALICE on INTERNET: TELNET ALICE.CERN.CH
(128.141.201.44) or on DECNET: SET HOST VXLIB
(22748). Then login to account ALICE (a password is
not required) and select the terminal type according to the
menu. ALICE is a full-screen system using the DEC inter-
national character set, which can be displayed on suitable
terminals. Simple searching can be done by using a menu
system or by using the full power of the ISO Common
Command Language; HELP displays are provided to guide
searching. With the MAIL command, the results of searches
can be sent to any e-mail address for printing.

People without login access to CERN can use QALICE.
Typical messages from OpenVMS to QALICE:

msg VXLIB QALICE base prep;f black hole?;

msg VXLIB QALICE base and 1991-->1992/yr;show

msg VXLIB QALICE base dir;f org=cern;show full
Alternately, send a blank e-mail message to

QALICEQVXLIB.CERN.CH

and put the query in the subject field. For further informa-
tion, send the subject HELP to QALICE.

Regular weekly or monthly searches of the CERN
databases can be arranged according to a personal search
‘profile’, with the results sent automatically by e-mail.
For details on this Selective Dissemination of Information
(SDI) service on QALICE, contact David Dallman, Scientific
Information Service (SIS), CERN, CH-1211 Geneva 23,
Switzerland (DALLMAN@CERNVM. CERN.CH).

2.4. Databases on SPIRES at SLAC

SLAC encourages the high-energy physics community to
access its databases through the World-Wide Web link
http://www-slac.slac.stanford.edu/find/spires.html
leading to SPIRES-HEP, BOOKS, CONF,
HEPNAMES, INSTITUTIONS, EXPERIMENTS,
and other SLAC databases.

People without login access or World-Wide Web access
to SLAC can use QSPIRES. QSPIRES, as described in the
1992 edition of the Review of Particle Properties, is a remote
server which enables e-mail access to SPIRES databases.
Effective March 1994, registration or authorization is no
longer needed to access QSPIRES. For further information
on QSPIRES, contact QSPIQSLAC.STANFORD .EDU.
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2.5. Online Access to HEP at DESY

DESY offers accounts for remote login from Europe re-
stricted to SPIRES-HEP. Contact Hartmut Preissner
(LOOHTP@DSYIBM.DESY.DE).

2.6. Databases on SPIRES at Yukawa Institute
The Yukawa Institute provides Gopher access
(GOPHER.YUKAWA.KYDTD—U.AC.JP) and QSPIRES ac-
cess (JPNYITP.YUKAWA.KYOTO—U.AC.JP) from the Far
East to SPIRES databases. Contact Ken-Ichi Aoki
(AOKI@HEP .S.KANAZAWA-U.AC. JP).

2.7. High-Energy Physics Bulletin Board Preprint
Archives

E-mail listings of high-energy physics preprint titles and
abstracts submitted to the archives can be received daily by
sending a blank e-mail message to the appropriate archive
(HEP-EXOXXX.LANL.GOV, HEP-LATOFTP.SCRI.FSU.EDU,
HEP-PHOXXX.LANL.GOV, or HEP-TH@XXX.LANL.GOV) with
the subject:

SUBSCRIBE your_name
To receive detailed instructions on submitting and recovering
papers, send a blank e-mail message with the subject:

HELP

The listings and papers can also be accessed through the
World-Wide Web link

http://xxx.lanl.gov/

2.8. ITHEP-LBL Particle Physics Data System
(PPDS) at LBL

The databases maintained by the IHEP Protvino COMPAS
Group under the Berkeley Database Management System
(BDMS) with input from the world-wide Particle Data Group
collaboration can be accessed interactively on INTERNET:
TELNET MUSE.LBL.GOV (131.243.48. 11) or on DECNET:
SET HOST MUSE (42062). Then login to the captive account
PPDS_PUBLIC (a password is not required).

Otherwise, remote interactive access can be achieved
from other OpenVMS computers with DECNET access to
MUSE. The remote software (20,000 blocks) can be obtained
from LUGOVSKY@MX.IHEP.SU or PDGOLBL.GOV and can then
be initialized by the system manager or by having each user
type:

Qdisk: [directory. COMPAS . BDMS . COM] BDMSINI

In the following description, words in Typewriter Font
must be typed as given. Only the letters in UPPER CASE
are necessary and these must be entered in upper case.
Italic words are variables for which the user substitutes an
appropriate value, again in upper case.

e To enter the system and obtain general information,
type:
PPDS
or, to open a particular database, type:
PPDS database_name
(e.g., PPDS DOCuments)

e For a short explanation of the database, type:
HELpbase

e For a list of BDMS commands, type:
?

e For an explanation of a particular BDMS command,
type:
?command_word
(e.g., ?FInd, ?HELpbase, ?7)
e To see the record structure and names of keys for
searching, type:
FDT
e To browse the index of a key, type:
INDex,key_name
(e.g., INDex,AC)
e To search an index, type:
FInd key.name=key_value ; **

Note the use of ‘**’ to terminate each search
statement and the use of ¢;’ to separate data elements.

The following examples typify the FIND search
command.

FInd AC=BNL; **
FInd AC=BNL; OR AC=BONN; *x*

Each successful search produces a list of all previous
searches and labels them with a ‘set number.’ A previous
search result can then be combined with a current search
by use of set numbers:

FInd (1) and RE=PI+ P --> PI+ P;*x*
FInd (1) and (2) **
Note that ‘;’ is not used in searches that only use ‘sets’.

Enter DIR to get a list of these set numbers and search
commands.

e To do a truncated search, use a slash after the key value:
FInd DE=HBC/ ;**
This finds all detectors that begin with HBC.
e To do a string search, use /C after the key name:
FInd DE/C=BC; **

This finds all detectors that have BC anywhere in the
name.

e The following examples are WRONG:
find ac=bnl; **
FInd AC BNL; **
FInd AC=BNL ** (Error: no ‘;’)
FInd AC=BNL OR BONN;** (Error: no ‘;’ & no ‘AC=’)

o To see the results of a search with key names, type:
LISt

o Or to restrict data elements shown, append the desired
key names. For example:

LISt,AC,RE,SC.
The leading comma and terminal period are required.
¢ Or for an attractive listing, type:
DOcument then
LOokfile

Error: uses lowercase
(
(Error: no ‘=’)
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e Remote users may save the result of a search in a file by
typing one of the following:

DOcument

DUmp

PRInt
The results are stored in the files DOC.DOC, DOC.DUM, or
DOC.PRN. The first file contains a user-friendly listing, the
second contains a highly compressed dump of each record
(with data element and value), and the third contains a
line-by-line decompressed version of the second file. Another
file automatically created, DOC.AUD, contains a history of
your commands.

2.9. Durham-RAL Databases on BDMS at
Durham and CERN

Databases running under the Berkeley Database Manage-
ment System (BDMS) that are menu driven with on-line help
information are available on the CERN IBM/VM system and
on the Durham OpenVMS system. To access the VM system
on INTERNET: TELNET CERNVM.CERN.CH (128.141.2.4)
and enter GIME UDISK followed by HEPDATA. To access
the Durham OpenVMS system on INTERNET: TELNET
DURPDG.DUR.AC.UK (129.234.8.100) or on DECNET: SET
HOST DURPDG (19788). A guest account PDG, password
HEPDATA, is available on this machine.

Retrieve data by using simple keyword-based searches;
resulting data records can be listed on the terminal or
transferred to the user’s own host machine.

References:

1. S.I. Alekhin et al., “A Guide to Experimental Elementary
Particle Physics Literature,” LBL-90 (revised 1993).

2. H. Gali¢ et al., “Current Experiments in Elementary
Particle Physics,” LBL-91 (revised 1994).
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Gauge & Higgs Boson Summary Table

SUMMARY TABLES OF PARTICLE PROPERTIES
July 1994

Particle Data Group

M. Aguilar-Benitez, R.M. Barnett, C. Caso, G. Conforto, R.L. Crawford,
S. Eidelman, C. Grab, D.E. Groom, A. Gurtu, K.G. Hayes,

J.J. Hernandez, K. Hikasa, G. Hohler, S. Kawabata, D.M. Manley,
A. Manohar, L. Montanet, R.J. Morrison, H. Murayama, K. Olive,
F.C. Porter, M. Roos, R.H. Schindler, R.E. Shrock, J. Stone,

N.A. Térngvist, T.G. Trippe, C.G. Wohl, and R.L. Workman
Technical Associates: B. Armstrong, K. Gieselmann, P. Lantero,
G.S. Wagman
(Approximate closing date for data: January 1, 1994)

[ GAUGE AND HIGGS BOSONS

10PCy = 0,01~ )

Mass m < 3 x 10~27 ev
Chargeg< 2x10"32 ¢
Mean life 7 = Stable

1JPy = o(17)

or giuon

Mass m = 0 (2]
SU(3) color octet

J=1
Charge = 1 e
Mass m = 80.22 + 0.26 GeV
mz — my = 10.96 + 0.26 GeV
my+ — my,. = —02+£ 06 GeV
Full width I = 2.08 + 0.07 GeV

W™ modes are charge conjugates of the modes below.

[
w+ DECAY MODES Fraction (;/T) Confidence level (MeVc)

ety (10.8+0.4) % 40100
utv (10.640.7) % 40100
Tty (10.8+1.0) % 40100
tty (6] (10.7+05)% 40100
hadrons (67.8+1.5) % -
¥y <5 x 10—4 95% 40110

J=1
Charge =0
Mass m = 91.187 = 0.007 GeV [€]
Full width [ = 2.490 + 0.007 GeV
r(ete-) = 83.84 + 0.27 MeV [0
I (invisible) = 498.2 + 4.2 MeV [4]
I (hadrons) = 1740.7 + 5.9 MeV
(ptu=)/r(ete™) = 1.000 + 0.005
r(rtr=)/r(ete”) = 0.998 + 0.005 []
g}, = —0.0377 + 0.0016
g{ = —0.5008 =+ 0.0008

Asymmetry parameters
Ae =0.161 + 0.012 ']
A, = 0.141 + 0.021 (]
Charge asymmetry at Z pole
AGD = (159 +0.18) x 102
A = (5.8 + 2.2) x 102
AGD) — (107 + 1.3) x 1072

(s=17)
(S=12)

Z DECAY MODES

Fraction (I;/T)

P
Confidence level (MeV/c)

ete™ ( 3.366+0.008) %
utu= ( 3.367+0.013) %
o ( 3.360+0.015) %
et [6] ( 3.367+0.006) %
invisible (20.01 +0.16 )%
hadrons (69.90 £0.15 )%

(uT+cT)/2 (97 +18 )%

(dd+s35+bb)/3 (168 *12 )%

cc (119 *14 )%

bb (15.45 +£0.21 )%
0y < 55 x 10~5
ny < 51 x 10~5
wy < 65 x 10—4
n'(958)y < 42 x 105
vy < 558 x 105
YYY < 17 x 10~5
rEwWF gl< 7 x 10~5
pEWTF gl < 83 x 10~5
KOX (615 +0.6 )%
K*(892)*X (51 5 )%
AX (209 +06 )%
=X (142 £0.14 )%
£ (1385)%X (26 04 )%
=(1530)°X (44 £10 )x1073
2=X (35 10 )x10-3
J/9(1S)X (38 +05 )x1073
X¢1(1P)X (75 30 )x1073
(D°/D°) X (28 +4 )%
DEX (139 +21 )%
D*(2010)*X [g] (125 *13 )%
BoX seen
anomalous v+ hadrons [ < 32 x10~3
ete vy [0 < 52 x 10~4
utu—y [h] < 5.6 x10~4
Hr oy [n< 73 x 104
He vy 1< 68 x 10~6
9Ty Mm< 55 x 1076
vUyy M< 31 x 10~6
e ¥ LF [gl< 6 x 10~6
efrF LF  [g)< 13 x 105
utr¥ LF  [g] < 19 x 1073

95%
95%
95%
95%
95%
95%
95%
95%

95%
95%
95%
95%
95%
95%
95%
95%
95%
95%

45600
45600
45600
45600
45600




1192

Gauge & Higgs Boson Summary Table

Searches for Higgs Bosons — H? and H*

H® Mass m > 58.4 GeV, CL = 95%
HY in Supersymmetric Models (myg <mHg) ul
Mass m > 44 GeV, CL = 95% for tan8 >1

A® Pseudoscalar Higgs Boson In Supersymmetric Models Ul
Mass m > 22 GeV, CL = 95% for 50>tang >1

HE Mass m > 41.7 GeV, CL = 95%

See the Full Listings for a Note giving details of Higgs
Bosons.

Searches for Heavy Bosons
Other Than Higgs Bosons

Additional W Bosons
Wg — right-handed W
Mass m > 406 GeV, CL = 90%
(assuming light right-handed neutrino)
W’ with standard couplings decaying to ev, pv
Mass m > 520 GeV, CL = 95%
Additional Z Bosons
Z'SM with standard couplings
Mass m > 412 GeV, CL = 95% (pp direct search)
Mass m > 779 GeV, CL = 95% (electroweak fit)
ZiR of SU(Z)LXSU(Z)RXU(I)
(with g = gr)
Mass m > 310 GeV, CL = 95% (pP direct search)
Mass m > 389 GeV, CL = 95% (electroweak fit)
Zx of SO(10) — SU(5)xU(1)y
(coupling constant derived from G.U.T.)
Mass m > 340 GeV, CL = 95% (pp direct search)
Mass m > 321 GeV, CL = 95% (electroweak fit)
Zy of Eg — SO(10)xU(1)y
(coupling constant derived from G.U.T.)
Mass m > 320 GeV, CL = 95% (pp direct search)
Mass m > 160 GeV, CL = 95%  (electroweak fit)
Z, of Eg — SU(3)xSU(2)xU(1)xU(1),
(coupling constant derived from G.U.T.;
charges are Q, = /3/8Qx — /5/8Qy)
Mass m > 340 GeV, CL = 95% (pP direct search)
Mass m > 182 GeV, CL = 95% (electroweak fit)

Scalar Leptoquarks
Mass m > 120 GeV, CL = 95% (1st generation, pair prod.)
Mass m > 181 GeV, CL = 95% (1st gener., single prod.)
Mass m > 44.5 GeV, CL = 95% (2nd gener., pair prod.)
Mass m > 73 GeV, CL = 95% (2nd gener., single prod.)
Mass m > 45 GeV, CL = 95% (3rd gener., pair prod.)
(last four limits are for charge —1/3, weak isoscalar)

Searches for Axions (A°) and
Other Very Light Bosons

The standard Peccei-Quinn axion is ruled out. Variants with reduced
couplings or much smaller masses are constrained by various data. The
Full Listings in the full Review contain a Note discussing axion searches.

The best limit for the half-life of neutrinoless double beta decay with
Majoron emission is > 7.2 x 1024 years (CL = 90%).

NOTES

In this Summary Table:

When a quantity has “(S = ...)" to its right, the error on the quantity has been
enlarged by the “scale factor” S, defined as S = /X2/(N — 1), where N is the
number of measurements used in calculating the quantity. We do this when
S > 1, which often indicates that the measurements are inconsistent. When
S > 1.25, we also show in the Full Listings an ideogram of the measurements.
For more about S, see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is
the momentum of each decay product in the rest frame of the decaying particle.
For a 3-or-more-body decay, p is the largest momentum any of the products
can have in this frame.

[a] Theoretical value. A mass as large as a few MeV may not be precluded.
[b] € indicates each type of lepton (e, u, and 7), not sum over them.

[c] The Z-boson mass listed here corresponds to a Breit-Wigner resonance
parameter. It lies approximately 34 MeV above the real part of the
position of the pole (in the energy plane) in the Z-boson propagator.

[d] This partial width takes into account Z decays into v¥ and any other
possible undetected modes.

[e] This ratio has not been corrected for the T mass.

[f]Here A = 2gyga/(g}+83)-

[g] The value is for the sum of the charge states indicated.

[h] See the Z Full Listings for the ~ energy range used in this measurement.
[i] For m., = (60 £ 5) GeV.

[/ The limits assume no invisible decays.



1193

Lepton & Quark Summary Table

|| LEPTONS '

See the Full Listings for a Note giving details of neutrinos, masses,
mixing, and the status of experimental searches.

[

Jzé-

Mass m:  The formal upper limit, as obtained from the m? av-
erage (see the Full Listings), is 5.1 eV at the 95% CL. Cau-
tion is urged in interpreting this result, since the m? average
is positive with only a 3.5% probability. If the weighted av-
erage m? were forced to zero, the limit would increase to 7.0
ev.

Mean life/mass, 7/m,, > 300 s/eV, CL = 90%

Magnetic moment 1 < 1.08 x 10~2 ug, CL = 90%

J=%

Mass m < 0.27 MeV, CL = 90%
Mean life/mass, 7/m,, > 15.4 s/eV, CL = 90%
Magnetic moment 2 < 7.4 x 10710 g, CL = 90%

J=%

Mass m < 31 MeV, CL = 95%
Magnetic moment u < 5.4 x 107 ug, CL = 90%

s=4
Mass m = 0.51099906 =+ 0.00000015 MeV 3]
= (5.48579903 =+ 0.00000013) x 10~* u
(mee — m,_)/m< 4x1078, CL = 90%
[ge+ + Go-1/e < 4x 1078
Magnetic moment px = 1.001159652193 + 0.000000000010 up
(8e+ — Be-) / Baverage = (—0.5 £ 2.1) x 10-12
Electric dipole moment d = (—0.3 % 0.8) x 10726 ecm
Mean life 7 > 2.7 x 1033 yr, CL = 68% [®]

J=3

Mass m = 105.658389 + 0.000034 MeV [}
= 0.113428913 & 0.000000017 u

Mean life 7 = (2.19703 + 0.00004) x 1076 s
Tu“'/Tu‘ = 1.00002 + 0.00008

cr = 658.654 m
Magnetic moment 4 = 1.001165923 =+ 0.000000008 e/2m,,
(8,+ — 8,-) / Baverage = (—2.6 + 1.6) x 10~8
Electric dipole moment d = (3.7 + 3.4) x 10719 ecm

Decay parameters (]

p = 0.7518 % 0.0026
n = —0.007 % 0.013

& = 0.749 £ 0.004

€P, = 1.003 % 0.008 []

€P,8/p > 0.99682, CL = 90% [l
€ =1.00 + 0.04

€ =07+04

a/A = (0 £ 4) x 1073

o /A = (0= 4)x 1073

B/A = (4 £6)x10"3

B'/A =(2+6)x10"3

7 = 0.02 £ 0.08

ut modes are charge conjugates of the modes below.

P
p~ DECAY MODES Fraction (;/T) Confidence level (MeV/c)
e Tev, ~ 100% 53

e Vevyy [e] (1.41+0.4)% 53
e Tey,ete” [fl (3.4+0.4) x 105 53

Lepton Family number (LF) violating modes

e~ Ve, LF [g] <12 % 90% 53
e~y LF < 49 x 10~11 90% 53
e~ete” LF < 1.0 x 10~12 90% 53
e~ 2y LF <72 x 10711 90% 53

Mass m = 1777.1% -3 Mev
Mean life 7 = (295.6 + 3.1) x 10715 s
cr = 88.6 um
Electric dipole moment d < 5 x 1017 ecm, CL = 95%
Weak dipole moment < 3.7 x 10~17 ecm, CL = 95%

Decay parameters
See the 7 Full Listings for a note concerning 7-decay parameters.
p7(eor u) = 0.74 £ 0.04
o7(e) = 0.72 £ 0.04
p"(1) = 0.76 + 0.05
€7(e or u) = 0.90 £ 0.18
W- couplings 2gagv /(83+8%) = 1.251 537

7+ modes are charge conjugates of the modes below. “hE" stands for
n% or KL, “" stands for e or u. “Neutral” means neutral hadron whose
decay products include v's and/or x0's.

Scale factor/ P

r~ DECAY MODES Fraction (;/r) Confidence level (MeV/c)
Modes with one charged particle
particle™ > 0 neutrals v, (85.49+0.24) % $=1.5 -
(“1-prong”)
v T, (17.65+0.24) % S=1.1 885
W Tuvey (23 +1.1 )x10~3 -
(E, > 37 MeV)
e Tev, (18.01+0.18) % s=1.1 889
h~ > 0 neutrals v, (49.83+0.35) % $=1.3 -
h~ v, (12.88:+0.34) % S$=1.2 -
g7 (117 +0.4 )% $=1.3 883
K~ > 0 neutrals v, ( 1.68+0.24) % -
K v, (67 £23 )x 1073 $=1.3 820
K~ >1 neutrals v, (12 132)% -
h™ > 1 neutrals v, (36.9 £0.4 )% S=1.3 -
h=n%u, (25.7 £0.4 )% s=1.7 -
7 mu, (25.2 £0.4 )% $=1.7 878
h= > 2n0y, (112 £0.4 )% s=1.5 -
h=2x%; (9.6 £0.4 )% s=15 -
h~ > 3n%u, ( 1.48+0.26) % s=17 -
h=3n%u, ( 1.28+0.24) % s=17 -
h~4ny, (19 *11)x10-3 S=1.6 -
Modes with three charged particles
2h~ht > 0 neutrals v, (14.3840.24) % $=1.5 -
(“3-prong”)
h=h~hty, ( 8.4240.31) % s=1.3 -
h~h~ h*t > 1 neutrals v, ( 5.63+0.30) % =1.2 -
h=h=h+2x%u, (49 £05)x10-3 -
wr™ > 0 neutrals v, (16 £0.4 )% -
wrT v, (16 £05)% 708
h~wndy, (40 +06 )x 1073 -
K~ hth™ >0 neutrals v, < 6 x10-3  CL=90% -
K~ xt7= >0 neutrals v, (22 71§ )x 103 -
K-Ktn~ v, (22 T} )x10-3 685
Modes with five charged particles
3h~2ht >0 neutrals v, ( 1.25+0.24) x 10~3 -
(“5-prong”)
3h~2hty, (56 +1.6 ) x 10~4 -

3h~2ht 70y, (51 £22 )x10~4 -
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Miscellaneous other allowed modes

4h~3ht > 0 neutrals v, < 19 x1074  CL=90%
(“7-prong”)
K*(892)~ > 0 neutrals v, (1.43+017) %

K*(892)~ v,
K*(892)° K~ > 0 neutrals v,
K*(892)°7~ > 0 neutrals v,
K%h~ > 0 neutrals v,

( 1.45+0.18) %
(32 £1.4 )x1073
(38 1.7 )x10~3
( 1.30£0.30) %

K~ K% > 0 neutrals v, < 8 x10-3  CL=90%
KoK~ v, < 26 x10-3  CL=95%
KK~ > 1 neutrals v, < 26 x 1073 CL=95%
KOht h= h= >0 neutrals v, < 17 x 103 CL=95%
K5(1430)" v, < 3 x 1073 CL=95%
nw~ > 0 neutrals v, < 13 % CL=95%
v, < 34 x 1074 CL=95%
nr-mlu, ( 1.70+0.28) x 10~3
nr~ 7070, < 43 x1074  CL=95%
nK~ v, < a7 x1074%  CL=95%
prtx~ 7~ > 0 neutrals v, < 3 x1073  CL=90%
nnw™ > 0 neutrals v, <5 x1073  CL=90%
M v, < 11 x 1074  CL=95%
oy~ w0u, < 20 x 104 CL=95%

Lepton Family number (LF), Lepton number (L),
or Baryon number (B) violating modes
(In the modes below, £ means a sum over e and ;s modes)

L means lepton number violation (e.g. 7~ — etx~x~). Following
common usage, LF means lepton family violation and not lepton number
violation (e.g. 7~ — e~ xtx).

ey LF < 12 x 1074 CL=90%
wy LF < 42 x10~6  CcL=90%
e~ n0 LF < 14 x 1074 CL=90%
= n° LF < 44 x 1075 CL=90%
e~ KO LF < 13 x 1073 CL=90%
u KO LF < 10 x10~3  CL=90%
e n LF < 63 x1075  CL=90%
un LF < 73 x107%  CL=90%
e p° LF < 19 x 1075 CL=90%
w p° LF < 29 x 105  CL=90%
e~ K*(892)° LF < 38 x1075  CL=90%
u~ K*(892)° LF < 45 x 1075 CL=90%
Ty L < 28 x10~4  CL=90%
x~n0 L < 37 x10~4  CL=90%
Il avas LF  [h) < 34 x 1075  CL=90%
e"ete” LF < 13 x1075  CL=90%
(epn)™ LF < 27 x10~5  CL=90%
e~ utpu~ LF < 19 x 1073 CL=90%
etu pu™ LF < 16 X105 CL=90%
(nee)~ LF < 27 x 1075 CL=90%
u"ete” LF < 14 x 1075  CL=90%
ute e LF < 14 x10~5  CL=90%
wptus LF < 17 x 1075 CL=90%
PExF o LFL [hi] < 63 x 1075 CL=90%
eFrn— LFL [ < 60 x 1075 CL=90%
e~ntr~ LF < 27 x 1075 CL=90%
etn~n~ L < 17 x 1075 CL=90%
uFrtr— LFL [l < 39 x 1075 CL=90%
pwo ot LF < 36 x107%  CL=90%
putr—m™ L < 39 x 105 CL=90%
EaF K- LFL [hi] < 12 x 1074 CL=90%
(ewK)~, all charged LF.L < 17 x1075  CL=90%
e~ rEKF LF []< 58 x 1075 CL=90%
e"mt K~ LF < 29 x 1075 CL=90%
e"m Kt LF < 58 x 1073  CL=90%
etr= K- L < 20 x1075  CL=9%0%
(umK)™, all charged LFL < 77 x 1075 CL=90%
prtKF LF (< 77 x 1075 CL=90%
p rt K- LF < 17 x1075  CL=90%

pm T Kt LF < 17 x 1075 CL=90%
ptr= K- L < 40 x10~5  CL=90%
Py LB < 29 x 1074  CL=90%
pr° L8 < 66 x 1074  CL=90%
PN L8 < 130 x10~3  CL=90%
e~ light spinless boson LF < 32 x1073  CL=95%
p~ light spinless boson LF < 6 x 1073 CL=95%

885

| Number of Light Neutrino Types |

(including ve, v, and v, )
Number N = 2.983 + 0.025 (Standard Model fits to Z data)
Number N = 2.97 &+ 0.17  (Direct measurement of invisible Z

width)
I Heavy Lepton Searches I
LE ~ charged lepton

Q
o

Mass m > 443 GeV,CL=95% m,

LE - stable charged heavy lepton
Mass m > 42.8 GeV, CL = 95%
L9 - stable neutral heavy lepton
Mass m > 45.0 GeV, CL = 95% (Dirac)
Mass m > 39.5 GeV, CL = 95% (Majorana)
Neutral heavy lepton
Mass m > 19.6 GeV, CL = 95% (all |Ug;|?) (Dirac)
Mass m > 45.7 GeV  or m < 25, CL = 95% (|Uy;[> > 10713
(Dirac)

Searches for Massive Neutrinos
and Lepton Mixing

For excited leptons, see Compositeness Limits below.

See the Full Listings for a Note giving details of neutrinos, masses,
mixing, and the status of experimental searches.

No direct, uncontested evidence for massive neutrinos or lepton mixing
has been obtained. Sample limits are:

v oscillation: 7, 4 7,
A(m?) < 0.0083 eV2, CL = 90% (if sin?26 = 1)
sin220 < 0.14, CL = 68%  (if A(m?) is large)

v oscillation: v, — v, (9 = mixing angle)
A(m?) < 0.09 eV2, CL =90% (if sin?20 = 1)
sin?20 < 25x 1073, CL = 90%  (if A(m?) is large)
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Lepton & Quark Summary Table

I QUARKS |

The u-, d-, and s-quark masses are estimates of so-called “current-
quark masses,” in a mass-independent subtraction scheme such as
MS at a scale u = 1 GeV. The c- and b-quark masses are estimated
from charmonium, bottomonium, D, and B masses. They are the
“running” masses in the MS scheme, These can be different from
the heavy quark masses obtained in potential models.

14P) = 43%)

Mass m = 2 to 8 Mev Ul
my/mg = 0.25 to 0.70

Charge = % e = +11;

4Py = 33%)

Mass m = 5 to 15 MeV Ul
mg/mg = 17 to 25

Charge=-%e [, =-}

10Py = o(3%)

Mass m = 100 to 300 MeV U Charge = —31; e Strangeness = —1
(ms = (my + mg)/2)/(mg — m,) = 34 to 51

1Py = o3 )

R ] G O

Mass m = 1.0 to 1.6 GeV Charge = $ e Charm = +1

[5] I14P) = 0(3¥)

Mass m = 4.1t0 4.5 GeV  Charge = —~} e Bottom = —1

| Searches for t Quark | 1(4P) = o(3)

Charge = § e Top = +1

Mass m > 62 GeV, CL = 95% (all decays)
Mass m > 131 GeV, CL = 95% (assumes t — W b decay)
Mass m = 174 + 101'}2 GeV  (top candidate events)
Mass m = 169+ 15+17 Gev  (Standard Model electroweak fit)
The first result is from a CDF (W) measurement; the second
is from a D@ direct search; the third is from a CDF observation
of top candidate events. CDF observes a 2.8¢ effect which is not
sufficient to firmly establish the existence of top but which, if in-
terpreted as top, yields the third result. The fourth result is from
a Standard Model electroweak fit to Z, W, and v N data not in-
cluding direct m, measurements. The central value assumes my
= 300 GeV while the second upper (lower) error corresponds to
my = 1000 (60) GeV.

Searches for b (4t" Generation) Quark

Mass m > 85 GeV, CL = 95% (pp, charged current decays)
Mass m > 46.0 GeV, CL = 95% (et e, all decays)

NOTES

In this Summary Table:

When a quantity has “(S = ...)" to its right, the error on the quantity has been
enlarged by the “scale factor" S, defined as S = \/XZ/(N — 1), where N is the
number of measurements used in calculating the quantity. We do this when
S > 1, which often indicates that the measurements are inconsistent. When
S > 1.25, we also show in the Full Listings an ideogram of the measurements.
For more about S, see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is
the momentum of each decay product in the rest frame of the decaying particle.
For a 3-or-more-body decay, p is the largest momentum any of the products
can have in this frame.

[a] The masses of the e and u are most precisely known in u (unified atomic
mass units). The conversion factor to MeV, 1 u = 931.49432(28) MeV,
is less well known than are the masses in u.

[b] This is the best “electron disappearance” limit. The best limit for the
mode e~ — vy is > 2.35 x 1025 yr (CL=68%).

[c] See the “Note on Muon Decay Parameters” in the p Full Listings for
definitions and details.

[d] P, is the longitudinal polarization of the muon from pion decay. In
standard V—A theory, P, = 1 and p = § = 3/4.

[e] This only includes events with the y energy > 10 MeV. Since the e~ 7, v,

and e~ . v,y modes cannot be clearly separated, we regard the latter
mode as a subset of the former.

[f] See the p Full Listings for the energy limits used in this measurement.
[g] A test of additive vs. multiplicative lepton family number conservation.
[h] € means a sum over e and p modes.

[i] The value is for the sum of the charge states indicated.

[/] The ratios m,/m4 and ms/m are extracted from pion and kaon masses
using chiral symmetry. The estimates of v and d masses are not without
controversy and remain under active investigation. Within the literature
there are even suggestions that the u quark could be essentially massless.
The s-quark mass is estimated from SU(3) splittings in hadron masses.
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LIGHT UNFLAVORED MESONS
(S=C= B=0)

For I =1 (m, b, p, a): ud, (vT—dd)/V2, dT;
for I =0(n ', b W, w ¢ f ) c(ul + dd) + cx(s3)

- 16(JPy=1"(07)
Mass m = 139.56995 + 0.00035 MeV (3]
Mean life 7 = (2.6030 + 0.0024) x 1078 5
cr =7.804 m
xt - £y form factors (4]
Fy = 0.017 + 0.008
Fa = 0.0116 + 0.0016
R =0.059+3:993

(S=13)

7~ modes are charge conjugates of the modes below.

p
x+ DECAY MODES Fraction (;/I) Confidence level (MeV/c)

uwto, [c] (99.98770+0.00004) % 30

utoyy (d] (124 +025 )x1074 30
etve [e] (1230 +0004 )x10~4 70

etvey [d] (161 +023 )x1077 70
etyen? (1025 +0.034 )x10~8 4
etveete™ (32 05 )x1079 70
etvevv <5 % 106 90% 70

Lepton Family number (LF) or Lepton number (L) violating modes

utve L [e] < 15 x 1073 90% 30
wtve LF  le] < 80 x10~3 90% 30
u"etety LF < 16 x 1076 90% 30

. 1IGUPCYy=1-(0—*)

Mass m = 134.9764 + 0.0006 MeV (3]

m_s — mo = 45936 % 0.0005 MeV

Mean life 7 = (8.4 £ 0.6) x 1077 s (S = 3.0)
cr =251 nm

Scale factor/

p
x¥ DECAY MODES Fraction (F;/I) Confidence level (MeV/c)

2y (98.7984£0.032) % s=1.1 67
ete v ( 1.19840.032) % S=1.1 67
~positronium (1.82 +£0.29 ) x 102 67
etete e (3.14 £0.30 ) x 1075 67
ete~ (75 %20 )x1078 67
4y < 2 x 10~8 CL=90% 67
vU (fl< 83 x 10~7 CL=90% 67
veTe < 17 x 1078 CL=90% 67
v, < 31 x 107¢ CL=90% 67
vy Uy < 21 x 1076 CL=90% 67
Charge conjugation (C) or Lepton Family number (LF) violating modes
3y c < 31 x 10~8 CL=90% 67
pute  + e pt LF < 172 x 10~8 CL=90% 26

m IG(JPC):0+(0_+)

Mass m = 547.45 + 0.19 MeV (S = 1.6)
Full width I = 1.20 + 0.11 keV [&] (S = 1.8)

C-nonconserving decay parameters (/]
ntx~x0  Left-right asymmetry = (0.09 + 0.17) x 1072
ntr~ a0 Sextant asymmetry = (0.18 + 0.16) x 1072
nt7~ 7% Quadrant asymmetry = (—0.17 % 0.17) x 1072
nta~y  Left-right asymmetry = (0.9 + 0.4) x 10~2
atn~y B (D-wave) = 0.05+ 0.06 (S = 1.5)

Scale factor/ P
n DECAY MODES Fraction (;/T) Confidence level (MeV/c)
neutral modes (70.8 +0.8 )% S=1.2 -
2y g] (388 £0.5)% s=1.2 274
370 (31.9 £0.4 )% 5=1.2 180
702y (71 1.4 )x 1074 258
charged modes (292 £0.8 )% S=1.2 -
ot n0 (236 +06 )% 5=1.2 175
atry ( 4.88+0.15) % s=1.2 236
ete v (50 12 )x1073 274
whp (31 +04)x10"% 253
et e <03 x 1074  CL=90% 274
't (57 £0.8 )x10"® 253
rirete (13 *13)x10-3 236
mltrT2y < 21 x 1073 236
mta w0y < 6 x107%  CL=90% 175
TRV <03 %1078 CL=90% 211
Charge conjugation (C), Parity (P), or
Charge conjugation x Parity (CP) violating modes
ato- p,cP < 15 x 1073 236
3y c < 5 1074 CL=95% 274
Oete~ c ] < a x 1075 CL=90% 258
Ot c i< s x 1076 CL=90% 211
p(770) 16(PG =1t )
Mass m = 769.9 + 0.8 MeV (S = 1.8)
Full width I' = 151.2 + 1.2 MeV
lee = 6.77 £ 0.32 keV
Scale factor/ P
p(770) DECAY MODES Fraction (I';/T) Confidence level (MeV/c)
T ~ 100 % 359
p(770)% decays
aty ( 45 +05 )x10™% $=2.2 372
ity < 6 x 1073 CL=84% 147
rtatr= g0 < 20 %1073 CL=84% 250
o(770)° decays
mtr Ty (99 +1.6 ) x 1073 359
70~ (79 +2.0)x 1074 373
ny ( 38 +07 )x 1074 190
wtu~ U] ( 460+0.28) x 105 370
ete~ [l ( 4.46+0.21) x 105 385
nta 70 < 12 x 1074 CL=90% 320
ata~ata~ < 2 x 1074 CL=90% 247
rta  n0x0 < 4 x10~5  CL=90% 253
w(782) 16(JPCy =01~ )
Mass m = 781.94 + 0.12 MeV (S = 1.5)
Full width T = 8.43 + 0.10 MeV
Tee = 0.60 & 0.02 keV
P
w(782) DECAY MODES Fraction (I';/I) Confidence level (MeV/c)
ntx—n0 (88.8 +0.7 )% 327
70y (85 £05 )% 379
L ( 2.214+0.30) % 365
neutrals (excluding7®~) (53 F81 )x10-3 -
ny (83 t21 )x107% 199
nlete~ (59 +19 )x 1074 379
mOutp (96 23 )x 1075 349
ete” ( 7.1540.19) x 10~5 391
atr 7070 < 2 % 90% 261
ataTy <36 x 1073 95% 365
rta~ata™ 1 x 1073 90% 256
7070 < a x 10~4 90% 367
wtp < 18 x 1074 90% 376
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1IG(UPCy = ot(0— )

7(958)

Mass m = 957.77 £+ 0.14 MeV
Full width [ = 0.201 + 0.016 MeV (S = 1.3)

Scale factor/ P
Confidence level (MeV/c)

#/(958) DECAY MODES Fraction (I';/T")

rtan (43.7 £1.5 )% s=1.1 232
Oy (302 £13 )% s=1.1 169
070y (208 +1.3 )% s=1.2 239
wy ( 3.02+0.30) % 160
vy ( 21240.13) % s=1.2 479
30 ( 1.5540.26) x 10~3 430
ptu—y ( 1.0430.26) x 104 467
ata—x0 <5 % CL=90% 427
700 < & % CL=90% 118
atnw— < 2 % CL=90% 458
nlete~ < 13 % CL=90% 469
nete~ < 11 % CL=90% 322
rtrtr— o~ <1 % CL=90% 3n2
xtxt a7 neutrals <1 % CL=95% -
atrta—a—x0 <1 % CL=90% 298
6 <1 % CL=90% 189
ntnete” < 6 x10~3  CL=90% 458
#0n® < 9 x10=%  CL=90% 459
w0y < 8 x10~4  CL=90% 469
470 <5 x10~4  CL=90% 379
3y < 10 x10~4  CL=90% 479
utp—n0 < 60 x10-5  CL=90% 445
uwtu=n < 15 x10~5  CL=90% 274
xt 7~ ~(including p° ) (27.9 +23 )% -
ete~ < 21 x10=7  CL=90% 479

fO(gso) ,G(JPC)=°+(0++)
was $(975)

Mass m = 980 + 10 MeV
Full width ' = 40 to 400 MeV

P
Confidence level (MeV/c)

#(960) DECAY MODES Fractlon (F;/r)

L (78.1 £2.4 )% 470

KK (21.9 +£2.4 )% -

7Y ( 1.1940.33) x 105 490

ete” <3 x10~7 90% 490
(980)

,G JPC =1"(0++

was 5(960) ( ) ( )
Mass m = 982.4 + 1.4 MeV
Full width ' = 50 to 300 MeV

#9(960) DECAY MODES Fraction (F;/T) p (MeVfc)

nm_ dominant 319

KK seen -

¥y seen 491
$(1020) 16PCy =0-(17 ")

Mass m = 1019.413 + 0.008 MeV
Full width I = 4.43 + 0.06 MeV
lee = 1.37 £ 0.05 keV

Scale factor,
#(1020) DECAY MODES Fraction (I;/T) Confidence leve/l (M:V/c)
KtK- (49.1 £0.9 )% s=1.3 127
K9 K2 (343 £07 )% s=1.2 110
pr (129 +0.7 )% 181
atx x0 (25 +09 )% s=1.1 462
ny ( 1.2840.06) % s=1.2 363
w0 ( 1.31£0.13) x 10~3 501
ete” ( 3.0940.07) x 10—4 510
utu~ ( 2.4840.34) x 10~4 499
nete- (13 358 )x104 363
rtn— (8 *% )x10-5 S=15 490

Meson Summary Table
wy < 5 % CL=84% 210
pY < 2 % CcL=84% 219
ntry <7 x10~3  CL=90% 49
1o(980)~ < 2 x10~3  CL=90% 39
mnly <1 x10~3  CL=90% 492
atr—ata— < 87 x10~4  CL=90% 410
n'(958)y < 41 x10~4  CL=90% 60
atatr—n—x® < 15 x10~%  CL=95% 341
nOete~ < 12 x10~4  CL=90% 501
Oy < 25 x10-3  CL=9%0% 346
29(980)y <s x10~3  CL=90% 36
hy(1170) 16(JPCy=0—(1+ )

Mass m = 1170 + 20 MeV

Full width ' = 360 + 40 MeV
hy (1170) DECAY MODES Fraction (I;/I) P (MeVe)
P seen 310

by(1235) 1I6(PCy =11+ )
Mass m = 1231 + 10 MeV [¥]
Full width [ = 142 £ 8 MeV (S = 1.1)
P

b, (1235) DECAY MODES Fraction (I;/I) Confidence level (MeV/c)

wT dominant 348
[D/S amplitude ratio = 0.26 + 0.04]
nty ( 1.6+0.4) x 103 608
ne seen -
rtata~ x° < 50 % 84% 536
(KK)xx® < 8 % 90% 248
K% KO xt < 6 % 90% 238
KsKs nt < 2 % 90% 238
TP < 15 % 84% 146
21(1260) 16(PCY =11+ )
Mass m = 1230 + 40 MeV (K]
Full width T ~ 400 MeV
P
#;(1260) DECAY MODES Fraction (I;/T) Confidence level (MeV/c)
pm dominant 356
Ty seen 607
m(77)s-wave k] <0.7% 90% 575

£(1270)

IG(JPC) = o+(2 + +)

Mass m = 1275 + 5 MeV [¥]
Full width I = 185 + 20 MeV [k

#£(1270) DECAY MODES

Scale factor/

P
Fraction (;/T) Confidence level (MeV/c)

T
atx—2n0
KK
2rt2n~
Ui}

4x°

Yy

nrrw
KOK-nt+ cc.
ete”

819 123 )9 =13 622
5% s
(69 ¥13)% s=1.4 562
(46 £05)% s=2.8 403
(28 £0.4 )% s=1.2 559

45 £1.0 ) x 10~ =24 327

5 + 3 s

(30 £1.0 )x10~3 564

(1.32+018) « 10-5 s=1.1 637

< 8 x10~3  CL=95% 475
< 34 x10~3  CL=95% 293
<9 x10~9  CL=90% 637
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16(JPC) =0t (1t )

fi(1285)
Mass m = 1282 + 5 MeV [kl

Full width I = 24 + 3 MeV [k

Scale factor/ P

f;(1285) DECAY MODES Fraction (;/T) Confidence level (MeV/c)

ar (29 +6 )% 563
00 nt = as *2)% S=1.1 -~
2t 27 (15 +6 )% 563

Prta~ dominates 2+ 27— 340
4r° < 7 x 1074 CL=9%0% 568

nmTmw (54 +15 )% 479

20(980) 7 [ignoring ap(980) — (44 +7)% S=1.1 234
KK]
nmw [excluding ag(980)7] (o *F7y% s=1.1 -

KKm_ (97+ 1.6)% $=1.2 308
K K*(892) not seen -

vp° (66+ 13)% 5=15 410

dy ( 80+ 31)x107% 236

/G(JPC) =0T(0~ )

n(1295)

Mass m = 1295 + 4 MeV
Full width ' = 53 + 6 MeV

n(1295) DECAY MODES Fraction (I';/T) p (MeV/c)
T)1|’+ T seen 488
ap(980) seen 245
%(1300)
was f5(1400) 16(JPCy =0t (0t++)
was ¢(1200)
Mass m = 1000-1500 MeV
Full width ' = 150 to 400 MeV
My, =54+23keV
lee < 20eV, CL = 90%
fo(1300) DECAY MODES Fraction (I';/T) p (MeVjc)
T (936712 % -
KK (75+0.9) % -
nn seen —
¥y seen -
ete™ not seen -
x(1300) 16(JPCYy=1-(0— 1)
Mass m = 1300 £ 100 MeV [¥]
Full width I' = 200 to 600 MeV
x(1300) DECAY MODES Fraction (I;/T) p (MeV/c)
pT seen 406
7 (77)s-wave seen 612

2,(1320) 16UPC =172+ )

Mass m = 1318.4 £ 0.6 MeV (S =1.1) (3rand K*¥KY
modes)
Full width I = 107 £ 5 MeV !l (K* K and n7 modes)

Scale factor/

p
#2(1320) DECAY MODES Fraction ([;/T) Confidence level (MeV/c)

pT (70.1£2.7) % S=1.2 419
nmT (145+£1.2) % 535
wrT (10.6£3.2) % s=1.3 362
KK ( 4.9+0.8) % 437
n'(958) 7 (57+1.1)x 1073 287
nty ( 28+0.6) x 1073 652
Ny (1 9.7+1.0) x 107 659
rtamm— < 8 % CL=90% 621

ete~ < 23 x 1077 CL=90% 659

£,(1420)

Mass m = 1426.8 + 2.3 MeV (S = 1.3)
Full width ' = 52 + 4 MeV

/G(JPC) — 0*}-(1 + *‘~)

f;(1420) DECAY MODES Fraction (I;/T) p (MeVjc)
KKnr dominant 439
nTw possibly seen 571
w(1420) (™ 16(PCY =017 )
Mass m = 1419 £ 31 MeV
Full width T = 174 + 60 MeV
w(1420) DECAY MODES Fraction (I;/T) p (MeVjc)
P dominant 488
n(1440) ("l G(PCy — gt(o—+
15J")y=07(0 )
was ¢(1440)
Mass m = 1420 + 20 MeV K]
Full width T = 60 + 30 MeV []
n(1440) DECAY MODES Fraction (I';/T) p (MeV/c)
K?ﬂ seen 433
nmww seen 567
ap(980) seen 350
4m seen 640
p(1450) o] 16UPCy =1t~ )

Mass m = 1465 + 25 MeV [kl
Full width T = 310 + 60 MeV [k

p(1450) DECAY MODES Fraction (I';/T)

P
Confidence level (MeV/c)

T seen 719
4m seen 665
ete” seen 732
np <4 % 317
wmT <2.0% 95% 512
o7 <1 % 358
KK <1.6x 1073 95% 541
f,(1510) 16(JPCy = ot ++)

Mass m = 1512 + 4 MeV

Full width I’ = 35 + 15 MeV
f;(1510) DECAY MODES Fraction (I';/T) p (MeV/c)
K?‘(892)+ c.c. seen 292

f'2(1525) /G(JPC) =0ttt

Mass m = 1525 + 5 MeV [K]

Full width T = 76 + 10 MeV [¥]
7'2(1525) DECAY MODES Fraction (I';/T) p (MeV/c)
KK (2 t32)% st
nn (279 *2%)% 531
T (82 +1.6 )x 1073 750
vy ( 1.234£0.22) x 1076 763
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f5(1590) 16(JPC) =ot(0*+)

Seen by one group only.
Mass m = 1581 + 10 MeV
Full width T =180 + 17 MeV (S =1.2)

1o(1590) DECAY MODES Fraction (';/F) p (MeV/o)
nn’(958) dominant 234
nn large 570
470 large 732

w(1600) [°! 1I6UPCy=0—(1— )

Mass m = 1662 + 13 MeV
Full width ' = 280 + 24 MeV

w(1600) DECAY MODES Fraction (r;/T) p (MeVfc)
P seen 644
wTmw seen 610
ete” seen 831

w3(1670) 16(PCY =0=3" ")

Mass m = 1668 + 5 MeV
Full width T = 173 £ 11 MeV (4]

23(1690) 16(JPCy =1+3— )

JP from the 2r and KK modes.
Mass m = 1691 + 5 MeV [¥] Szw, KK, and KK modes)
Full width I = 215 + 20 MeV (Kl (2r, KK, and K K= modes)

P
Scale factor (MeV/c)

p3(1690) DECAY MODES Fraction (F;/r)
ar (711 £ 1.9 )% 788
atata—n0 (67 £22 )% 788
T (236 + 13 )% 834
wm (16 +6 )% 656
KK~ (38 +12)% 628
KK ( 158+ 0.26) % 1.2 686
pata~ seen 728
p(1700) ol 16(PCy =11~ )

w3(1670) DECAY MODES Fraction (/) p (MeVfc)
pr seen 647
wmm seen 614
by (1235)x possibly seen 359
x2(1670) 1IG(UPCY =12~ )

Mass m = 1670 + 20 MeV [l
Full width [ = 240 + 15 MeV K (5 = 1.1)
Mee = 1.35 + 0.26 keV

#2(1670) DECAY MODES Fraction (I';/T) p (MeVyc)
£(1270) 7 (56.2+3.2) % 325
rtata— (53 +4 )% -
pm (31 +4 )% 649
fo(1300) (87+£34)% -
KK*(892)+ c.c. (42+1.4)% 453
~y (56+1.1)x10~6 835
nm < 5 % 738
¥ 2nt o= <5 % 734
#(1680) 1GUPCy =0—(1— ")

Not a well-established resonance.
Mass m = 1680 + 50 MeV (K]
Full width T = 150 + 50 MeV [¥]

$(1680) DECAY MODES Fraction (r;/r) P (MeV/c)
K'K*(892)+ c.c. dominant 462
K g Kr seen 619
KK seen 680
ete™ seen 840

wnrTw not seen 621

Mass m = 1700 = 20 MeV K]  (np° and mixed modes)
Full width T = 235 + 50 MeV (Kl (5% % x—, and mixed

modes)

#(1700) DECAY MODES Fractlon (F;/T) p (MeVjc)
pr dominant 640

POrtr— large 640

pErF a0 [q] targe 642
2(rt ) large 792
ate seen 838
KK*(892)+ c.c. seen 479
np seen 533
KK seen 692
ete— seen 850

£,(1710)
was 6(1690)

Mass m = 1709 + 5 MeV
Full width T = 140 £+ 12 MeV

1G(JPCy = 0+ (even + )

4(1710) DECAY MODES Fraction (F;/T) p (Mev/c)
KK seen 697
T seen 843

¢3(1850) 16(PC =0=(37 ")

Mass m = 1854 & 7 MeV
Full width T = 87123 MeV (S = 1.2)

#3(1850) DECAY MODES Fraction (I;/r) p (MeV/c)

KK seen 785

K K*(892)+ c.c. seen 602
£2(2010) 16(JPC) = 0*(2+ )

Seen by one group only.
Mass m = 2011+ §0 Mev
Full width I = 202 + 60 MeV
£(2010) DECAY MODES Fraction (F;/) p (MeVfc)
2] seen -
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f2(2050) | 16(JPC) =0t (at+ )

Mass m = 2044 £+ 11 MeV (S = 1.4)
Full width ' = 208 + 13 MeV (S =1.2)

74(2050) DECAY MODES Fraction (I';/T) p (MeVic)
ww (26 +6 )% 658
T (17.0£1.5) % 1012
KK (68t33)x 1073 895
nn (21+08) x10~3 863
470 < 12 % 977
£(2300) 16(JPCy =02+ )
Mass m = 2297 + 28 MeV
Full width ' = 149 + 40 MeV
f(2300) DECAY MODES Fraction (I';/T) p (MeVjc)
X)) seen 529
£2(2340) 1I6(UPC) =02+ )
Mass m = 2339 £ 60 MeV
Full width I = 31980 Mev
»(2340) DECAY MODES Fraction (I';/T) p (Mev/c)
¢ seen 573

STRANGE MESONS
(§==+1,C=B=0)

Kt = u3, K® = d35, K® = ds, K~ =Ts, similarly for K*'s

1UP) = $(07)

Mass m = 493.677 + 0.016 MeV (S = 2.8)

Mean life 7 = (1.2371 % 0.0029) x 108 s (S = 2.2)

cr =3.709 m
Slope parameter g [']
(See Full Listings for quadratic coefficients)
K* — rtatr™ = —-0.2154 + 0.0035 (S = 1.4)
K™ — 77~ rt = -0.217 £0.007 (S = 2.5)
K* — 7%7070 = 0594 +£0.019 (S =1.3)
K* decay form factors [0:s]
K% Xy =0.0286 % 0.0022
Kfs Ay =0033+£0008 (S=16)
Kfs Ao =0.004 £ 0.007 (S=16)
K& |fs/fy| =0084 £0023 (S=12)
K& |fr/fy|=038+011 (S=11)
Krs |fr/fi| =002+ 0.12
K* — etvey |Fa + Fy|=0.148 £ 0.010
K* = u¥v,y |Fa+ Fy| < 023, CL=90%
Kt — etvey |Fa— Fy| < 049
Kt — u“h/u'y ‘FA - FV| = -22t003

K™ modes are charge conjugates of the modes below.

Scale factor/ P
K+ DECAY MODES Fraction (;/) Confidence level (MeVjc)
uty, (63.51+0.18) % $=1.3 236
etve ( 1.5540.07) x 1075 247
xt 0 (21.1640.14) % S=1.1 205
atata- ( 5.59+0.05) % s=1.9 125
nta0x0 ( 1.73+0.08) % s=1.2 133
O pty, ( 3.1840.08) % S=1.5 215
Called K:3.
et v, ( 4.82+0.06) % $=13 228
Called K1,.
w0r0et v, (21 +0.4 )x 1075 206
rtr et v, (3.91+£0.17) x 1075 203
atapty, (14 £09 )x 1075 151
70n07r0ety, < 35 x107®  CL=90% 135
atyy < 1 x 1076 CL=90% 227
713y ] < 1.0 x 1074  CL=90% 227
etvevy < 6 x107%  CL=90% 247
wro,vw < 60 x 1076 CL=90% 236
pty,ete” ( 1.06+0.32) x 10~6 236
etyeete~ (21 ¥21)x1077 247
pry,ptu~ < 41 x10~7  CL=90% 185
AR {tw] ( 5.50+0.28) x 10~3 236
ntaly [tu] ( 2.75+0.15) x 10~4 205
xt 0~ (DE) [tv] (1.8 +0.4 )x 1075 205
statn—y [tw] ( 1.04+0.31) x 10~% 125
nta0x0y [tw] (7.4 £33 )x10-6 133
moptu,y [tu] < 6.1 x 1075 CL=90% 215
m0etvey [tw] ( 26240.20) x 104 228
m0et vey(SD) W] < 53 x 1075 CL=90% 228
m0n0et vey <5 x 1076 CL=90% 206

Lepton Family number (LF), Lepton number (L), AS = AQ (5Q)
violating modes, or AS = 1 weak neutral current (S1) modes

rtate v, sQ < 12 x10~8  CL=90%
rtatu o, sQ < 30 x10~®  CL=95%
rtete~ s1 ( 2.74+0.23) x 10~7

atutpu~ s1 < 23 x10=7  CL=90%
rtuw s1 < 52 x 1079  CL=90%
pu"vetet LF < 20 x 1078  CL=90%
utve LF [ej< 4 x 1073 CL=90%
rtute LF < 21 x 10~10  cL=90%
ntu et LF <7 x107?  CL=90%
- ptet L <7 x107?  CL=90%
x~etet L < 10 x 1078  CL=90%
aptpt L < 15 x 1074 CL=90%
ut v, L e} < 33 x 1073 CL=90%
wOet v, L el < 3 x10-3  CL=90%

203

227
172
227
236
236
214
214
214
227
172
236
228

1UP) = 4(07)

50% Ks, 50% K
Mass m = 497.672 + 0.031 MeV
Mo — Myex = 3.995 + 0.034 MeV (S = 1.1)
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e

1(4P) = }(07)

Mean life 7 = (0.8926 + 0.0012) x 1010 5
cr = 2.676 cm
CP-violation parameters (X}
Im(ny_0)? < 0.12, CL = 90%
Im(mogo)? < 0.1, CL = 90%

Scale factor/ [
Kg DECAY MODES Fraction (F;/r) Confidence level (MeV/c)
atr~ (68.61+0.28) % s=1.2 206
70n0 (31.3940.28) % s=1.2 209
ataTy [wy] ( 1.78+0.05) x 10~3 206
L% (24 +12)x10°6 249
ot a® < 85 x 105 CL=90% 133
370 < 37 x10-5  CL=90% 139
rteFy 2] ( 6.68+0.10) x 10~4 $=1.3 229
rtuFu 2] ( 4.66+0.07) x 10—4 s=1.2 216
AS = 1 weak neutral current (S1) modes
utp~ s1 < 32 x10=7  CL=90% 225
ete” s1 < 10 x 1075  CL=90% 249
nlete~ s1 < 11 x 106 CL=9%0% 231
K? 1(0P) = 3(07)

my, — mkg = (0.5333 £ 0.0027) x 10 As~! (S =1.2)

= (3.510 % 0.018) x 1012 MeV
Mean life 7 = (5.17 £ 0.04) x 108 5
cr =1549 m

Slope parameter g []
(See Full Listings for quadratic coefficients)
K¢ - nt7~ 2% = 0670 £ 0.014 (S=16)
Ky decay form factors [s]
K9 Ay =0.03004+00016 (S=1.2)
K% Ay =0034 %0005 (S=23)
K33 Ao =0.025+0.006 (S=23)
K% |fs/fi| < 0.04, CL =68%
K% |fr/fi] < 0.23,CL=68%
K% |fr/fy| =012 £012

KL — ete v ay.=-028%0.08

CP-violation parameters (x!
§ = (0.327 £ 0.012)%
00| = (2.259 £ 0.023) x 1073 (S = 1.1)

[n4-| = (2.269 £ 0.023) x 103 (S = 1.1)
|00/m+—] = 0.9955 £ 0.0023 133l (S = 1.8)
€/e = (15+08) x 10732 (5 =1.8)
by = (443 +08)°
doo = (43.3 £ 1.3)°

AS = —AQin K? decay

Re x = 0.006 + 0.018 (S = 1.3)
Im x = -0.003 + 0.026 (S =1.2)

K9 DECAY MODES

Scale factor/

P
Fractlon (/) Confidence level (MeV/c)

370 (216 £0.8 )% s=1.5 139
ata— a0 (12.38+0.21) % S=15 133
rtuFy [q] (27.0 £0.4 )% $=1.3 216
Called KY,.
nteFy lq] (38.7 £05 )% s=1.4 229
Called K9;.
2y ( 5.73£0.27) x 10~4 $=2.0 249
02y [bb] ( 1.70+0.28) x 10—6 231
OrteFy la] ( 5.18+0.29) x 10~5 207
(wupatom)v ( 1.05+0.11) x 10~7 216
rEeFyey [qubb] (13 £0.8 )% 229
ntry [u,bb] ( 4.61£0.14) x 10~5 206
mOn0y < 56 x 10~6 -
Charge conjugation x Parity (CP) or Lepton Family number (LF)
violating modes, or AS = 1 weak neutral current (S1) modes
atn— cPv ( 2.0340.04) x 10~3 $=1.2 206
70x0 cPV ( 9.14+0.34) x 10—4 s=1.8 209
utu= S1 (7.4 £0.4 )x10~2 225
utp—y s1 (28 +28 )x 1077 225
ete s1 < 41 x 10-11  cL=90% 249
ete y s1 (9.1 +05 )x106 249
ete vy S1  [bb] (66 £32)x10~7 249
ntr~ete” s1 < 25 x10~6  CL=90% 206
ptp-ete s1 < 49 x10—6  cL=90% 225
ete~ete~ S1 [ecc] (3.9 +£07 )x10~8 249
wOutp— cP.S1[dd) < 5.1 x 1079 CL=90% 177
nOete CP.S1[dd] < 4.3 x10-9  CL=90% 231
P77 CP,S1[ee] < 2.2 x10~4  CL=90% 231
et ¥ LF [q < 33 x10~11  CcL=90% 238
K*(892) 1(4P) = 3(17)
K*(892)* mass m = 891.59 + 0.24 MeV (S = 1.1)
K*(892)° mass m = 896.10 + 0.28 MeV (S = 1.4)
K*(892)% full width I = 49.8 + 0.8 MeV
K*(892)° full width I = 50.5 + 0.6 MeV (S = 1.1)

K*(892) DECAY MODES

I
Fraction (I';/T) Confidence level (MeV/c)

K ~ 100 % 291
KO ( 2.30+0.20) x 103 310
Kty ( 1.01+0.09) x 103 309
Krnm < 7 x 10—4 95% 224
Ky(1270) 1(4P) = j1t)

Mass m = 1273 + 7 MeV [/l

Full width T = 90 + 20 MeV [¥]
K;(1270) DECAY MODES Fraction (/) p (MeV/c)
Kp (42 6 )% 76
Kg(1430) 7 (28 +4 )% -
K*(892)w (16 +5 )% 301
Kw (11.0+2.0) % -
K f5(1300) (3.042.0) % -

K1 (1400) 1(4P) = 30%)

Mass m = 1402 + 7 MeV

Full width I = 174 + 13 MeV (S = 1.6)
K;(1400) DECAY MODES Fraction (I;/T) P (MeVfc)
K*(892)r (94 +6 )% 401
Kp (3.0+3.0)% 298
K £5(1300) (20+2.0)% -
Kw (1.0+1.0)% 285
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1Py = 307)

K*(1410)

Mass m = 1412 + 12 MeV (S = 1.1)
Full width T = 227 + 22 MeV (S = 1.1)

P

K*(1410) DECAY MODES Fraction ([;/T) Confidence level (MeV/c)

K*(892)w > 40 % 95% 408

Kn (66+1.3)% 611

Kp < 7 % 95% 309
K3(1430) 1F) = 3(0%)

Mass m = 1429 + 6 MeV
Full width I = 287 + 23 MeV

K,(1770) 171
was L(1770)

Mass m = 1773 + 8 MeV
Full width T = 186 + 14 MeV

1Py = 3(27)

K,(1770) DECAY MODES Fraction (I;/T) p (MeVjc)
Knm -
K5(1430) dominant 287
K*(892)m seen 653
K £,(1270) seen -
K¢ seen 441
Kw seen 608
3(1780) 1Py = 3(37)

Mass m = 1770 + 10 MeV (S = 1.7)

K{(1430) DECAY MODES Fraction (I;/T) p (MeV/c)
Kn (93+10) % 621
K3(1430) 1(4P) = 32%)
K3(1430) mass m = 1425.4 = 1.3 MeV (S = 1.1)
K3(1430)° mass m = 1432.4 + 1.3 MeV

Full width [ = 164 £+ 17 MeV (S = 1.1)

(
*
3(
K3(1430)% full width I = 98.4 + 2.3 MeV
K3%(1430)° full width I = 109 + 5 MeV (S = 1.9)

Kg(uao) DECAY MODES

Fraction ([;/T)

Scale factor/ p
Confidence level (MeV/c)

Kn (49.74£1.2) % 622
K*(892) (25.2+1.7) % 423
K*(892) 7w (13.0£2.3) % 375
Kp (88+0.8)% S=1.2 331
Kw (29+0.8) % 319
Kt~ ( 24405) x 1073 627
Kn (14128 %1073 s=1.1 492
Kwm < 72 x 1074 CL=95% 110
KOy <9 x 10~4 CL=90% 631
K*(1680) 1Py = 3017)

Mass m = 1714 + 20 MeV

(s = 1.1)

Full width T = 323 £ 110 MeV (S = 4.2)

K*(1680) DECAY MODES Fraction ([';/T) P (MeV/c)
K (38.7+2.5) % 779
Kp (314747 % 571
K*(892) 7 (29.9722) 9 615

Scale factor/ P
K;(lm) DECAY MODES Fraction (I;/T) Confidence level (MeV/c)
Kp (45 +4 )% S=1.4 612
K*(892)m (27.3£3.2) % S=1.5 651
Kn (19.3+1.0) % 810
Kn (80+15)% S=1.4 715
K3(1430) 7 <2 % CL=95% 284
K>(1820) 14P) = 3(27)

Mass m = 1816 + 13 MeV

Full width ' = 276 £+ 35 MeV
K3(1820) DECAY MODES Fraction (I;/T) p (MeVjc)
K¢ possibly seen 481
K§(1430)7r seen 325
K*(892)m seen 680
K £,(1270) seen 186
Kw seen 638

K3(2045) 1(4P) = 3(47)

Mass m = 2045 + 9 MeV (S = 1.1)

Full width I = 198 + 30 MeV
K7 (2045) DECAY MODES Fraction (T;/r) p (MeV/c)
K= (9.9+1.2) % 958
K*(892)mw (9 +5 )% 800
K*(892)mmm (7 £5 )% 764
pKm (5.7+£3.2) % 742
wKm (5.0+£3.0) % 736
KT (2.8+1.4) % 591
$K*(892) (1.4+0.7) % 363
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CHARMED MESONS K—_‘lf+7r+7r° "
(C==1) K*(892)° p* total Coa 211)% 016
D* = cd, D° = cu, D° _x B(K*? - K~x¥) 4 £09)% 423
' =cu, D’ =¢u, D~ = ¢4, L. K1(1409207r+
! =7cd, similarly for D*'s (22 £06 )%
K‘X E(ﬁl(lwo)o — K~ 7l'+1r°) : ° 390
P K* §927ro tita‘o (31 £1.1 )%
1(J7) = 3(07) (892)0m* n°total (75 tos )% 616
Mass m = 1869.4 £ 0.4 MeV x B(K*® - K=x%) 9)% 687
Mean life r = oo K*(892)°n+ x03-bod
7 = (1.057 + 0.015) x 10~12 5 x B(R* - K- Y (28 +£09)%
cr = 317 um K* A nt) 687
- (892)~ 7+ n+ 3-body C1e 0815
modes are charge conjugates of the modes below. K—X E(I{:—'O—v K~ 1,0) - -6 )% 688
" - rontx nonresonant  [kk] (1.2 £0.6 )%
DT DECAY MODES Fracti Scale factor/ P _7['0 atn— ul (7- .6 ) % 816
action (I';/T) Confidence level (MeVjc) K® 2, (1260)* ( 4'3 il'o )% 814
i i x B(ay(1260)* I 0 08 )%
e* anything Incluswe(ln;gds 71(1«20;5"{50) - ntataT) 328
EO 2nyihing (262 e - x B(K1(1400)° —» KOxtr~ (22 £06)%
KO anything + K° R 2 £28 )% S=1.4 _ * _ Krtn™) 390
Kt i anything (59 +7 )¢ K*(892)~ n+ 7+ 3-bod
anything )% _ Jromn 3-o0ay (1.4 £06 )%
i (58 +1.4 )% x B(K*~ — K°r~) 688
n anything 47 - KOOt
leg] < 13 % p m™ total
Leptoni ° CL=00% - Ko7+ 7+ r~ nonresonant (42 209)% 614
M+Vu ptonic and semileptonic modes K—W,,+,,+1Or+ a— E 22 i: . ; < 10—: o
KO uptn < 72 - *(892)0 rt 1t = 3 4 )x 10—
KT('OE++ Ve (] (67 00 );10 4 CL=90% 932 >£ ;()7:, 1 ;;_ " (68 1.8 )x 1073 Zz

e 7 £0. x N
%0 e (65 £09)% 868 K*(892)° 07+ ™)

S +3.0 868 x B(R® — K-+ (51 +22 )x10-3

Ko+ (70 Z250)% at) 242

v (67 3. 865 K= xtata0x0

K-ntetn 7 £35)% B N (22 439 )%
= ¢ (42 109 )9 KOt ot =10 75
K*(892)% et v, (32 ;0,7 o 863 ROttt (54 J_rfg )% 73
7% . o, T - = K
P E(ﬁto — K=x¥) 03 % 720 Kbt 0 (8 +7 )x10-4
o [T+ ¥ ve nonresonant <7 < 10-3 KOKOK+ (20 +1.8 )x10~3 ;:;
LANTARY CL=90% 86, (31 9
K " 32 + ? 3 1407 )%
K'(892E/£+ v E 30 ;HI)Z ;:f 851 Fractions of some of th 545
- X of
x E(K 05 K-t o 715 appeared above as su;mz::'s":“f"“ﬁ modes with resonances have already
_K atput v, nonresonant (27 + 3 KOpt particular charged-particle modes.
N . . Al
(L( (892)7{)0 et Ve o 1.1 )x 10 851 5031(1260)*’ (6.6 £25)% .
(erPetvonon K@) <5 xwd oo we KO 35(1320)* (81 417)%
Ko ataOputy, e X 10‘3 CL=90% 846 ﬁ'(892)° xt <3 x10~3  CL=90% 199
70¢ty, . - x10~3  CL=90% 825 K*(892)° p* total (22 £04)% o
li} (57 £22 )x1073 " K*(892)° p*+ S-wave (21 £14)% 129
Fractions of some of the foll . R*(892)° p* P-wave [kk] (17 £1.6 )%
_ appeared above as sumedzszv:Ing modes with resonances have already 7'(892)0 + D < 1 ©10-3  CL=909 423
K* 0 particular charged-parti = pt D-wave 90% 423
(892) netny, particle modes. K'(892 0 + X (10 +7 )x 10-3
K*(892)° e+ue [hh] (4.8 £0.4 )% d'nal) pt D-wave longitu- < 7 %103 CL 423
— 720 _ di —90%
K*(892)0 u+ "Z (48 £05)% 720 51(1270)°1r+ o 423
et (45 £06 )% s=1.1 715 K1(1400)0 7+ <7 «10-3  CL=90% .
Puty < 37 x10—3  CL=90% 6 5.*(1410)07"+ (50 £+13 )% 30
# (20 +18 )% 10-3 K3(1430)07+ <7 x10~3  CL=90% 182
‘358':—1/3 < -13 772 7‘(1680)°1r+ (34 £04 )% 266
B o < 3‘:: ” CL=s0% 657 K*(892)%n* x%total (10 £05)% o
7'(958)ut v, <3 % cL=90% 651 K*(892)0+ 193-bod (67 £14)% e
Had 1073 cL=so%  ese '('(892)_1l'+7r+3-bodyy (42 214)% 687
KO pt adronic modes with one or three K's K= ptnttotal (21 £09)% ol
K-mtrt (2.74+0.29) % 862 _0K0‘p+1r+3.b°dy E 3.1 +11)% o
K*(892)°n+ W (91 +06)% 845 K—po";mta' ( 4.: roe 616
X B(R*® — K—r+) (15 £03)% 712 “oK pPnt 3-body ( 5. ig,g )% , CLl=g0%" 614
K0(1439207r+ (23 £03) §*ggg§3)ﬁ+ + <5 " ig 3 614
_ X B(K*(1430)° —» K~ xt 3 £03)% 368 ul LA A x1073  cl=90% 461
K*(1680)°* ) ™) Ke(@92) 0 E ;':2:(;‘27)% 3 642
x B(K*(1680)° — K~ +) (26 £1.3)x1073 o 7 £33)x10 22
& 7+ 7+ nonresonant R Pionic modes
K_7r+7r0 + (7.3 14 )% rtata— (25 +0.7 )x10~3

0+ Wl (97 £3.0)9 845 L ) 925
.;*p o ( 6-6 iz.o )% S=1.1 845 p01r+ (32 +06 )x10~3 008

89 + ’ 5) % - < L -

( 2)—15 _ (07 +02 o 680 xtxtx~ nonresonant 4 x 1073 CL=90% 769
_0>< B(K*0 - KO070) 2)% 712 atata— a0 (25 +£07 )x10~3 It
K°n* 70 nonresonant LA (18 +15 )9 8

(13 £11)% 845 nrt x B(n — nta~x0) (18 ;1'2 ° 883
+ . X -3

wrt x Bw — atn— ,’r()) < 6 0.6 ) x 10_3 848

atrtata—r— x 10 CL=90% 764
(10 +08 )5 10-3

—07 845

atatataa=n0 +2.9
(29 ¥33)x 1073 799
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Fractions of some of the following modes with resonances have aiready

appeared above as submodes of particular charged-particle modes.

POt < 14 x 10~3
nat (75 +25)x 10”3
wnt <7 x 1073
net < 12 %
n’(958) <9 x 1073
n'(958) pt < 15 %
Hadronic modes with two K's
KOk+ (78 1.7 )x 1073
KtK—zt ( 1.13+0.13) %
¢t x B(p —» KTK™) (33 +04 )x 1073
K*(892)° K+ (34 £07 )x 1073
x B(K*® - K—x%)
K+ K~ =t nonresonant (46 +£0.9 )x 103
Kt K= gt x0
¢rtn0 x B(¢p - KtK™) (12 £05)%
¢pt x B(¢p - KTK™) < 7 x10~3
Kt K~ nt%non-¢ (15 ¥07 )%
K+ KOnt < 2 %
KOK—ntnot (1.0 £0.6 )%
K*(892)* K*(892)° (12 £05)%
x BY(K* » Krt)
KoK~ ntxtnon-K*+ K*0 < 79 x 10~3
KtK-ntnta—
ortatn~ <1 x 10~3
x B(¢ = KtK™)
K+ K~ n* 7+ 7~ nonresonant < 3 %

CL=90%
CL=90%
CL=90%

CL=90%
CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

CL=90%

Fractions of the following modes with resonances have already appeared

above as submodes of particular charged-particle modes.
ont (6.7 £0.8 ) x 10~3

K*(892)° K+ (51 +1.0 ) x 10”3
ot a0 (23 £1.0)%
épt < 15 %
K*(892)* K*(892)° (26 £1.1)%
pntata— < 2 x 10~3

Doubly Cabibbo suppressed (DC) modes,

CL=90%

CL=90%

AC = 1 weak neutral current (C1) modes, or

Lepton Family number (LF) or Lepton number (L) violating modes

Ktnta— DC < 5 x 10—3
KtKtK— DC (52 +£20 )x1073
oKt DC (39 ¥22 )x 1074
rtete C1 < 25 x10~3
atutu— C1 < 29 x 1073
Ktete < a8 x 10—3
Ktutp~ < 92 x 103
rtet ¥ LF [q) < 38 x 103

rtetu~ LF < 33 x 1073

nte put LF < 33 x 1073
Ktetu LF < 34 x 103
Kte ut LF < 34 x 103
retet L < 48 x 1073
" utpt L < 68 x 1073
et ut L < 37 x 1073
K~ etet L < 9.1 x 1073
K- ptpt L < 43 x 10~3
K- etput L < 40 x 10™3

CL=90%

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=9%0%
CL=90%
CL=90%
CL=90%

769

764
658
680
355

792
744
647
610

744
682
619
268

682

678
678
273

678
600
566

600

647
610
619
268
273
566

845
550

527

929
917
870
856
926
926
926
866
866
929
917
926
870
856
866

1(4P) = }(07)
Mass m = 1864.6 + 0.5 MeV

[mpo — Mpol < 20x 1010 R s~ 1, CL = 90% [mm]
1

Mps — Mpo = 4.78 + 0.10 MeV
Mean life 7 = (0.415 £ 0.004) x 10712 5
cr = 124.4 ym
' - < 0.17, CL = 90% [mm]
\Tog TogVTDU o

r(k+ta=(via D%)/r(K~x%) < 0.0037, CL = 90%

I(u~ X (via D°))/T(p*X) < 0.0056, CL = 90%

[M(D° - K+*K~)-r(D® —» K*K~)]/sum < 0.45, CL = 90%

DO modes are charge conjugates of the modes below.

Scale factor/ P
DO DECAY MODES Fraction ([;/T) Confidence level (MeV/c)
Inclusive modes
et anything (77 £12)% S=1.1 -
ut anything (100 + 26 )% -
K~ anything (53 +4 )% $=1.3 -
KPanything + K%anything (42 +5 )% -
K+ anything (34 F 38y -
7 anything (gg) < 13 % CL=90% -
Semileptonic modes
K= “et" v, [hh] ( 3.68% 0.21) % S=1.1 867
K- etve ( 3.80+ 0.22) % S=1.1 867
K~ uty, (32 4+ 04)% 864
K~ 70t v, ) (16 F 33y% 861
Kon~etue ] (28 % 31)% 860
K*(892)" et v, (13 +03)% 719
x B(K*~ = K°rt)
K*(892)°1~etu, foo] < 1.3 % CL=90% 709
K= xtrputy, < 12 x 1073 CL=90% 821
(K*(892)7)~ putu, < 14 x 1073 CL=90% 694
17 etve (39 F 23 )x103 927
A fraction of the following resonance mode has already appeared above as
a submode of a particular charged-particle mode.
K*(892)~ et v, (20 + 04)% 719
Hadronic modes with one or three K's
K-nt ( 401+ 0.18) % 861
KO0 ( 2.05+ 0.26) % S=1.1 860
Kontn— ] (53 +06)% s=1.2 842
KO p0 (1.10% 0.18) % 676
KO £,(980) (24 + 1.0)x1073 549
x B(fy —» ntn7)
KO £,(1270) (26 + 12 )x1073 263
x B(h — 7t77)
K° f5(1300) (43 + 17 )x1073 223
x B(fy —» nt77)
K*(892)~ n+ (33 +04)% 711
x B(K*™ - K%r~)
K5(1430)~ 7t (7 +£3 )x1073 364
x B(K§(1430)~ — K°z™)
KOzt 7~ nonresonant ( 1.43% 0.26) % 842
K- ntx0 W (138 + 1.0)% s=1.1 844
K= pt (104 £ 1.3)% 678
K*(892)~ n* (16 £02)% 711
x B(K*~ = K~ x0)
7‘(892)37#’ (20 +03)% 709
x B(K*® — K~ rt)
K~ 7t x9 nonresonant (60 + 27 )x1073 844
KO 7070 843
K*(892)°° (10 £02)% 709
x B(K*® — KO%x9)
K°7070 nonresonant (76 + 21 )x1073 843
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K-ntatna~
K~ =t pOtotal
K~ nt p03-body
7‘(8921‘1;}0
x B(K*® —» K~xt)
K~ a,(1260)*

1]

(81
(68
(51
(11

(39

x B(a1(1260)* — #wtxtn)

K*(892)% 7+ 7~ total
x B(K*® - K—r+)
K*(892)° 7+ 7~ 3-body
x B(K*® = K~ xt)
Ky (1270)~ 7+

x B(K1(1270)~ » K= ntn™)

K~ nt 7t 7~ nonresonant
Kortg—x0

K% x B(n = wtr—x0)
KO x B(w — ntx~x0)
K*(892)~ p*

x B(K*~ — KOr~)
K*(892)° p°

x B(K*0 — K%x0)
Ky(1270)~ =+

x B(Ky(1270)~ — K°x~

K*(892)° r+ 7~ 3-body
x B(K*® — KO0x0)
KOzt x~ 7% nonresonant
K- nta0x0
K- xtata— a0
K*(892)0nt 7= 0
x B(K*® - K—=xt)
K*(892)°n
x B(R*® - K—n+)
x B(n —» ntx—x0)

K ntw x Blw— ntnr~

K*(892)%w
x B(K*® — K~ )
_ x B(w — wmtn~x0)
Kortatr—m~
KOntn= 7070 (x0)
KOkt k-
K% x B(¢ = KtK™)
K° K+ K~ non-¢
KSKSKS
K+ K= Ko7

Fractions of many of the following modes with resonances have already
appeared above as submodes of particular charged-particle modes. (Modes
for which there are only upper limits and K*(892) p submodes only appear

below.)
Kon
KO 0
K~ pt
Kow
KO9'(958)
KO £,(980)
K%
K~ a;(1260)*
KO a;(1260)°
KO £(1270)
KO f(1300)
K~ 32(1320)+
K*(892)~ m+
K*(892)0 x0
K*(892)%x+ 1~ total
K*(892)°n+ n~ 3-body
K~ 7% ptotal
K~ % p03-body
K*(892)0 p°
K*(892)° p°transverse
K*(892)° p S-wave
K*(892)° p° S-wave long.
K*(892)° p° P-wave
K*(892)° p° D-wave
K*(892)~ p*
K*(892)~ p™ longitudinal
K*(892)~ p* transverse
K*(892)~ p* P-wave

n

[kk]
70)

70)

(16

+

(1.01+

(35

+

( 189+

(9.8

+

(L61%

(18
(39

(53

(50

(56
(106

(91
(42
(49
(86

(72

(6.8

+
+

+

+
+
+
+
+
+
+

+

( 110+

(104
(20

+
+

( 166+

(46
(83
(79
< 19
(46
(69
< 2
(49
(30
(24

+
+
+

+
+

+
+
+

(1.52+

(68
(51
(16
(16
(30
< 3
< 3
(21
(5.9
(28
(31
< 15

+

+
*
+
+

HH W W

05)%
05)%
23 )x 1073
03)%

06 )%
0.4 )%
0.22) %
11)x1073
0.28) %
14)%
0.26) x 10~3

0.4 )%
16 )%

S=1.1

14 )x 103
15 )x 1073
11 )x 1073

21)%
5 )%
04)%
06)%

0.8 )x10~3

05 )%
3 )x10-3

17 )x 1073
5%

12 )x 10”3
0.6 )x10~3
0.9 )x10-3
25 )x 1074

480

11 )x 1073
0.18) %
1.3)%
0.4 )%
0.29) %
20 )x 1073
12 )x1073
12)%
% CL=90%
21 )x 103
2.7 yx10~3
x 103
06)%
04)%
06 )%
0.33) %
05)%
2.3 )x 1073
0.4 )%
0.5 )%
06 )%
x 1073 CL=90%
x 1073 CL=90%
06 )%
24)%
12 )%
18)%
% CL=90%

S=1.2

S=1.1

CL=90%
S=1.3

812
612
612
418

327

683

683

483

812
812
772
670
422

418

483

683

812
815
771

580

772
676
679
670
565
549
520
327
322
263
223
197
711
709
683
683
612
612
418
418
418
418
418
418
422
422
422
422

K~ =t £,(980) < 11 % CL=90% 459
K*(892)° £5(980) < 7 x 1073 CL=90% -
Ky(1270)" =t [kk] ( 1.04+ 0.31) % 483
K1(1400)~ 7+ < 12 % CL=90% 386
K1(1400)° x° < 37 % CL=90% 387
K*(1410)~ 7+ < 12 % CL=90% 378
K§(1430)~ 7t (11 +04)% 364
K5(1430)~ n+ < 8 x 1073 CL=90% 367
K3(1430)° 70 < 4 x10™3 CL=90% 363
K*(892)0 7t 7= n0 (19 £09)% 641
K*(892)%n (19 £05)% 580
K ntw (31 +06)% 605
K*(892)°w (11 +05)% 406
K~ mt7'(958) (75 + 20 )x1073 479
K*(892)°7/(958) < 11 x 1073 CL=90% 100
Plonic modes
nta~ ( 1.59+ 0.12) x 10~3 922
070 (88 + 23 )x1074 922
ata=x0 (16 +11)% $=27 907
atrta— o~ (83 + 09 )x1073 880
atatr— a2 (19 + 04)% 844
atrtate—a- o~ (40 + 30 )x1074 795
Hadronic modes with two K’s

KtK~ ( 454+ 0.29) x 10~3 791
KOKO (11 %+ 04 )x10-3 788
KoK~ 7t (63 + 11)x1073  s=12 739
K*(892)° K° < 10 x10-3 CL=90% 605

x B(R*0 = K—x+)
K*(892)* K~ (23 + 05 )x103 610

x B(K*t — KOrt)
KO K~ z* nonresonant (24 + 24 )x1073 739
KoK+ n~ (49 + 1.0 )x 1073 739
K*(892)°K° <5 x10~4 CL=90% 605

x B(K*® - K+7~)
K*(892)~ K+ (12 + 07 )x1073 610

x B(K*~ — K°r)
K K+~ nonresonant (40 F 28 )x1073 739
KtK-ntn~ (24 + 05 )x103 677
¢t x B¢ —» KYK™) (13 + 04 )x1073 614
0% x B(p —» KtK™) (1.0 + 0.25)x 1073 260
K*(892)° K~ 7t + c.c. x (5 *2 )xw0* 528

B(K*® —» Ktzx™)

K*(892)°K*(892)° (13 %37 )x103 257

x BY(K*® — Ktgx™)
Kt K~ nt 7~ non-¢ (1.7 + 05 )x10~3 677
K* K=t 7~ nonresonant (8 1% )x10-8 677
KtK-ntn—n® (31 + 20)x1073 600

Fractions of the following modes with resonances have already appeared
above as submodes of particular charged-particle modes.

K*(892)°K® < 15 x1073 CL=90% 605
K*(892)t K~ (34 +08)x103 610
K*(892)°K° < 8 x 1074 CL=90% 605
K*(892)~ K+t (18 + 1.0 )x1073 610
onta~ (26 + 07 )x1073 614
ép° (19 + 05)x10”3 260
K*(892)°K~ 7t + c.c. (8 *13 )x10-4 528
K*(892)°K*(892)° (29 F 18 )x1073 257
Doubly Cabibbo suppressed (DC) modes,

AC = 2 forbidden via mixing (C2M) modes,

AC = 1 weak neutral current (C1) modes, or

Lepton Famlly number (LF) violating modes
Ktnx— DC (31 + 1.4 )x 104 861
K+ 7~ (via D°) c2m < 18 x 1074 CL=90% 861
Ktrtn=n~ DC < 15 x 103 CL=90% 812
u~ anything (via D%) c2m <6 x10~4 CL=90% -
ete~ c1 < 13 x 1074 CL=90% 932
wtp~ c1 < 11 x10~5 CL=90% 926
Kete~ < 17 x10~3 CL=90% 866
Pete c1 < 45 x 104 CL=90% 773
Putu~ c1 < 81 x 1074 CL=90% 756
ute¥ LF [q]< 10 x 10~4  CL=90% 929
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D*(2007)° 1(4P) = 317)

Mass m = 2006.7 &+ 0.5 MeV
Mpewo — Mpo = 142.12 £ 0.07 MeV
Full width ' < 2.1 MeV, CL = 90%

5‘(2007)0 modes are charge conjugates of modes below.

I, J, P need confirmation.

D*(2007)° DECAY MODES Fraction (T;/T) p (MeVjc)
DO 7x® (63.6+2.8) % 43
D% (36.4+2.8) % 137
D*(2010)* 0Py =3(17)
I, J, P need confirmation.
Mass m = 2010.0 &+ 0.5 MeV
Mpe2010)+ ~ Mp+ = 140.64 + 0.09 MeV
M pe2010)+ — Mpo = 145.42 & 0.05 MeV
Full width ' < 0.131 MeV, CL = 90%
D*(2010)~ modes are charge conjugates of the modes below.
D*(2010)* DECAY MODES Fraction (I;/T) p (MeVjc)
DOrt (68.1+1.3) % 39
Dt x0 (30.840.8) % 38
Dt~ (11t % 136
Dy(2420)° 14P) = 3(1%)
I, J, P need confirmation.
Mass m = 2422.8 + 3.2 MeV (S = 1.6)
Full width I = 18+ MeV
51(2420)0 modes are charge conjugates of modes below.
Dy (2420)° DECAY MODES Fraction (T;/T) p (MeV/c)
D*(2010)* 7~ seen 355
Dtn— not seen 474
3(2460) 1Py = 32%)
JP =2t assignment strongly favored (ALBRECHT 89B).
Mass mD;(2460)° = 2457.7 + 1.9 MeV
Mass M ps(2460)t = 2456 + 6 MeV (S = 2.0)
mD;(zceo)i - mD;(2460)0 =2+5MeV (S=14)
Full width rD;(24eo)° =21 + 5 MeV
Full width rD;(zaeo)i = 23 + 10 MeV
5;(2460) modes are charge conjugates of modes below.
D;(W) DECAY MODES Fraction (I';/T) p (MeV/c)
D3(2460)° — D*x~ seen 503
$(2460)° — D*(2010)* 7~ seen 387
D3(2460)t — DOn+ seen 505

CHARMED, STRANGE MESONS
(C=S§==+1)

D} =c5, D, =¢Ts, similarly for D}'s

D:l:

was FE

1(JPy = o(0™)

Mass m = 1968.5 + 0.7 MeV (S = 1.2)
Mpe = Mpy = 99.1 £ 0.6 MeV (S =1.1)
s
Mean life r = (0.467 + 0.017) x 10712 s
cr = 140 um
Branching fractions for modes below with a resonance in the final state

include all the decay modes of the resonance. D; modes are charge
conjugates of the modes below.

Nearly all other modes are measured relative to the ¢+ mode. However,
none of the determinations of the ¢+ branching fraction are direct mea-
surements: all rely on calculated relations between Dt and D;’ decay
widths, on estimates of Dj cross sections, or on other model-dependent

assumptions. Thus a better determination of the ¢nt branching fraction
could cause the other branching fractions to slide up or down, all together.

Scale factor/ P
D} DECAY MODES Fraction (I';/T) Confidence level (MeV/c)
Inclusive modes
K~ anything a3t % -
KCanything + KO%anything (30 28 )% -
K+ anything (20 *1&8 o -
non- K Kanything (64 +17 )% -
et anything <20 % CL=90% -
Leptonic and semileptonic modes
uwtu, (59 + 22 )x1073  s=11 981
oty [pp] ( 1.884 0.29) % -
nutv, + 1'(958)ut v, (74 + 32)% -
nuty, 905
n'(958) ut v, < 30 % CL=90% 747
Hadronic modes with two K's (including from ¢'s)

K+ KO (35 +07)% 850
KtK- =t [qq] (48 +07)% 805
ot (35 + 04)% 712
K+ K*(892)° (33 +£05)% 682
K* K~ n* nonresonant (87 + 32)x1073 805
KOKOr+ 802
K*(892)t K® (842 £10)% 683
K+ K= n+n® 748
ot a0 (8 +4 )% 687
pp* (65 * 18)% 407
¢+ n03-body < 25 % CL=90% 687

K+ K= n*tn%non-¢ <8 % CL=90% 748
K+*KOrxtn— < 27 % CL=90% 744
KOK=gtnt (42 £ 11)% 744
K*(892)* K*(892)° (56 +21)% 412
KOK~ nt ntnon-K*+K*0 < 28 % CL=90% 744
KtK-ntatn- 673
ontata- (1.8 + 05)% 640
K* K~ 2t ntr non-¢ (30 7% 39 )x103 673
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Other hadronic modes
e ( 135+ 0.31) % 959 BOTTOM MESONS
+ -3 —909
P < 28 x 10 CL=90% 827 _
fo(980) 7+ (10 +4 )x1073 732 (B - -'-hl)
+7r++1r+ ﬂ‘ononresonant (1.01% 0.35) % 959 B+ = ub, BY = db, B® = db, B~ = Tb, similarly for B*'s
Tt T <12 % CL=90% 935 s—
nrt (19 + 04)% 902
+ —
wm < 17 % CL=90% 822 1Py = §(07)
atatrte o~ (30 t ;g yx10=3 899
atata= a0x0 902 1, J, P need confirmation. Quantum numbers shown are quark-model
npt (10.0 £ 2.2 )% 27 predictions. Measurements which do not identify the charge state of
nwt 793-body < 29 % CL=90% 787 B also appear here.
+ ot gt o= a0
n 79;3 T ( 4-3 £ 32 ):A' ‘7’5: Mass mg, = 5278.7 % 2.0 MeV
ﬂf’ﬂ& ﬂl’;_n_ 040 (47 +14)% s Mean life 7 = (1.54 % 0.11) x 10712 s
. _ -12 ¢ [3]
/(958) p* (120 + 30 )% a0 Mean Ilf_e 7 (avg over B hadrons) = (1.537 £0.021) x10~** s
7(958) m+ 70 3-body < 30 % cL=90% 720 cr = 388 pm
KO+ < 7 x 1073 CL=90% 916 B~ modes are charge conjugates of the modes below.
Ktata (30t 5‘;8 )x 1073 900 Only data from T(4S) decays are used for branching fractions, with
K+ K- K+ 628 raae_gsxceiﬂons. The branching fractions listed below assume a 50:50
oK+ < 25 % 10-3  CL=90% 607 B :BT B~ production ratio at the 77(4S). We have attempted to

bring older measurements up to date by rescaling their assumed T°(4S)
production ratio to 50:50 and their assumed D, D, D*, and v branching
+ P 2 ratios to current values whenever this would effect our averages and best
D; 1(J7)y=12(?") limits significantly.

_ _ Indentation Is used to indicate a subchannel of a previous reaction. All
Mass m = 2110.0 + 1.9 MeV (S - 1'2) resonant subchannels have been corrected for resonance branching frac-
mD‘* - th = 141.6 + 1.8 MeV (S = 1-2) tions to the final state so the sum of the subchannel branching fractions

Fullswidth r ’< 45 MeV, CL = 90% can exceed that of the final state.

Scale factor/ P
D;_ modes are charge conjugates of the modes below. B+ DECAY MODES Fraction (l',/l') Confidence level (MeV/c)
D}+ DECAY MODES Fraction (T;/T) p (MeVic) B+ DOrty S"““?;m':":l':ﬁ7 )% _
D;L'Y dominant 137 Bt — D*(2007)%¢+v bl (66 +22)% -
Bt - rlety, < 22 x10~3 CL=9%% 2638
Bt - witty, [b] < 21 x 104 CL=90% -
D'1(2536)* I(JP) = 0(1+) Bt — wu'*’l/# seen 2580
I, J, P need confirmation. Bt — pOtty, bl < 21 x 1074 CL=90% -
Mass m = 2535.35 £ 0.34 MeV D, D*, or Dy modes
Full width I < 2.3 MeV, CL = 90% B+ - DOxt (53 + 05 )x10-3 2308
Dg1(2536)~ modes are charge conjugates of the modes below. Bt — 5°p+ (1.34%+ 0.18) % 2237
Bt - Dortratsa— (11 +04)% 2289
D;;(2536)+ DECAY MODES Fraction (I;/T) p (Mevio) B+n;‘ t5°”+ m*x~ nonreso- (5 £4 )x1073 2289
D*(2010)*+ KO seen 150 Bt — DOxtp0 (42 + 30)x1073 2208
D*(2007)° K+ seen 169 B+ — DPa;(1260)* (5 +4 )x1073 2123
Dt KO not seen 382 Bt — D*(2010)~ ntnxt (21 + 06 )x1073 2247
Dokt not seen 392 Bt - D~ xtnt < 14 x10~3 CL=90% 2299
Dty possibly seen 389 Bt — D*(2007)°xt (52 + 08 )x1073 2255
B+ — D*(2007)%p* ( 155+ 0.31) % 2182
Bt - D*(2007)°7xtxtx~ (94 + 26 )x1073 2236
B+ — D*(2010)~ 7t 7+ x0 (15 +07)% 2235
Bt - <1 % CL=90% 2217
D*(2010)~ 7wt xtata—
B+ — Dj(2420)°7* (11 + 05)x10"3 2081
Bt — Dj(2420)°p* < 14 x 1073 CL=90% 1996
Bt — D3(2460)°7+ < 13 x1073 CL=90% 2064
B+ — D3(2460)°p* < a7 x10-3 CL=90% 1979
B* —» DD} (1.7 + 06 )% 1814
B+ - DDt (12 +£10)% 1735
B* — D*(2007)°D} (10 £07)% 1737
B* — D*(2007)°D%* (24 +13)% 1652
B* — D}l < 21 x 1074 CL=9%0% 2270
B* - DIt < 34 x10~% CL=90% 2215
B* - DIp <s x10~4 CL=90% 2235
Bt - Dty < 8 x10~4 CL=90% 2178
Bt - Dfp° < 4 x104 CL=90% 2197
Bt — DIt p° <5 x 1074 CL=90% 2139
B* —» D}w <5 x 1074 CL=90% 2195
B* - Ditw <7 x10~4 CL=90% 2137
B* — D} a;(1260)° < 23 x10-3 CL=90% 2079
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B* — D;ta(1260)° < 17 x
B* — D¢ < 33 x
Bt — D;+¢ < 4 X
Bt - DJK® < 11 x
B+ — DI*KO < 12 x
B* — DIK*(892)° <5 x
B* — DItK*(892)° <5 x
Bt — D xtK* <9 x
Bt — Dy ntK* < 12 x
Bt — D wt K*(892)* <7 x
Bt — D;‘W+K*(892)+ < 9 x
Charmonium modes
BY — J/y(1S)K* ( 1.02+ 0.14) x
Bt — J/p(1S)K*tntn— (14 + 06 )x
Bt — J/p(1S)K*(892)* (1.7 + 05)x
Bt — $(2S)K* (6.9 + 3.1)x
Bt — y(25)K*(892)* < 30 x
Bt — ¢(2S)K*(892)tnt x (19 + 1.2 )x
Bt — X (1P)K™* (1.0 + 0.4 )x
Bt — X (1P)K*(892)*F < 21 x
K or K* modes

Bt — KOzt < 10 x
Bt — K*(892)°#* < 15 x
Bt — K*ta~at(no charm) < 19 X
Bt — K;(1400)%x+ < 26 x
B* — K3(1430)°n* < 68 x
Bt — K+p0 < 8 x
Bt — K*(892)tnt - < 11 x

Bt — K*(892)*p° < 90 x
B+ — Ky(1400)* p0 < 78 x
B* — K3(1430)* p° < 15 x
Bt - KTK-K* < 35 x

Bt — K+¢ < 9 X
B*Y — K*(892)t KtK~ < 16 x

Bt — K*(892)*¢ < 13 x
Bt — K;(1400)* ¢ < 11 x
Bt — K3(1430)* ¢ < 34 x
Bt — K7 £,(980) < 8 x
Bt — K*(892)%+ (57 + 33)x
Bt — Ki(1270)t~y < 73 x
BY — K;(1400)*~y < 22 x
Bt — K3(1430)*y < 14 x
Bt — K*(1680)*" v < 19 x
Bt — K3(1780)* v < 55 x
Bt — Kj;(2045)*y < 99 x

Light unfiavored meson modes

Bt — xtgd
Bt - xtatg~
Bt — p°7r+
Bt -t £,(980)
Bt — nt£(1270)
Bt — ntalx
Bt — p+ 0
Bt - gtr gxtx®
pp°
a1(1260)t
a1(1260)0 7+
wrt
nnt
Bt - rtatptaa~
Bt — p%a;(1260)*
Bt — p0ay(1320)*

w
1
Ll

AANAANAAANAANT AANAANAANAANANNANNNANNANNANNNARA

Bt = atatrta x— a0
Bt — 2,(1260)* a,(1260)°
Baryo
B+ — pprt
Bt — pprntnrta~
Bt — pA
Bt — pAntax—
Bt — an
Bt — Attp

2.4
1.9
1.5
1.4
2.4
8.9
5.5
4.0
1.0
1.7
9.0
4.0
7.0
8.6
6.2
7.2
6.3
1.3

modes
16
5.2
6
2.0
3.8
1.5

X X X X X X X X X X X X X X X X X

B

X X X X X X

104

10-3

10-3

104

10—4

104

10—4

104
10—4
10-5
10—4
10—4
10—4

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

S=1.3
CL=90%

CL=90%

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

CL=90%
CL=90%
CL=90%
CL=90%
CL=90%
CL=90%

2015
2140
2080
2241
2185
2171
2111
2222
2165
2137
2076

1683
1612
1571
1284
1115

909
1411
1265

2614
2561
2609
2451
2443
2559
2556
2505
2388
2382
2522
2516
2466
2460
2339
2332
2524
2564
2486
2453
2447
2361
2343
2243

2636
2630
2581
2546
2483
2631
2581
2621
2525
2494
2494
2580
2609
2608
2433
2411
2592
2335

2438
2369
2430
2367
2402
2402

Lepton Family number (LF) or Lepton number (L) violating modes, or
AB = 1 weak neutral current (B1) modes

Bt — ntete B1
Bt atutu~ B1
Bt — Ktete~ B1
Bt — Ktutpu~ B1
Bt — K*(892)tete~ BI
Bt — K*(892)*putu~ 81
Bt — ntetpy~ LF
Bt — nte ut LF
Bt - Ktetu~ LF
Bt —» Kte pt LF
Bt — n-etet L
Bt — autput L
Bt - x-etyut L
Bt —» K etet L
Bt - K—utput L
B* K-etut L

AN AN AN AN

AN

AN NANNANANANA

A

3.9 x 1073 CL=90%
9.1 x 1073 CL=90%
6 x 1075 CL=90%
1.7 x 1074 CL:=90%
6.9 <1074 CL=90%
1.2 x 1073 CL=90%
6.4 x 1073 CL=90%
6.4 x 1073 CL=90%
6.4 x 1073 CL=90%
6.4 x 1073 CL=90%
3.9 %1073 CL=90%
9.1 x10™3  CL=90%
6.4 x 1073 CL=90%
39 %1073 CL=90%
9.1 x 1073 CL=90%
6.4 %1073 CL=90%

B DECAY MODES

‘B modes are charge conjugates of the modes below.

For the following modes, the charge of B was not determined. The mea-
surements are for an admixture of B mesons at the 7(45) unless otherwise
indicated by a footnote and a “b" instead of “B" in the initial state.

Semileptonic and leptonic modes

B — et veanything c] (104 + 04 )% S=1.3
B — D*(2010)e™ v, (70 + 23)%
B — pet veanything < 16 x 1073 CL=90%
B — ptuy,anything c] (103 +05)%
B — ¢*yanything [b.c] (10.43% 0.24) %
B — D~ ¢t ypanything [b] (27 +08)%
B — D°¢* yyanything (Bl (70 + 1.4)%
B — D**(ty, [bd] (27 + 07)%
B — D £* ypanything b < 9 x10~3  CL=90%
B — D ¢ty KT any- b < 6 x 1073 CL=90%
thing
B — D €t vy K%anything (o] < 9 x 1073 CL=90%
B — K% ¢t y,anything [b] (56 + 1.0)%
B — K~ {*ypanything [b] (1.0 + 06 )%
B — KO9/K°¢* ypany- [B] (41 + 08)%
thing
b — 7tuv,anything le] (41 + 1.0)%
D, D*, or Ds modes
B — D7 anything (26 +4 )%
B — DPanything (54 +6 )%
B — D*(2010)~ anything 23 +4 )% S=1.4
B — Dfanything [f] (89 +11)%
B — DD, DiD, DsD*,or  [f] (50 % 0.9)%
D:D*
B — D*(2010)~y <1l %1073 CL=90%
B- DYr=, Dt rm, < s x 1074 CL=90%
DYp=, Ditp=, DFal,
D;+7r0, D;Ln, D;*r;,
D} p®, Dt o0, Dtw,
D;+w
Charmonium modes
B — J/4(1S)anything ( 130+ 0.17) %
B — (2S)anything (46 £ 20 )x1073
B — X, 1(1P)anything (11 +£04)%
K or K* modes
B — K*anything [f] (85 +11 )%
B — KO°/KPanything 63 +8 )%
b— sy g] < 12 x 1073 CL=90%
B — K*(892)y < 24 x 1074 CL=90%
B — K;(1400)vy < 41 x 104 CL=90%
B — K3(1430)~ < 83 x10~% CL=90%
B — Ky(1770)~ < 12 x 1073 CL=90%
B — K3(1780)v < 30 x 1073  CL=90%
B — K3(2045)y < 10 x 1073 CL=90%
Light unflavored meson modes
B — ¢anything (23 +£08)%

2638
2633
2616
2612
2564
2560
2636
2636
2615
2615
2638
2633
2636
2616
2612
2615
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Baryon modes D*(2010)~ r+ at 7~ x0 (34 £1.8 )% 2218
B — charmed-baryon anything (64 + 11)% - D3(2460)~ r+ <22 x10~3 90% 2065
B — X[~ anything (48 + 25 )x1073 - D3(2460)~ p* <49 x10~3 90% 1980
B— fé‘ anything < 11 % CL=90% - D~ D} (8 +4 )x1073 1812
B — Tlanything (53 + 25)x103 - D*(2010)~ D} (1.2 +£0.6 )% 1735
B— TIN(N=porn) < 17 x10~3 CL=90% - D-D;* (21 £1.5 )% 1733
B — panything + panything (80 +05)% - D*(2010)~ D}t (20 +1.2 )% 1650
B — p(direct) anything + (56 £07)% - Ds+,,~ <29 % 10—4 0% 2270
B(direct) anything . Ditn- <s x 1074 %% 2215
B — Aanything + Aanything (40 £05)% - D¥p- <7 104 00% 2198
B — Z=—anything + =tany- (27 + 06 )x103 - e —a 5
thing Di"p <8 x 10 90% 2140
B — baryons anything (68 + 0.6)% - Ds+ a1(1260)~ <27 x10~3 90% 2079
B — ppanything ( 247+ 0.23)% - D;+ a;(1260)~ <22 x 10~3 90% 2015
B — Apanything + Apany- (25 + 04)% - DS K* <24 x 1074 90% 2242
thing s DK+ <18 x 1074 90% 2186
B — AAanything <5 x 1073 CL=90% - D; K*(892)* <10 x 10-3 90% 2172
AB = 1 weak neutral current (B1) modes Dy~ K*(892)* <12 x10~3 90% 2113
b — et e anything B1 [g] < 24 x 103 - D7 ntKO® <6 x 10~3 9% 2221
b — uptp~anything Bl [gl< 50 x10~5 CcL=90% - DI~ mt KO <32 x 10~3 0% 2164
D] =t K*(892)° <4 x 10~3 %% 2136
~rtk* 0 . 10-3 9 2075
m I(JP) — %(0_) 25 (1)r K*(892) <21 x 10 . 90%
D" <48 x 10~ 90% 2308
DOp° <55 x 10~4 9%0% 2238
1, J, P need confirmation. Quantum numbers shown are quark-model D <68 x 104 90% 2274
predictions. D < 86 x 1074 0% 2197
Mass mgo = 5279.0 + 2.0 MeV Dw <63 x 10—4 90% 2235
Mgo — Mgs = 0.34 £0.29 MeV (S = 1.1) D*(2007)%7° <97 x 10~4 %% 2256
Mean life 7 = (1.50 + 0.11) x 10~12 5 D*(2007)° p° <117 x 1073 %% 2182
or = 449 um D*(2007)%n <69 x10~4 90% 2220
Tge/Tgo = 0.98 % 0.09 D*(2007)%y/ <271 x 103 90% 2140
D*(2007)°w <21 x 1073 90% 2180
BO-B mixing parameters ch ;
armonium modes
Xg = 0.156 + 0.024 125 -1 J/$(1S)K® (7.5 +2.1 )x 1074 1682
Amgy = Mgy — Mgy = (0.51 +0.06) x 10'* A s J/p(1S)K+ 7~ (12 +0.6 ) x 10~3 1652
Xg = Amgo/Tgo = 0.71 £ 0.06 [a) J/9(15) K*(892)° (1.58+0.28) x 10~3 1569
P(2S) KO <8 x 1074 90% 1283
BO modes are charge conjugates of the modes below. Reactions indicate ,/,(25) Ktn— <1 x 10—3 90% 1238
the weak decay vertex and do not include mixing. Decays in which the * 0 -3
charge of the B is not determined are in the 8% section. 1[)(25)K° (892) (1.4 £09)x 10 3 1113
X (1P)K <27 x 10~ 90% 1410
Only data from T(45) decays are used for branching fractions, with Xcl(IP)K‘(892)0 <21 x 10—3 90% 1263
rare exceptions. The branching fractions listed below assume a 50:50
BOBO:8+ B~ production ratio at the T(45). We have attempted to K or K* modes
bring older measurements up to date by rescaling their assumed 7°(4S) Ktn— <26 % 10—5 90% 2615
production ratio to 50:50 and their assumed D, Dg, D*, and 9 branching K+ K- <7 % 10-6 90% 2503
ratios to current values whenever this would effect our averages and best KO+ o= _a :
limits significantly. T < 44 x 10 90% 2609
KO p0 <32 x 104 90% 2559
Indentation Is used to indicate a subchannel of a previous reaction. Al Ko f (980) <36 x 10—4 90% 2523
resonant subchannels have been corrected for resonance branching frac- K* gg ¥o— . _s o
tions to the final state so the sum of the subchannel branching fractions ‘( 2) I _ <38 x 10 3 90% 2562
can exceed that of the final state. K3(1430)* « <26 x 10~ 90% 2445
o KoK+t K- <13 x 1073 90% 2522
B89 DECAY MODES Fraction (F;/T) Confidence level (MeV/c) K%¢ <42 x 1074 90% 2516
K*(892)°xt 7~ <14 x 10~3 90% 2556
Semileptonic and leptonic modes K*(892)° p° <46 x 10~4 90% 2504
2% yyanythin b] (9.5 £1.6 )% - K*(892)° (980 <17 x 10—4 90% 2467
{ g [ ) (]
D= tty, 6] (1.9 £0.5)% - K;(1400)* 7~ <11 x10-3 90% 2451
D*(2010)~ ¢* v, [b] (4.4 £0.4 )% - K*(892)° K+ K~ <61 x10~4 0% 2465
ptty, (6] < 41 x 10~4 90% - K*(892)°¢ <32 x 104 90% 2459
=~ puty, seen 2636 K1(1400)° p° <30 x 10—3 90% 2388
. K1(1400)0¢ <50 x 103 %% 2339
. D, D*, or Ds modes , K3(1430)° 0° <11 x 103 90% 2380
g_ . (30 £0.4 ) x 1077 2306 K3(1430)°¢ <14 x 103 %% 2330
= (78 £14 ) x 10_3 2236 K*(892)%y (4.0 £1.9 ) x 105 2563
Dntm <16 x 10 9% 2301 K:(1270)° -3 "
D*(2010)~ n+ (2.6 £0.4 ) x 10~3 2254 1(1270) 'y <70 x 10 %0% 2486
g et CT 3 K1 (1400)0 <43 x 103 90% 2453
D ntntn (8.0 £2.5 ) x 10 2287 K* 0 _a o
4o _3 5(1430)°y <40 x 10 90% 2445
(D~ #*txt 7)) nonresonant (39 £1.9 ) x 10 2287 2 0 _3
D=t o (L1 £10 ) x 10-3 2207 K*(1680)%y <20 x 10 90% 2361
. . . o
D~ ay(1260)* (6.0 £3.3 )x10~3 2121 K§(1780)07 <10 % 3 90% 2343
D*(2010)~ 7+ (1.5 £05 )% 2247 K3(2045)y <43 x 107 90% 2243
D*(2010)~ p+ (7.3 £15 ) x 1073 2181
D*(2010)~ 7wt xtn— (1.19£0.27) % 2235
(D*(2010)~ 7+ 7+ 7~) non- (0.0 +£25 ) x 1073 2235
resonant
D*(2010)~ 7w+ p° (5.7 £3.1 ) x 1073 2151

D*(2010)~ a, (1260)* (15 £0.7 )% 2061
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Light unflavored meson modes

ata~ <29 x 1075
atr— a0 <72 x 1074
070 <40 x 1074
pFrt lc] < 5.2 x 10~4
ntn - wtw~ <67 x 10~4
0 p° <28 x 1074
a;(1260)F r* le] < 4.9 x 1074
a,(1320)F 7 * ld < 30 x 10=4
atnn0x <31 x 103
ptp~ <22 x 1073
a ( 126())0 0 <11 x 103
wn? < 46 x 1074
nn0 <18 x10~3
rtata n a0 < 9.0 x 1073
a;(1260)* p~ <34 x 1073
a;(1260)0 p° <24 x 103
atateta—n - < 3.0 x 10~3
a1(1260)* a,(1260)~ <28 x 1073
atatrta—n=n— 20 <11 %
Baryon modes
PP < 3.4 x 1075
pprt <25 x10~4
pAn~ <18 x 1074
AYA° <15 x 103
Attt A <11 x 10—4
To At <12 x 1073

Lepton Family number (LF) violating modes,

90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%

90%
90%
90%
90%
90%
90%

AB = 2 forbidden decay via mixing (B2M) modes, or

AB = 1 weak neutral current (B1) modes

ete~ B1 <59 x10~6
utp~ B1 <59 x 10~6
KOet e~ B1 < 3.0 x 1074
KOput B1 <36 x 1074
K*(892)0et e 81 <29 x 104
K'(892)0u+u‘ 81 <23 x 1075

T LF [ <59 x 1076
etr¥ LF  [c] <53 x 104
prr¥ LF [c]<83 x 1074

90%
90%
90%
90%
90%
90%
90%
90%
90%

2636
2631
2582
2581
2621
2525
2494
2473
2622
2525
2494
2580
2609
2609
2433
2433
2591
2335
2572

2467
2406
2401
2334
2334
1839

2639
2637
2616
2612
2563
2559
2638
2340
2339

1P = 3017)

1, J, P need confirmation. Quantum numbers shown are quark-model

predictions.
Mass mg. = 5324.8 + 2.1 MeV
mg., — mg = 46.0 £ 0.6 MeV

BOTTOM, STRANGE MESONS
(B=+1,S5=7F1)

=sb, BY =5b, similarly for BY's

B

s

B} 1(JP) = §(07)

1, J, P need confirmation. Quantum numbers shown are quark-model
predictions.
Mass mB° = 5375+ 6 MeV (S = 1.3)

Mean life 7 = (1.34+332) x 107125 (S = 1.4)
B9-BY mixing parameters

Xs = 0.62 + 0.13
Amgo=mg ~mg > 1.8x 102 hs™!, CL = 95%

Xs ~Am80/|‘80 > 3.0, CL = 95%

B9 DECAY MODES Fraction (F;/T) p (MeVjc)

D anything seen -

Dy €% vpanything seen -
(¢ means sum of e and p)

Dy at seen 2325

J/y(1S)¢ seen 1594

¥(25)é seen 1128

HEAVY QUARK SEARCHES

Searches for Top and
Fourth Generation Hadrons

See the sections “Searches for t Quark” and “Searches for b’ (4"
Generation) Quark” at the end of the QUARKS section.

| cc MESONS
'76(15) ,G(JPC) :0+(0*+)
or n(2980)
Mass m = 2978.8 + 1.9 MeV (S = 1.8)
Full width I = 10.3* 3% Mev
P
nc(1S) DECAY MODES Fraction (F;/T) Confidence level (MeV/c)
Decays involving hadronic resonances
n'(958) (41 £1.7)% 1319
Pp (2.6 £0.9) % 1275
K*(892)° K~ nt + c.c. (20 £0.7) % 1273
K*(892) K*(892) (8.5 +3.1) x 1073 1193
[535) (7.1 +28)x 1073 1086
3p(980) <2 % 90% 1323
3,(1320) 7 <2 % 90% 1193
K*(892)K + c.c. < 1.28 % 90% 1307
£(1270)n <11 % 90% 1142
ww < 3.1 x 1073 90% 1268
Decays into stable hadrons
KK= (6.6 +1.8) % 1378
nrw (49 +1.8)% 1425
rtr KYK™ 20 X371y % 1342
2(rtrT) (1.2 +0.4) % 1457
pp (1.2 +0.4) x 1073 1157
KKn <31 % 90% 1262
atn" pp <12 % 90% 1023
AA <2 x10~3 90% 987
Radiative decays

Ty (6 *& )x107¢ 1489
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4/4(15)
or J/¥$(3097)

1I6UPCy=0—(1— )

Mass m = 3096.88 = 0.04 MeV
Full width T = 88 % 5 keV
lee = 5.26 + 0.37 keV  (

J/¥(15) DECAY MODES

Fraction (I';/T)

Assuming Fee = T,,,)

Scale factor/

p

Confidence level (MeV/c)

hadrons
virtualy — hadrons
ete”

(86.0 £2.0 )%
(17.0 £2.0 )%
( 5.99+0.25) %

utp~ ( 5.97+0.25) % s=1.1
Decays involving hadronic resonances
pm ( 1.28+0.10) %
PO (42 +05)x10-3
a,(1320) p ( 1.094£0.22) %
wrtata— o~ (85 +34 )x10-3
wrta~ (72 £1.0 )x10~3
K*(892)°K3(1430)° + c.c. (67 +2.6 )x10-3
wK*(892)K + c.c. (53 +20 )x1073
wh(1270) (43 +06 )x1073
K+K*(892)~ + c.c. (50 +£0.4 )x10-3
KOK*(892)° + c.c. (42 +0.4 )x1073
wrln0 (34 +08 )x10-3
by (1235)* #F l[g] (30 £05)x10-3
wKEKYTF l[q] (3.0 +0.7 )x 10~3
by (1235)% %0 (2.3 £06 )x 1073
$K*(892)K + c.c. ( 2.04+0.28) x 10~3
wKK (1.9 +0.4 )x 1073
wfy(1710) - wKK (48 £1.1 )x10=4
$2(ntw) ( 1.60+0.32) x 10~3
A(1232) g~ (16 +05 )x10~3
wn ( 1.58+0.16) x 10~3
¢KK ( 1.48+0.22) x 10~3
#f)(1710) - KK (36 £06 )x10~4
pPw ( 1.304+0.25) x 10~3 s=1.3
A(1232)H+ A(1232) 7~ ( 1.10£0.29) x 10~3
X(1385)~ T(1385)* (or c.c.) fa] ( 1.0340.13) x 10~3
pPn’(958) (9 +4 )x10~% S=1.7
#£5(1525) (8 +4 )x104 s=2.7
¢rta~ (80 £1.2 )x104
SKEKYTT [a] (72 0.9 )x10—4
w f1(1420) (6.8 +2.4 )x10—4
on (65 +0.7 )x 10—4
=(1530)~ =+ (59 15 )x10™4
pK~T(1385)° (51 £32)x10~%
w (42 +0.6 ) x 1074 S=1.4
#n'(958) (33 +04 )x1074
¢ 15(980) (32 £0.9 )x 1074 S=1.9
=(1530)°=° (32 +1.4 )x 1074
X (1385)~ X+ (or c.c.) gl (31 +05)x10~%
¢ f(1285) (26 £05 )x 10~4 S=1.1
pn ( 1.93+0.23) x 10~4
wn'(958) ( 1.67+0.25) x 10—4
w fp(980) (1.4 +05 )x 104
pn'(958) ( 1.05+0.18) x 10~4
pPo (45 £1.5 )x10~5
2,(1320)* # ¥ [q] < 43 x10~3  CL=90%
KK3(1430) + c.c. < 40 x10-3  CL=90%
K3(1430)°K5(1430)° < 29 x 1073 CL=90%
K*(892)0K*(892)° <5 x 1074 CL=90%
¢ £(1270) < 37 x 1074 CL=90%
pPPp < 31 x 104  CL=90%
é1(1440) —» ¢nmm < 25 x 104 CL=90%
wf5(1525) < 22 x1074  CL=90%
x(1385)°A < 2 x 104 CL=90%
A&pn+ﬁ <1 x 104  CL=90%
A <9 x 1075 CL=90%
¢n0 < 68 x10~6  CL=90%

1548
1545

1449
1449
1125
1392
1435
1005
1098
1143
1373
1371
1436
1299
1210
1299
969
1268
878
1318
1030
1394
1179
875
769
938
692
596
871
1365
1114
1062
1320
597
645
1447
1192
1182
608
857
1032
1398
1279
12711
1283
527
1263
1159
588
1263
1036
779
%6
1003
911
1100
1032
1377

2(rtn)n0
3(1r+1r‘31r°
ata
atr 0K+t K-
4(rtn=)n0
atr- KtK-
KK=

pprtm™
2(rt )
3(rtaT)
nartn~

T
2(rtrT)KY K™
p'ﬁ1r+7r‘1r°

pp

PPN

pam~

m

AA

ppr°
AT~ 7+ (orcc.)
pK~A
2K+ K-)
pK~— X0
KT K=
AAxr®
atn~

K3 K
AX+cc.
K$KS

¥1¢(1S)

yrtn—2rw

ynmw

yn(1440) - yKKn
vn(1440) - vvp°
Y0P

v7'(958)
y2rtor—
7£,(2050)

Yww

¥7(1440) — v0%p
Y 5(1270)
v£)(1710) - 7KK

0

n _
vf(1420) - YKK=
v (1285)

Y5 (1525)

Yo

1PP

vn(2225)

Yn(1760) — 76°p°
T

ypprtm™
YY_

yAA

3y

Decays into stable hadrons

[xx]

(a1

<
<

( 3.37+0.26) %
(29 £06 )%
( 1.50+0.20) %
( 1.20+0.30) %
(90 +3.0 )x10~3
(72 23 )x 1073
(61 +1.0 )x10~3
(60 £05 )x10~3
(40 £1.0 )x10~3
(40 +20 )x10-3
(4 +4 )x1073
(3.8 05 )x 103
(31 +1.3)x10"3
(23 +£0.9 )x10~3
( 2.1440.10) x 103
( 2.09+0.18) x 10—3
( 2.00+0.10) x 10~3
(1.9 +05 )x10~3
(1.8 +£04 )x10~3
( 1.3540.14) x 10~3
( 1.0940.09) x 10—3
( 1.0640.12) x 10~3
(89 +1.6 )x10~4
(70 £30 )x 1074
(2.9 +0.8 )x10~4
( 2.37+0.31) x 10~4
(22 407 )x10~4
( 1.4740.23) x 104
( 1.08+0.14) x 10~4
15 x 10—4
5.2 x 10—6

Radiative decays

[n]

ANNANNANNAN

(13 £0.4 )%
(83 +3.1)x10-3
(61 £1.0 )x 103
(91 +1.8 )x10~4
(64 £1.4 )x 105
(45 +£0.8 )x10~3
( 4.3140.30) x 10—3
(2.8 £0.5 ) x 103
(27 07 )x 103
( 1.59+0.33) x 10—3
(1.4 +04 )x 103
( 1.3840.14) x 10~3
(97 +1.2 )x 1074
(86 +08 )x10~4
(83 £15)x10~4
(65 +£1.0 )x 104
(6.3 1.0 ) x 10~%
(40 +1.2 )x10™%
(38 +1.0 )x10~4
(29 +06 )x10™4
(13 £09 )x 1074
(39 +1.3 )x10~%
7.9 x 104
5 x 10~4
1.3 x 1074
5.5 x 1075

S=13

S=1.9

S=1.8
$=1.2

CL=90%
CL=90%

S=1.9

CL=90%
CL=90%
CL=90%
CL=90%

1496
1433
1533
1368
1345
1407
1440
1107
1517
1466
1106

992
1320
1033
1232

948
1174
1231

1074
1176
945
876
1131
820
1468
998
1542
1466
1032
1466

116
1518
1487
1223
1223
1343
1400
1517

874
1337
1223
1286
1075
1500
1220
1283
1173
1166
1232

834
1048
1546
1107
1548
1074
1548
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Xco(1P)

G(JPCy — g+(o++
or Xc(3415) TRy =0T )

Mass m = 3415.1 + 1.0 MeV
Full width I = 14 &+ 5 MeV

P
Confidence level (MeV/c)

X0(1P) DECAY MODES Fraction (I';/T)

Hadronic decays
2(rtr) (3.7£0.7) % 1679
atr~ KT K- (3.0£0.7) % 1580
POrtx (1.6£0.5) % 1608
3(ntn) (1.5+0.5) % 1633
K+tK*(892)° 1~ + c.c. (1.240.4) % 1522
ntn= (7.5+2.1) x 1073 1702
Kt K= (7.1+2.4) x 103 1635
rtr” pp (5.042.0) x 10~3 1320
7070 (3.140.6) x 1073 1702
nn (2.5+1.1) x 1073 1617
pp <90 x 104 90% 1427
Radiative decays
vJ/9(1S) (6.6+1.8) x 1073 303
Yy (4.04£2.3) x 104 1708
XCI(IP) IG(JPC) =0+(1++)
or x,_-l(3510)

Mass m = 3510.53 + 0.12 MeV
Full width I = 0.88 £ 0.14 MeV

X¢1(1P) DECAY MODES Fraction (I';/I) p (MeV/c)
Hadronic decays
3(rtaT) (22+08)% 1683
2rtnT) (1.6+0.5)% 1727
" KT K~ (9 +4 )x1073 1632
pPOrta- (3.9+35)x10~3 1659
K+ K*(892)° ™ + c.c. (32421)x 1073 1576
ntx~ pp (1.4+0.9) x 10-3 1381
PP (8.6£1.2)x 1075 1483
atr™ + KYK- S<o21 x 103 -
Radlative decays
vJ/¥(15) (27.3+£1.6) % 389
Xc2(1P) 1G(JPCY = o+a++)
or xcz(3555)

Mass m = 3556.17 + 0.13 MeV
Full width ' = 2.00 £ 0.18 MeV

P
Confidence level (MeV/c)

X2(1P) DECAY MODES Fraction (F;/T)

Hadronic decays

2t ) (22 +05)% 1751
atr” Kt K- (1.9 £05 )% 1656
(rtn) (1.2 +08)% 1707
POrtn— (7 +4 )x10-3 1683
K+ K*(892)° 7~ + c.c. (48 28 )x 1073 1601
atr~pp (33 £13 )x1073 1410
P o (19 £1.0 )x 1073 1773
KtK~ (15 +1.1 )x10-3 1708
pp (10.0 +1.0 ) x 105 1510
700 ( 1.1040.28) x 10~3 1773
nn (8 45 )x10% 1692
J/p(S)ynta—x0 < 15 % 90% 185
Radlative decays
yJ/9(1S) (135 £1.1 )% 430
Ty (1.6 £0.5 ) x 1074 1778

%(25)
or ¥(3685)

16(JPCy=0-(1— )

Mass m = 3686.00 + 0.09 MeV
Full width T = 277 + 31 keV (S = 1.1)
(Assuming Mee =T, )

lee = 2.14 + 0.21 keV

¥(2S) DECAY MODES

Scale factor/

Fraction (I';/T)

p

Confidence level (MeV/c)

hadrons (98.10+0.30) % -
virtualy — hadrons (29 £04 )% -
ete (88 +1.3 )x 1073 1843
ptu= (7.7 +1.7 )x 1073 1840
Decays into J/t(1S)and anything
J/¢(1S)anything (57 4 )% -
J/4%(1S) neutrals (232 £2.6 )% -
J/p(AS)mtn~ (324 £2.6 )% 477
J/(18) 70 =0 (184 +27 )% 481
J/¥(1S)n (27 +04 )% S=1.7 200
J/9(18)=° (97 +21 )x10~4 527
Hadronic decays
3(rta—)rO (35 +1.6 )x 1073 1746
2(rt )70 (31 +07 )x 1073 1799
atr  KYK— (16 £0.4 )x 1073 1726
ot P (80 20 )x 1074 1491
K+ K*(892)°7~ + c.c. (67 +25 )x 1074 1673
2g‘rr+7r_) (45 £1.0 ) x 10~% 1817
pPOrtr— (42 +1.5 )x1074 1751
pp (19 405 )x10~% 1586
3(rtnT) (15 £1.0 )x10~4 1774
ppn® (1.4 £05 )x 1074 1543
KtK- (1.0 £07 ) x 1074 1776
ata— 0 (9 45 )x1075 1830
ata— (8 45 )x107° 1838
AA < 4 x107%  CL=9%0% 1467
==t < 2 x 1074 CL=90% 1285
o < 83 x 1075 CL=90% 1760
Kt K= 70 < 296 x 1075 CL=90% 1754
K+ K*(892)" + c.c. < 179 x 1075  CL=90% 1698
Radlative decays
YXco(1P) (9.3 £0.8 )% 261
YXc1(1P) (87 +08)% 171
¥Xc2(1P) (78 £08 )% 127
v1c(15) (28 +06 )x 1073 639
0 < 54 x 1073  CL=95% 1841
¥n'(958) < 11 x 1073 CL=90% 1719
vy < 1.6 x10™%  CL=90% 1843
yn(1440) - YKK= [ < 12 x107%  CL=90% 1569
%(3770) 16(UPCYy =271~ )
Mass m = 3769.9 + 2.5 MeV (S = 1.8)
Full width T = 23.6 +£ 2.7 MeV (S = 1.1)
lee = 0.26 + 0.04 keV (S = 1.2)
¥(3770) DECAY MODES Fraction (I';/T) Scale factor (Mf\//c)
DD dominant 242
ete™ (1.1240.17) x 1075 12 1885
Mass m = 4040 + 10 MeV
Full width I = 52 + 10 MeV
Tee = 0.75 & 0.15 keV
+¥(4040) DECAY MODES Fraction (T';/T) p (MeV/c)
ete (1.4+0.4) x 10~5 2020
DODP seen 777
D*(2007)°D° + c.c. seen 578
D*(2007)°D*(2007)° seen 232
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$(4160) Y] 16(PCy =221~ ")
Mass m = 4159 + 20 MeV

Full width I' = 78 + 20 MeV

Fee = 0.77 + 0.23 keV

¥(4160) DECAY MODES
ete~ (1044) x 10~6 2079

Fraction (F;/r) p (MeVfc)

1(4415) W 1IG(PCY =221 )
Mass m = 4415 + 6 MeV

Full width I = 43 & 15 MeV (S = 1.8)

Mee = 0.47 + 0.10 keV

¥(4415) DECAY MODES Fraction (F;/I) p (MeV/c)
hadrons dominant -
ete™ (1.1+0.4) x 10~5 2207

bb MESONS

T(1S)
or T(9460)
Mass m = 9460.37 + 0.21 MeV (S = 2.7)

Full width I = 52.5 + 1.8 keV
Mee = 1.32 & 0.03 keV

IG(JPC) — ??(1——)

Scale factor/

P
T(1S) DECAY MODES Fraction (I;/I) Confidence level (MeV/c)

Tt (2.97+£0.35) % 4384
ete™ (2.5240.17) % 4730
utu~ (2.48+0.07) % S=11 4729
Hadronic decays
J/¥(1S)anything (1.1 +0.4 )x 10™3 4223
p <2 x10~4  CL=90% 4698
atmr— <5 x10~4  CL=90% 4728
KtK- <5 x10™4  CL=90% 4704
PP <9 x10~%  CL=90% 4636
Radiative decays
~2ht2h— (70 £1.5 ) x 10~4 4720
y3ht3h~ (5.4 £2.0 )x 1074 4703
~4htah— (7.4 £35 )x10~4 4679
yrtr Kt K- (2.9 +£0.9 ) x 10~4 4686
y2rton— (2.5 +£0.9 ) x 10—4 4720
y3r+3n— (25 £1.2 )x 1074 4703
yarton— Kt K- (24 £1.2 )x 1074 4658
yrtr~pp (1.5 +0.6 ) x 10~4 4604
y2nt2n— pp (4 +6 )x1075 4563
y2K+2K- (20 +2.0 ) x 1075 4601
¥n'(958) <13 x10=3  CL=90% 4682
7 <35 x10%  CL=90% 4714
¥ £5(1525) <14 x 1074  CL=90% 4607
v £(1270) <13 x10™%  CL=90% 4644
yn(1440) <82 x1075  CL=90% 4624
yf(1710) —» vKK <26 x 1074 CL=90% 4576
v£3(2220) - YKt K~ <15 x 1075  CL=90% 4469

Xpo(1P) [
or X po(9860)

16(JPCy = 27 (0 preferred + +)
J needs confirmation.

Mass m = 9859.8 + 1.3 MeV

Xpo(1P) DECAY MODES

P
Fraction (F;/r) Confidence ievel (MeV/c)

¥ T(1S)

<6% 90% 391

Xp1(1P) 1

or Xp,(9890) (UmHy=2'1rT)

J needs confirmation.

Mass m = 9891.9 + 0.7 MeV

Xp; (1P) DECAY MODES Fraction (F;/r) p (MeV/c)
¥ T(1S) (35+8) % 422
Xio(1P) 17 1G(PC) = P22+ +)
or X>(9915) J needs confirmation.

Mass m = 9913.2 + 0.6 MeV

Xpo(1P) DECAY MODES Fraction (F;/) p (MeVjc)
Y T(1S) (22+4) % 443
T(2s) G(PCy _ 971 — —
or T(10023) PET =707

Mass m = 10.02330 + 0.00031 GeV
Full width I' = 44 + 7 keV

P
T(25) DECAY MODES Fraction (I;/T) Confidence level (MeV/c)

TAS)nt 7~ (185 +0.8 )% 475
T(18)7%=° (88 £1.1)% 480
Tt (17 16 )% 4686
ptu~ ( 1.31+021) % 5011
ete seen 5012
T(15)x° <8 x 10~3 90% 531
T(1S)9 < 2 x 1073 90% 127
J/4(15)anything <6 x 1073 90% 4533
Radlative decays
¥Xp1(1P) (67 £09)% 131
YXpa(1P) (6.6 £09 )% 110
¥Xpo(1P) (43 £10)% 162
¥£;(1710) < 59 x 10~4 90% 4866
¥ f5(1525) < 53 x 10~4 90% 4896
v £(1270) < 241 x 1074 90% 4931

Xw(2P) 17

/G JPC — ‘_)? 0 prefi ++
or Xpe(10235) ( ) (0 preferred )

J needs confirmation.

Mass m = 10.2321 + 0.0006 GeV

X po(2P) DECAY MODES Fraction (I;/T) p (MeV/c)
¥ T(25) (46+2.1) % 210
Y T(1S) (9 +6 )x10-3 746

Xp1(2P) 1

1G(JPCy = 72(1 preferred + +
or X3 (10255) ( ) (1 preferre. )

J needs confirmation.

Mass m = 10.2552 + 0.0005 GeV
My, (2P) = MX,y(2p) = 23.5 &+ 1.0 MeV

P
Xp;(2P) DECAY MODES Fraction (I;/T) Scale factor (MeV/c)

¥ T(2S) (21 +4 )% 1.5 229
¥ T(1S) (85+1.3)% 1.3 764

Xp2(2P) 12

G PCy _ 77 ++
19(J = ?7°(2 preferred
or ¥,q(10270) (PO =77@2p )

J needs confirmation.

Mass m = 10.2685 + 0.0004 GeV
n1xb2(2p) - mXﬂ(ZP) = 13.5 £ 0.6 MeV

Xpa(2P) DECAY MODES Fraction (r;/r) p (MeV/c)

¥ T(25) (16.2+£2.4) % 242
¥ T(1S) (7.1£1.0)% 776
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T(35)
or T(10355)

Mass m = 10.3553 & 0.0005 GeV
Full width I = 26.3 £ 3.5 keV

/G(JPC) - ??(1— -)

T(3S) DECAY MODES Fraction (I;/T) Scale factor (M£V/c)
T(2S)anything (106 +0.8 )% 296
T(S)nt 7~ (28 £06 )% 2.2 177
7(28) 70 70 ( 2.00+£0.32) % 190
T(2S)vy (50 £0.7 )% -
TAS)rt 7~ (4.48+0.21) % 814
T(18)n% 70 ( 2.06+£0.28) % 816
utp~ ( 1.81+0.17) % 5177
ete seen 5177
Radiative decays
YXp2(2P) (11.4 +£0.8 )% 13 87
YXp1(2P) (11.3 +£06 )% 100
¥Xpo(2P) (54 £0.6 )% 11 123
T(4s) ,G(JPC) :??(1——)
or T(10580)

Mass m = 10.5800 + 0.0035 GeV
Full width T = 23.8 + 2.2 MeV
lee = 0.24 £ 0.05 keV (S = 1.7)

p
T(4S) DECAY MODES Fraction (r;/T) Confidence level (MeV/c)

ete~ (1.01£0.21) x 1075 5290

D*+anything + c.c. <74 % 90% 5099

$anything <23 x 103 0% 5240

T(1S)anything <4 x 1073 90% 1053
7(10860) 16(JPCy =771~ )

Mass m = 10.865 & 0.008 GeV (S = 1.1)
Full width T = 110 % 13 MeV
lee = 0.31 £ 0.07 keV (S = 1.3)

T(10860) DECAY MODES
ete™ (2.840.7) x 106 5432

Fraction (F;/T) P (MeV/c)

7(11020) 1I6(PCy =271~ ™)
Mass m = 11.019 + 0.008 GeV
Full width ' = 79 £+ 16 MeV
lee = 0.130 =+ 0.030 keV

7T(11020) DECAY MODES Fraction (r;/I) P (MeVfc)

ete™ (1.640.5) x 106 5509

Searches for Top and
Fourth Generation Hadrons

See the sections “Searches for t Quark” and “Searches for b (4"
Generation) Quark” at the end of the QUARKS section.

NOTES

In this Summary Table:

When a quantity has “(S = ...)" to its right, the error on the quantity has
been enlarged by the “scale factor” S, defined as S = /XZ/(N — 1), where
N is the number of measurements used in calculating the quantity.

We do this when S > 1, which often indicates that the measurements are in-
consistent. When S > 1.25, we also show in the Full Listings an ideogram of
the measurements. For more about S, see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is
the momentum of each decay product in the rest frame of the decaying
particle. For a 3-or-more-body decay, p is the largest momentum any of the
products can have in this frame.

{a] The 7% mass has increased by three (old) standard deviations since our
1992 edition, and the 7° mass, which is determined using the mass
difference (m_ . — m o), has increased accordingly. See the “Note on
the Charged Pion Mass” in the =% Full Listings for a discussion.

[b] See the “Note on 7+ — ¢*y and K* — ¢+~ Form Factors” in the
x£ Full Listings for definitions and details.

[c] Measurements of T (e* ve)/T (1t v,) always include decays with +'s, and
measurements of ['(e* vey) and I'(u+ v, v) never include low-energy ~'s.
Therefore, since no clean separation is possible, we consider the modes
with +'s to be subreactions of the modes without them, and let [[(e* v,)
+ [ vu)]/Trotal = 100%.

[d] See the 7+ Full Listings for the energy limits used in this measurement;
low-energy v's are not included.

[e] Derived from an analysis of neutrino-oscillation experiments.

[f] Astrophysical and cosmological arguments give limits of order 10~13; see
the 0 Full Listings.

[g] See the “Note on the Decay Width I'(n — )" in the n Full Listings.

[h] See the “Note on n Decay Parameters” in the n Full Listings.

[i] C parity forbids this to occur as a single-photon process.

[/] The e* e~ branching fraction is from et e~ — 7+ 7~ experiments only.
The wp interference is then due to wp mixing only, and is expected to
be small. If ey universality holds, M(p® — ptu=)=T(° - ete™)
x 0.99785.

[k] This is only an educated guess; the error given is larger than the error on
the average of the published values. See the Full Listings for details.

[/] See the “Note on the f;(1420)" in the f,(1420) Full Listings.
[m] See also the w(1600) Full Listings.

[n] See the “Note on the n(1440)" in the n(1440) Full Listings.

[0] See the “Note on the p(1450) and the p(1700)" in the p(1700) Full
Listings.

[p] See also the w(1420) Full Listings.

[q] The value is for the sum of the charge states indicated.

[r] The definition of the slope parameter g of the K — 3 Dalitz plot is as
follows (see also “Note on Dalitz Plot Parameters for K — 37 Decays”
in the K* Full Listings):

M2 =1+ g(s3 — so)/m2, + .
[s] For more details and definitions of parameters see the Full Listings.
[t] See the K= Full Listings for the energy limits used in this measurement.

[u] Most of this radiative mode, the low-momentum v part, is also included
in the parent mode listed without ~'s.

[v] Direct-emission branching fraction.
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[w] Structure-dependent part.

[x] The CP-violation parameters are defined as follows (see also “Note on
CP Violation in Ks — 3x" and “Note on CP Violation in K? Decay”
in the Full Listings):

AK} — mtr™) _

AKY - ntam)

) AKY — x%x0)
= e'¢00=————-———-——-=e—2e’

Moo = |noo| AKKS = 070)

_ NKY - m=etv) - M(K§ —» atev)
MK — 7= ¢+u) + [(KQ —» n+e-v) '
r(Kg - 1r+1r_1r0)CP viol.
MK9 - xtx=x0)
F(Kg — 7070x0)
F(K?_ — 7070x0)
where for the last two relations CPT is assumed valid, i.e., Re(n4_g) ~
0 and Re(ﬂooo) ~ 0.

[y] See the K g Full Listings for the energy limits used in this measurement.

[2] Calculated from K9 semileptonic rates and the K' 2 lifetime assuming AS
= AQ.

Mo = |ny—|eie- = e+

im(n4—0)? =

Im(noo0)? =

[aa] €' /€ is derived from |ngo/n— | measurements using theoretical input on
phases.

[bb] See the KO Full Listings for the energy limits used in this measurement.

[cc] m 4 - >470 MeV

[dd] Allowed by higher-order electroweak interactions.

[ee] Violates CP in leading order. Test of direct CP violation since the in-
direct CP-violating and CP-conserving contributions are expected to be
suppressed.

[ff] See the note in the L(1770) Full Listings in Reviews of Modern Physics
56 No. 2 Pt. Il (1984), p. S200.

[gg] This is a weighted average of D* (44%) and D° (56%) branching frac-
tions. See “DtandD® — (nanything) / (total Dt and DO)" under
“D* Branching Ratios” in the Full Listings.

[hh] This value combines the et and u* branching fractions, making a small
phase-space adjustment to the u* fraction to be able to use it as an et
fraction; hence the “et.” In fact, some of the et measurements already
use ut events in this way.

[ii] € indicates e or u mode, not sum over modes.

[i/] The branching fractions for this mode may differ from the sum of the
submodes that contribute to it, due to interference effects. See the
relevant papers in the Full Listings.

[kk] The two experiments determining this ratio are in serious disagreement.
See the Full Listings.

[#1] This mode is not a useful test for a AC=1 weak neutral current because
both quarks must change flavor in this decay.

mm) e Dy- imits are inferred from the limit on — — .
The D9-DY limi inferred from the limit on D% — D° — K+
[nn) See the “Note on Semileptonic Decays of D and B Mesons” in the Dt

Full Listings for a comparison of inclusive and summed-inclusive branch-
ing fractions.

[00] The limit on (K*(892)7)~ ut v, just below is much stronger.

[pp] For now, we average together measurements of the ¢e* v, and put Vy
branching fractions.

[qq] This branching fraction is calculated from appropriate fractions of the
next three branching fractions.

[rr] For admixture of B hadrons at LEP and Tevatron energies.

[ss] These values are model dependent. See note on “Semileptonic Decays”
in the B Full Listings.

[tt] D** stands for the sum of the D(11P;), D(13P,), D(13P;), D(13P;),
D(21Sp), and D(215,) resonances.
[uu] B, Bt, Bg. and B baryon states not separated.
[w] B°, B+, and BY not separated.
[ww] Derived from measurements of X4 and of Am g, times B mean life.
[xx] Includes ppr+ w~~ and excludes ppn, pPw, pP7’.
[5%%] JPC known by production in et e~ via single photon annihilation. / G
is not known; interpretation of this state as a single resonance is unclear

because of the expectation of substantial threshold effects in this energy
region.

{zz] Spectroscopic labeling for these states is theoretical, pending experimen-
tal information.
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See also the table of suggested ¢G quark-model assignments in the Quark Model section.

o Indicates particles that appear in the preceding Meson Summary Table. We do not regard
the other entries as being established.

t Indicates that the value of J given is preferred, but needs confirmation.

LIGHT UNFLAVORED

STRANGE

BOTTOM, STRANGE

(S=C=8B=0) (S= %1, C= B=0) (S= £1, C= B=0)
/G(JPC) IG(JPC) I(_/P) IG(JPC)
ot 17(07) * w3(1670) 0—(37 ) o K* 1/2(07) e BY 1/2(07)
o0 17(0~ F) | o my(1670) 17(2= 1) | eKO 1/2(07) B: 2(27)
] 0t (0~ %) | o (1680) 07(177) | e K3 1/2(07) -
o p(770) 11~ ") | e p3(1690) 173~ 7) | eK? 1/2(07) cC
o w(782) 0~(1~ ) | ep(1700) 1H(177) | e K*(892) 1/2(17) o nc(1S) = ot~ ")
o 7/(958) ot(0~ ) X(1700) even™(27F) | o K;(1270) 1/2(1) ’7‘(,2980) L
o 1,(980) ot(T ) | ef(1710) 0T (even T )| o K;(1400) 1/2(171) * Jjw(1s) = - T)
 35(980) 1—(0t™*) X(1740) 0+ (even+ )| o Kk*(1410 1/2(1- J/4(3097) N
. ¢(21020) 0~ (17 7) n(1760) ot~ ) : K*E1430§ 1’/2E0+; . );60851)5): 0t(0T )
* hy(1170) 0=(1*7) | m(1770) 17(07F) | Kg(1430) 1/2(2%) . xzz(lp) = ot(a+™)
o by(1235) et o) | x(s) 1=~ K (1460) 1/2(07) Xc1(3510)
o 21(1260) 1-(1++) | n(1810) 02+ ) K»(1580) 1/2(27) he(1P) (2%
 1,(1270) ot@++) | xuso)  1m(™) Kaeso) 120t | exe(tP)=  otEFH)
. ﬁ((11;:55)) gigé ¥ i; . ¢3((1188$8)) g;g - ; « K*(1680) 1/2(17) 2(2252?53 2t
- (1300) o0+ | xswo) oM | e ?((1177;%)) 1%—; 7c(3590)
o 7(1300) 170~ ) | X(1950) 0F (even + )| 4 ka(1820) 127 | UL o
o 2,(1320) 1=+ +) | o K(2010) ot(2+ ) Kz(mo) 1/2(07) v(3685) 2.
fo(1370) 0F(0++) | ay(2040) 174 ) K(1950) 120%) | . VBT o)
hy(1380) 7= (117 23(2050) 1=(3+ ) K2(1980 L/2(2+ ® $(4040) S
5(1405) 1=(1~ %) | o f(2050) ot@a+) Kf( ) A +) * ¥(4160) L)
o £,(1420) ot(1++) | my(2100) 2=+ | ° K4((22§54§)) 1;58_3 * ¥(4415) ran
* w(1420) 0~ (1) £(2150) ottt 2 + bB
sisn) ot | s va- o) el U T
— ? 5 N :
o 7(1440) ot~ 1) X(2200) ?’(even T 1) _ 7(9460)
o p(1450) 1ta—7) | p(2210) 1t ) Ks(2500) %2,(37 ) o X50(1P) = 22(0+ +)t
o £,(1510) ot +tH) | f(2220) ot(4t+) K(3100) 7 Xea(9860)
£,(1520) ot@*+) | n(2225) ot~ +) CHARMED o Xp1(1P) = 7at)
o £4(1525) ot(2t ™) p3(2250) 173~ 7) (C=+1) X51(9890) ,
f5(1525) ot(0+T) | e £(2300) ot*t*+) [ o p* 1/2(07) ® Xpp(LP) = P2t
o 1(1590) ot (o + +) £2(2300) ot(at+ ) o DO 1/2(07) X52(9915) .
* w(1600) 0m(17 ) | #£(2340) 0t | upoore  1207) | T T ram
X(1600) 2t ) | ps(2350) 17(577) | e D*(2010)* 12007) | o xp0(2P) = 20+
(1640) 0t@*H) | a6(2450) 17(677) | o D;(2420)° 1/2(17F) X50(10235)
fo(2510) ote ) D,(2440)* 1/2(7) o Xp1(2P) = 271+t
X(3250) 277277 « D3(2460) 1/2(2%) Xp1(10255) p
o Xpp(2P) = 72
OTHEI?SUG%T U[I;IFL/S\)/ORED CHARMED, STRANGE §<<Z§§102)70) ( )
—t=°- (C=S==1) . 7(35) = 1)
ete(1100-2200) (1~ 7) [ o DE 0(07) 7(10355) o
X(1500-3600) g (ONNN A
. +
DS;((§5537€;)) N %71?)) e T(10860) ?3(1 -)
s ¥ o T(11020) 277(17 )
'3(21T51,;A NON-qg CANDIDATES
e BT 1/2(07) Non-gq Candidates
o B° 1/2(07)
o B* 1/2(17)
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This short table gives the name, the quantum numbers (where known), and the status of baryons in the Review. Only the baryons with 3-
or 4-star status are included in the main Baryon Summary Table. Due to insufficient data or uncertain interpretation, the other entries in the
short table are not established as baryons. The names with masses are of baryons that decay strongly. See our 1986 edition (Physics Letters
170B) for listings of evidence for Z baryons (KN resonances).

p 'D11 kkkk A(1232) P33 *kkk A P01 *%kkk Z+ Pll *%kkk _:0 Pll *kkk
n P XKKK A(1600) Ps3 * Kk A(1405) So1 *xkxx | 50 Pu kx| =- P11 *kkk
N(1440) Py *¥** | A(1620) Sy **** [ A(1520) Doy RH** | I Pip  *%% | (1530) Pp3  HeR*
N(1520)  Dj3  **** | A(1700) D33 **** | A(1600) Py  *** | I(1385) Pp3  **** | =(1620) *
N(1535) Sy **** | A(1750) Py % A(1670) Sy **x | X(1480) * =(1690) *Ex
N(1650)  S;;  **** | A(1900) S5  *** [ A(1690) Doz *¥*** | X(1560) ** Z(1820) Dy3  ***
N(1675) Dyjs  **** | A(1905) Fa5  **** [ A(1800)  Sp;  *** | X(1580) Dy3 ** =(1950) Fx
N(1680)  Fi5  **** | A(1910) P3;  **¢x [ A(1810) Py *¥** | X(1620) S ** Z(2030) *rk
N(1700) Dyj3  *** | A(1920) Py; *** | A(1820) Fos ¥ | X(1660) Pyp  *** | =(2120) *
N(1710)  Py;  *** | A(1930) Dss *** | A(1830) Dps **¥** | Z(1670) D3 **** | =(2250) **
N(1720)  Pi3  **** | A(1940) D;; * A(1890)  Pp3  **** | X(1690) ** | =(2370) **
N(1900) Py3 * A(1950)  F3;  *¥*xx | A(2000) * £(1750) S *** | =(2500) *
N(1990) Fy7 ** A(2000)  F3s  * A(2020) For * X(1770) Py %
N(2000) Fis  ** | A(2150) Sy * A2100) Gy **¥* | Z(1775) Dy ¥ | 27 FAEK
N(2080) Dy ** | A@2200) Gy * | AQ2110) R ¥+ | X(1840) Py *x [ £2(2250) e
N(2090) S ¥ A(2300) Hi ** | A(2325) Dy * r(1880) P, | 2(2380)7 **
N(2100) Py * | A(2350) Dss  * | A(2350) Hypy ¥+ | E(1915) s xxxx | 2(2470) **
N(2190) Gz **** | A(2390) F3; * A(2585) ¥ | Z(1940) Dy o -
N(2200) Dis  ** | A(2400) Gy ** I(2000) Sy * Ao(2625)*+ wrx
N(2220)  Hig  **** | A(2420) Hayq **** ¥(2030) Fyp  *REx Z‘ (2455) .
N(2250)  Gg  **** | A(2750) iz ** ¥(2070) Fi5 ¥ 25(2530) N
N(2600)  hii  *** | A(2950) Ksys ** r(2080) Pz ¥ | S rer
N(2700)  Kyu3 ** £(2100) Gy * =6 .

5(2250) ar | =c

5 (2455) o |2 ¥

5(2620) * | rs

X(3000) * b

¥ (3170) *

*kk%  Existence is certain, and properties are at least fairly well explored.

***  Existence ranges from very likely to certain, but further confirmation is desirable and/or
quantum numbers, branching fractions, etc. are not well determined.

**  Evidence of existence is only fair.
*  Evidence of existence is poor.
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N BARYONS

(5=0, I=1/2)

p, Nt = wud; n, N° = udd

FI

10P) = 33%)

Mass m = 938.27231 =+ 0.00028 MeV (4
= 1.007276470 =+ 0.000000012 u

mp/mp = 0.99999998 + 0.00000004

lap+ gpl/e < 2x 1075

lap + ge|/e < 1.0x 10721 8]

Magnetic moment p = 2.79284739 + 0.00000006 1 x

Electric dipole moment d = (~4 + 6) x 10723 ecm
Electric polarizability @ = (10.2 + 0.9) x 10~* fm3
Magnetic polarizability 3 = (4.0 £ 0.9) x 10~% fm3
Mean life 7 > 1.6 x 1025 years

> 103! - 5 x 1032 years []

For N decays, p and n distinguish proton and neutron partial lifetimes.

(independent of mode)
(mode dependent)

See aiso the “Note on Proton Mean Life Limits” in the Full Listings.

The “partial mean life” limits tabulated here are the limits on 7/B;, where
7 is the total mean life and B; is the branching fraction for the mode in

question.

p DECAY MODES

Partial mean life
(1030 years)

P
Confidence level (MeV/c)

N — etr
N— ptr
N - vr
p— etn
p— utn
n— vy
N— ety
N— php
N— vp
p— etw
p— pwtw
n— vw
N — etK
p— e*K%
p— etK)
N - utK
p— wtKY
p— utk?
N— vK
p— et K*(892)°
N — vK*(892)

Antilepton + meson
> 130 (n), > 550 (p)
> 100 (n), > 270 (p)

> 100 (n), > 25 (p)
> 140

> 69

> 54

> 58 (n), > 75 (p)
> 23 (n), > 110 (p)
> 19 (n), > 27 (p)
> 45

> 57

> 43

> 1.3 (n), > 150 (p)
> 76

> 44

> 1.1 (n), > 120 (p)
> 64

> 44

> 86 (n), > 100 (p)
> 52

> 22 (n), > 20 (p)

Antilepton + mesons

p— etatna~ > 21
p— etn0x0 > 38
n— etx—x0 > 32
p— ptatn~ >17
p— ;ﬁ’ﬂ'ow0 >33
n— pta—x0 >33
n— etKOr— > 18
Lepton + meson
n— e xt > 65
n— prt > 49
n— e pt > 62
n— u"p+ >7
n— e K*t > 32
n— p Kt > 57
Lepton + mesons
p— e ntat > 30
n— e xtqd >29
p— p atrxt >17
n— u_7r+1r0 >34
p— e~ nt Kt > 20
p— pntK*t >5

90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%
90%

90%
90%
90%
90%
90%
90%
90%

90%
90%
90%
90%
90%
90%

90%
90%
90%
90%
90%
90%

459
453
459
309
296
310
153
119
153
142
104
144
337
337
337
326
326
326
339

45

45

448
449
449
425
427
427
319

459
453
154
120
340

448
449
425
427
320
279

Antilepton + photon(s)

p— ety > 460 90% 469
p— pty > 380 90% 463
n— vy > 24 90% 470
p— ety > 100 90% 469
Three leptons
p— etete > 510 90% 469
p— etputpu~ > 81 90% 457
p— etvr > 11 90% 469
n— ete v > 74 90% 470
n— ute v > 47 90% 464
n— ptu v > 42 90% 458
p— ptete > 91 90% 464
p— pututu~ > 190 90% 439
p— ptov > 21 90% 463
p— e ptpt >6 90% 457
n— 3v > 0.0005 90% 470
Inclusive modes
N — e*tanything > 0.6 (n, p) 90% -
N — utanything > 12 (n, p) 90% -
N — et x%anything > 0.6 (n, p) 90% -
AB = 2 dinucleon modes
The following are lifetime limits per iron nucleus.
pp — wtnt >07 90% -
pn— wt 0 >2 90% -
nn— wtx~ >07 90% -
nn— w0x0 >34 90% -
pp — etet >5.8 90% -
pp — etput > 3.6 90% -
pp— ptpt >1.7 90% -
pn— etv >28 90% -
pn— ptv >16 90% -
nn— vele > 0.000012 90% -
nn— v,v, > 0.000006 90% -
P DECAY MODES
Partial mean life P
P DECAY MODES (years) Confidence level (MeV/c)
P— ey > 1848 95% 469
p— e 0 > 554 95% 459
P— e > 171 95% 309
P— e K > 29 95% 337
p— e KY >9 95% 337
[] 1P = 33H)
Mass m = 939.56563 % 0.00028 MeV [2]
= 1.008664904 + 0.000000014 u
mp—mp= 1.293318 + 0.000009 MeV
= 0.001388434 + 0.000000009 u
Mean life 7 = 887.0 £ 2.0s (S = 1.3)
cr = 2.659 x 10% km
Magnetic moment p = —1.9130428 + 0.0000005 up
Electric dipole moment d < 11 x 10726 ecm, CL = 95%
Electric polarizability a = (1.1673-13) x 103 fm3
Charge g = (—0.4 £ 1.1) x 10721 e
Mean time for n7 oscillations > 1.2 x 108 s, CL = 90% (4]
Decay parameters (¢l
pe~ T, ga/8y = —1.2573 + 0.0028
" A = —0.1127 + 0.0011
" B = 0.997 + 0.028
" a = —0.102 + 0.005
" bav = (180.07 + 0.18)° 7]
" D= (-05%14)x10"3
p
n DECAY MODES Fraction (;/T) Confidence level (MeV/c)
pe~ve 100 % 1.19
Charge conservation (Q) violating mode
PreTe Q < 9x10724 90% 1.29
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N(1440) Py 14P) = 33)

Mass m = 1430 to 1470 (= 1440) MeV
Full width I = 250 to 450 (= 350) MeV
Pbeam = 0.61 GeV/c 47X2 = 31.0 mb

N(1440) DECAY MODES Fraction (I;/l) p (MeVfc)
N 60-70 % 397
Nrrm 30-40 % 342
An 20-30 % 143
Np <8% t
N(mm ){S?v‘o:ave 5-10 % -
Py 0.04-0.07 % 414
ny 0.001-0.05 % 413
N(1520) Dy3 1P =3(37)
Mass m = 1515 to 1530 (= 1520) MeV
Full width T = 110 to 135 (~ 120) MeV
Pbeam = 0.74 GeV/c 47X2 =235 mb
N(1520) DECAY MODES Fraction (I'; /) p (MeVfc)
N 50-60 % 456
Nrm 40-50 % 410
Ar 15-25 % 228
Np 15-25 % 1
N(ﬂw)f;fxave <8% -
Py 0.45-0.53 % 470
ny 0.34-0.48 % 470
N(1535) Sy 4Py = 3G37)
Mass m = 1520 to 1555 (= 1535) MeV
Full width T = 100 to 250 (= 150) MeV
Pbeam = 0.76 GeV/c 47X2 = 225 mb
N(1535) DECAY MODES Fraction (I'; /) p (MeVfc)
N 35-55 % 467
Nn 30-55 % 182
Nrnm 1-10 % 422
Am <1% 242
Np <4 % t
N(xm ){S?\gave <3% -
N(1440) 7 <7% t
Py 0.45-0.53 % 481
ny 0.34-0.48 % 480
| N(1650) Sy 1Py =3(37)
Mass m = 1640 to 1680 (~ 1650) MeV
Full width I = 145 to 190 (~ 150) MeV
Pbeam = 0.96 GeV/c 47X2 = 16.4 mb
N(1650) DECAY MODES Fraction ([;/F) P (MeV/c)
N= 60-80 % 547
AK 3-11% 161
Nrw 5-20 % 511
an 3-7% 344
Np 4-14 % t
N(mn ).’s?\gave <4% -
N(1440) 7 <5% 147
Py 0.10-0.18 % 558
ny 0.03-0.18 % 557

N(1675) Dys5 1Py =337

Mass m = 1670 to 1685 (= 1675) MeV
Full width I = 140 to 180 (~ 150) MeV

Poeam = 1.01 GeV/c 4mx2 = 15.4 mb
N(1675) DECAY MODES Fraction (I';/r) p (MeVfc)
N~ 40-50 % 563
AK <1% 209
Nrn 50-60 % 529
Am 50-60 % 364
Np <1-3% t
Py 0.005-0.014 % 575
ny 0.07-0.11 % 574
N(1680) Fy5 1(4P) = 3(3%)
Mass m = 1675 to 1690 (= 1680) MeV
Full width [ = 120 to 140 (=~ 130) MeV
Pbeam = 1.01 GeV/c 47%X2 = 152 mb
N(1680) DECAY MODES Fraction ([;/T) P (MeV/c)
Nr 60-70 % 567
Nrm 3040 % 532
Am 5-15 % 369
Np 3-15% t
N(rr)E0 e 5-20 % -
PY 0.21-0.35 % 578
ny 0.02-0.04 % 577
N(1700) Dy3 1Py =337)
Mass m = 1650 to 1750 (= 1700) MeV
Full width I = 50 to 150 (= 100) MeV
Pbeam = 1.05 GeV/c 47X2 = 14.5 mb
N(1700) DECAY MODES Fraction (I';/T) p (MeVfc)
N 5-15% 580
AK <3% 250
Nrm 85-95 % 547
Np <35% t
[ 2% ~0.01 % 591
N(1710) Py 1(0P) = 33%)
Mass m = 1680 to 1740 (~ 1710) MeV
Full width T = 50 to 250 (= 100) MeV
Pbeam = 1.07 GeV/c 47x2 = 142 mb
N(1710) DECAY MODES Fraction (r;/T) p (MeVjc)
N~ 10-20 % 587
AK 5-25 % 264
Nrm 40-90 % 554
A 15-40 % 393
Np 5-25 % 48
N(mm)E0, e 10-40 % -
I N(1720) Py3 14P) = 33%)
Mass m = 1650 to 1750 (= 1720) MeV
Full width ' = 100 to 200 (x 150) MeV
Pbeam = 1.09 GeV/c 47X2 = 13.9 mb
N(1720) DECAY MODES Fraction (';/T) p (MeV/c)
Nr 10-20 % 594
AK 1-15% 278
Nrnm >70% 561
Np 70-85 % 104

Py 0.01-0.06 %
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N(2190) Gz

10P) = 3(37)

Mass m = 2100 to 2200 (= 2190) MeV
Full width ' = 350 to 550 (~ 450) MeV

Pbeam = 2.07 GeV/c

47X2 = 6.21 mb

[a(1620) s |

10P) = 3(37)

Mass m = 1615 to 1675 (= 1620) MeV
Full width I = 120 to 180 (~ 150) MeV

Pbeam = 0.91 GeV/c

47X2 = 17.7 mb

N(2190) DECAY MODES Fraction (I';/T) p (MeV/c)
N= 10-20 % 888
N(2220) Hyo 10P) = 33
Mass m = 2180 to 2310 (= 2220) MeV
Full width T' = 320 to 550 (~ 400) MeV
Ppeam = 2.14 GeV/c 47X2 = 5.97 mb
N(2220) DECAY MODES Fraction (';/T) p (MeV/c)
N~ 10-20 % 905
N(2250) Gyo 1P =337)
Mass m = 2170 to 2310 (x 2250) MeV
Full width I = 290 to 470 (~ 400) MeV
Pbeam = 2.21 GeV/c 47X2 = 5.74 mb
N(2250) DECAY MODES Fraction (I';/T) p (MeV/c)
N~ 5-15 % 923
N(2600) h,11 1Py = 3(%7)
Mass m = 2550 to 2750 (~ 2600) MeV
Full width ' = 500 to 800 (~ 650) MeV
Pheam = 3.12 GeV/c 47X2 = 3.86 mb
N(2600) DECAY MODES Fraction (;/T) p (MeVfc)
N 5-10 % 1126
(§=0,1=13/2)
AtY = yuu, At =uyud, A® =udd, A =ddd
A(1232) Py 1Py =369
Mass m = 1230 to 1234 (= 1232) MeV
Full width T = 115 to 125 (= 120) MeV
Pbeam = 0.30 GeV/c 47%2 = 94.8 mb
A(1232) DECAY MODES Fraction (;/T) p (MeV/c)
Nm >99 % 227
N~y 0.55-0.61 % 259
A(1600) Pas 1Py = 33"
Mass m = 1550 to 1700 (= 1600) MeV
Full width I = 250 to 450 (=~ 350) MeV
Pbeam = 0.87 GeV/c 47%x2 = 18.6 mb
A(1600) DECAY MODES Fraction (;/T) p (MeV/c)
N~ 10-25 % 512
Nrm 75-90 % 473
Am 40-70 % 301
Np <25% t
N(1440)w 10-35 % 74
Py ~0% -

A(1620) DECAY MODES Fraction ([;/T) p (MeVjc)
N= 20-30 % 526
Nrm 70-80 % 488
Arw 30-60 % 318
Np 7-25 % t
N~y 0.02-0.06 % 538
A(1700) Dy3 1Py =33
Mass m = 1670 to 1770 (=~ 1700) MeV
Full width T = 200 to 400 (=~ 300) MeV
Ppeam = 1.05 GeV/c 4rX2 = 145 mb
A(1700) DECAY MODES Fraction (;/T) p (MeVfc)
Nr 10-20 % 580
Nrm 80-90 % 547
Arm 30-60 % 385
Np 30-55 % t
N~y 0.16-0.28 % 591
A(1900) S3 1P =367
Mass m = ¥850 to 1950 (= 1900) MeV
Full width I' = 140 to 240 (= 200) MeV
Pbeam = 1.44 GeV/c 47X2 = 9.71 mb
A(1900) DECAY MODES Fraction (;/T) p (MeV/c)
Nr 10-30 % 710
A(1905) Fss 1Py =33%
Mass m = 1870 to 1920 (= 1905) MeV
Full width I = 280 to 440 (= 350) MeV
Pbeam = 1.45 GeV/c 47X2 = 9.62 mb
A(1905) DECAY MODES Fraction (;/T) p (MeV/c)
N~ 5-15 % 713
Nrnx 85-95 % 687
Ar <25 % 542
Np >60 % 421
Ny 0.01-0.04 % 721
A(1910) P, 1Py =3GH
Mass m = 1870 to 1920 (= 1910) MeV
Full width [ = 190 to 270 (=~ 250) MeV
Ppeam = 1.46 GeV/c 47X2 = 9.54 mb
A(1910) DECAY MODES Fraction (F;/T) p (MeV/c)
N~ 15-30 % 716
A(1920) Py 1P =369
Mass m = 1900 to 1970 (= 1920) MeV
Full width I = 150 to 300 (x 200) MeV
Pbeam = 1.48 GeV/c 47X2 = 9.37 mb
A(1920) DECAY MODES Fraction (I';/T) p (MeV/c)

N=

5-20 %

722
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A(1930) Dy

14P)=3G37)

Mass m = 1920 to 1970 (= 1930) MeV
Full width I = 250 to 450 (= 350) MeV

A(1520) Dy3

10P) = 0(37)

Mass m = 1519.5 + 1.0 MeV []
Full width T = 15.6 + 1.0 MeV []

Pbeam = 1.50 GeV/c 47%X2 = 9.21 mb
A(1930) DECAY MODES Fraction (F;/T) P (MeVc)
N~ 10-20 % 729
A(1950) F3 1Py =33
Mass m = 1940 to 1960 (= 1950) MeV
Full width ' = 290 to 350 (~ 300) MeV
Pbeam = 1.54 GeV/c 47%2 = 8.91 mb
A(1950) DECAY MODES Fraction (;/T) p (MeVfc)
Nm 35-40 % 741
Nrnw 716
Am 20-30 % 574
Np <10 % 469
N~ 0.10-0.15 % 749
A(2420) H3 11 1Py = 3(%%)
Mass m = 2300 to 2500 (= 2420) MeV
Full width I = 300 to 500 (= 400) MeV
Pbeam = 2.64 GeV/c 47X2 = 4.68 mb
A(2420) DECAY MODES Fraction (I';/T) P (MeV/c)
Nr 5-15% 1023
(S=-1,1=0)
A0 = uyds

1P) = 0(3+)

Mass m = 1115.684 + 0.006 MeV

Mean life 7 = (2.632 % 0.020) x 10705 (S = 1.6)

cr =7.89cm
Magnetic moment p = —0.613 + 0.004 up

Electric dipole moment d < 1.5 x 10716 ecm, CL = 95%

Decay parameters
pr— a_ = 0.642 + 0.013
" é_ = (—6.5+35)°
" y_ =0.76 6]
" A_ = (8 % 4) le]
nn® ap = +0.65 £ 0.05
pe~ T, ga/gy = —0.718 £ 0.015 [e]
A DECAY MODES Fraction (I';/T") P (MeV/c)
pm~ (639 £0.5 )% 101
nn® (35.8 £0.5 )% 104
ny ( 1.7540.15) x 10~3 162
Py [h]( 84 +1.4 )x 104 101
pe v, ( 8.3240.14) x 10—4 163
puTT, ( 1.5740.35) x 10~4 131
l A(1405) Sp; l 1JPy = 0(}7)
Mass m = 1407 + 4 MeV
Full width I = 50.0 £+ 2.0 MeV
Below K N threshold
A(1405) DECAY MODES Fraction (I'; /) P (MeVfc)
rr 100 % 152

Pbeam = 0.39 GeV/c 47X2 = 82.8 mb
A(1520) DECAY MODES Fraction (I';/T) p (MeVfc)
NK 45+ 1% 244
rm 42+ 1% 267
Arm 10 + 1% 252
Irmw 0.9 +0.1% 152
Ay 0.8 + 0.2% 351
A(1600) Py 1(JP) = o(1H)
Mass m = 1560 to 1700 (= 1600) MeV
Full width ' = 50 to 250 (= 150) MeV
Pbeam = 0.58 GeV/c 47X2 = 41.6 mb
A(1600) DECAY MODES Fraction (I;/T) p (MeV/c)
NK 15-30 % 343
rm 10-60 % 336
A(1670) So; 1(4P) =0(37)
Mass m = 1660 to 1680 (=~ 1670) MeV
Full width I = 25 to 50 (~ 35) MeV
Ppeam = 0.74 GeV/c 47X2 = 28.5 mb
A(1670) DECAY MODES Fraction (I';/F) p (MeVfc)
NK 15-25 % 414
I 20-60 % 393
An 15-35 % 64
A(1690) Dg3 10Py=0(37)
Mass m = 1685 to 1695 (~ 1690) MeV
Full width I = 50 to 70 (~ 60) MeV
Pbeam = 0.78 GeV/c 47X2 = 26.1 mb
A(1690) DECAY MODES Fraction (I;/T) p (MeVjc)
NK 20-30 % 433
rr 20-40 % 409
Arm ~25% 415
Irmw ~20% 350
| A(1800) So; 1(4Py=0(37)
Mass m = 1720 to 1850 (=~ 1800) MeV
Full width I = 200 to 400 (= 300) MeV
Pbeam = 1.01 GeV/c 4rX2 = 17.5 mb
A(1800) DECAY MODES Fraction (';/T) p (MeV/c)
NK 25-40 % 528
rm seen 493
X(1385)m seen 345
N K*(892) seen t
A(1810) Py 1JPy = 0o(3)
Mass m = 1750 to 1850 (~ 1810) MeV
Full width I' = 50 to 250 (~ 150) MeV
Pbeam = 1.04 GeV/c 4rX2 = 17.0 mb
A(1810) DECAY MODES Fraction (I';/T) P (MeVfc)
NK 20-50 % 537
rr 10-40 % 501
X(1385)m seen 356
NK*(892) 30-60 % t
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A(1820) Fos

0Py = 0(3*)

Mass m = 1815 to 1825 (x 1820) MeV
Full width I = 70 to 90 (= 80) MeV

Pbeam = 1.06 GeV/c

47X2 = 16.5 mb

A(1820) DECAY MODES Fraction (;/T) p (MeV/c)
NK 5565 % 545
Ir 8-14 % 508
X (1385)w 5-10 % 362
A(1830) Dos 1Py =0(37)
Mass m = 1810 to 1830 (~ 1830) MeV
Full width T = 60 to 110 (=~ 95) MeV
Ppeam = 1.08 GeV/c 47X2 = 16.0 mb
A(1830) DECAY MODES Fraction (I;/T) p (MeV/c)
NK 3-10% 553
Im 35-75 % 515
X (1385)m >15% an
A(1890) Po3 1(4P) = 0(3%)
Mass m = 1850 to 1910 (~ 1890) MeV
Full width I = 60 to 200 (= 100) MeV
Pbeam = 1.21 GeV/c 47X2 = 13.6 mb
A(1890) DECAY MODES Fraction (I;/I) p (MeV/c)
NK 20-35 % 599
rm 3-10 % 559
r(1385)m seen 420
NK*(892) seen 233
A(2100) Gor 1(UPy=0(37)
Mass m = 2090 to 2110 (~ 2100) MeV
Full width I = 100 to 250 (= 200) MeV
Pbeam = 1.68 GeV/c 47%2 = 8.68 mb
A(2100) DECAY MODES Fraction (I';/r) p (Mev/c)
NK 25-35 % 751
Ir ~5% 704
An <3% 617
=K <3% 483
Aw <8% 443
N K*(892) 10-20 % 514
A(2110) Fos 1(4Py=0(3%)
Mass m = 2090 to 2140 (=~ 2110) MeV
Full width I = 150 to 250 (=~ 200) MeV
Ppeam = 1.70 GeV/c 47X2 = 8.53 mb
A(2110) DECAY MODES Fraction (I';/T) p (MeVjc)
NK 5-25 % 757
I 10-40 % 71
Aw seen 455
r(1385)m seen 589
NK*(892) 10-60 % 524
A(2350) Hoo 1(4P) = o(3*)
Mass m = 2340 to 2370 (= 2350) MeV
Full width ' = 100 to 250 (~ 150) MeV
Ppeam = 2.29 GeV/c 47X2 = 5.85 mb
A(2380) DECAY MODES Fraction (;/r) p (MeV/c)
NK ~12% 915
I ~10% 867

> BARYONS
(S=-1,1=1)

st =yus, X% =uds, £~ =dds

—
—

1P =13

Mass m = 1189.37 + 0.07 MeV (S = 2.2)
Mean life 7 = (0.799 % 0.004) x 10710 s
cr = 2396 cm
Magnetic moment p = 2.458 + 0.010 uy (S = 2.1)
M(E*t = ne*o)/F(E- = ne"7) < 0.043

Decay parameters
pr® ap = —0.980F 5017
" do = (36 £ 34)°
" vo = 0.16 8]
" Ao = (187 + 6)° 8]
nat o, = 0.068 + 0.013

" ¢, = (167 £20)° (S =1.1)
" vy = —0.97 l&]
" Ay = (-73117)e el

Py a, = —0.76 £ 0.08
P

X+ DECAY MODES Fraction (T;/T) Confidence level (MeV/c)
pr0 (51.57+0.30) % 189
nat (48.3040.30) % 185
Py (1.2540.07) x 103 225
naty [h] (45 +05)x107% 185
Aet v, (2.0 0.5 )x 105 71

AS = AQ (SQ) violating modes or
AS = 1 weak neutral current (S1) modes

netve sQ < 5 x 1076 90% 224

npty, 5Q < 30 x10~5 90% 202
BV

pete” s1 < 7 x 1076 225

1P) = 1(3%)

JP not measured; assumed to be the same as for the X+ and ¥ .

Mass m = 1192.55 + 0.08 MeV (S = 1.2)
My — Mygo = 4.88 + 0.08 MeV (S = 1.2)
Myo — mp = 76.87 + 0.08 MeV (S = 1.2)
Mean life 7 = (7.4 £ 0.7) x 10720 s
cr =222x10"M m
Transition magnetic moment |py | = 1.61 & 0.08 py

p

0 DECAY MODES Fraction (T;/T) Confidence level (MeV/c)

Ay 100 % 74
Ayy < 3% 90% 74
Net e~ Ul sx1073 74

1Py =1(3%)

Mass m = 1197.436 + 0.033 MeV (S = 1.2)

Mmg_ — my, =807 £0.08 MeV (S =1.9)

mg_ — mp = 81752 £ 0.034 MeV (S =12)

Mean life 7 = (1.479 £+ 0.011) x 107195 (S = 1.3)
cr =4.434cm

Magnetic moment p = —1.160 + 0.025 puy (S = 1.7)

Decay parameters

nr™ a_ = —0.068 + 0.008
“ #_ = (10 + 15)°
u y_ =098 €]
" A_ = (249F 12y 6]

ne~ v, ga/gy = 0.340 + 0.017 €]
" £,(0)/£,(0) = 0.97 + 0.14
" D =011+ 0.10

Ae~ T, gv/ga =001 %010 (S=1.5)
" gwm/ga =24 =170
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X~ DECAY MODES Fraction (F;/T) P (MeVfc)
nm~ (99.848+0.005) % 193
nmw~y [h}( 46 £06 )x10~% 193
ne~ v, ( 1.017+0.034) x 1073 230
npT U, (45 +04 )x107% 210
Ae~ T, (573 £0.27 ) x 1075 79
X(1385) Py3 1Py =13+)
¥ (1385)*mass m = 1382.8 &+ 0.4 MeV (S = 2.0)
(1385)° mass m = 1383.7 + 1.0 MeV (S = 1.4)
X (1385)"mass m = 1387.2 + 0.5 MeV (S = 2.2)
X (1385)*full width I = 35.8 + 0.8 MeV
£(1385)° full width I = 36 + 5 MeV
X (1385)full width I = 39.4 + 2.1 MeV (S = 1.7)
Below K N threshold
X(1385) DECAY MODES Fraction (I';/T) p (MeVjc)
Am 88+2 % 208
I 1242 % 127
Z(1660) Py 1Py =131
Mass m = 1630 to 1690 (= 1660) MeV
Full width I = 40 to 200 (= 100) MeV
Pbeam = 0.72 GeV/c 47X2 = 29.9 mb
X(1660) DECAY MODES Fraction ([;/T) P (MeVfc)
NK 10-30 % 405
Am seen 439
rr seen 385
Z(1670) Dy3 1(4Py=1(37)
Mass m = 1665 to 1685 (~ 1670) MeV
Full width T = 40 to 80 (= 60) MeV
Pbeam = 0.74 GeV/c 47X2 = 28.5 mb
X(1670) DECAY MODES Fraction (I;/T) P (MeV/c)
NK 7-13% 414
Am 5-15 % 447
Ir 30-60 % 393
Z(1750) 51 1Py =137)
Mass m = 1730 to 1800 (~ 1750) MeV
Full width I = 60 to 160 (~ 90) MeV
Pbeam = 0.91 GeV/c 47X2 = 20.7 mb
X(1750) DECAY MODES Fraction (I;/T) p (MeVjc)
NK 10-40 % 486
Am seen 507
rr <8% 455
Iy 15-55 % 81
X(1775) Dys 4Py =1(37)
Mass m = 1770 to 1780 (= 1775) MeV
Full width T' = 105 to 135 (~ 120) MeV
Poeam = 0.96 GeV/c 47X2 = 19.0 mb
X(1775) DECAY MODES Fraction (I;/T) p (MeV/c)
NK 37-43% 508
A 14-20% 525
Xm 2-5% 474
¥(1385)w 8-12% 324
A(1520) 17-23% 198

X(1915)

Fis 1(4P) = 1(3%)

Mass m = 1900 to 1935 (~ 1915) MeV
Full width I = 80 to 160 (= 120) MeV

Peam = 1.26 GeV/c 47X2 = 12.8 mb
¥(1915) DECAY MODES Fraction (I;/T) p (MeV/c)
NK 5-15 % 618
Am seen 622
Ir seen 577
X (1385)w <5% 440
Z(1940) D13 1Py =137)
Mass m = 1900 to 1950 (= 1940) MeV
Full width I = 150 to 300 (=~ 220) MeV
Pbeam = 1.32 GeV/c 4rXx2 =121 mb
£(1940) DECAY MODES Fraction (I';/T) p (MeV/c)
NK <20% 637
A seen 639
X seen 594
¥ (1385)7r seen 460
A(1520) T seen 354
A(_1232)K seen 410
NK*(892) seen 320
£(2030) Fy7 1(4P) = 1(3%)
Mass m = 2025 to 2040 (= 2030) MeV
Full width I = 150 to 200 (= 180) MeV
Poeam = 1.52 GeV/c 47X2 = 9.93 mb
X(2030) DECAY MODES Fraction (I;/T) p (MeV/c)
NK 17-23% 702
Am 17-23 % 700
rr 5-10 % 657
=K <2% 412
X (1385)7 5-15 % 529
A(1520) 7 10-20 % 430
A(1232)K 10-20 % 498
NK*(892) <5% 438
X (2250) 10Py = 1(7%)
Mass m = 2210 to 2280 (=~ 2250) MeV
Full width [ = 60 to 150 (~ 100) MeV
Pbeam = 2.04 GeV/c 47X2 = 6.76 mb
X(2250) DECAY MODES Fraction (I;/T) p (MeV/c)
NK <10% 851
Arm seen 842
Xr seen 803
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= BARYONS
(5=-2,1=1/2)

=0 = yss, =~ =dss

=0 1Py = 33

P is not yet measured; + is the quark model prediction.

Mass m = 1314.9 + 0.6 MeV
m=_ — m= = 6.4 £ 0.6 MeV
Mean life 7 = (2.90 + 0.09) x 10710 s
cr =8.71cm
Magnetic moment o = —1.250 & 0.014 up

Decay parameters

Ax® a=-0411+0.022 (S=21)
" 6 = (21 £+ 12)°
" ~ = 0.85 [
" o = (218+12)° 6]

Ny a=04+04

IOy a = 0.20 + 0.32

=0 DECAY MODES Fraction (I';/T)

P
Confidence level (MeV/c)

An® (99.5440.05) % 135
Ay ( 1.0640.16) x 1073 184
0y (35 +0.4 )x 1073 17
Tte v, < 11 x 1073 90% 120
ItuTo, < 11 x 1073 90% 64
AS = AQ (SQ) violating modes or
AS = 2 forbldden (52) modes
I et 5@ < 9 x 1074 90% 112
ITpty, sQ < 9 x 1074 90% 49
pr~ s2 < 4 x 1075 90% 299
pe U, 52 < 13 x 1073 323
puT T, 52 < 13 x 103 309
[=-] 10P) = 35
P is not yet measured; + is the quark model prediction.
Mass m = 1321.32 £ 0.13 MeV
Mean life 7 = (1.639 4 0.015) x 10710 s
cr =491 cm
Magnetic moment p = —0.6507 + 0.0025 ppy
Decay parameters
An~ o = —0.456 £ 0.014 (S = 1.8)
" ¢ =(4+4)
" ~ = 0.89 (8]
" A = (188 + 8)° €]
Ae~Te  ga/gv = —0.25 £ 0.05 [€]

P
=~ DECAY MODES Fraction (I';/T) Confidence level (MeV/c)
Ar~ (99.887 +0.035) % 139
Iy (127 £0.23 )x 1074 118
Ae~ Ve (563 £0.31 ) x 1074 190
Au~ 7, (35 *35 )x1w0t 163
507, (87 +17 )x107° 122
-y, < 8 x 10~4 90% 70
Ve~ 7, < 23 x 1073 %0% 6

AS = 2 forbidden (52) modes
nm~ s2 < 19 x 1075 90% 303
ne” Ve s2 < 32 x 10~3 90% 327
np~ ﬁu 52 < 15 % 90% 314
pr-m” s2 < 4 x 10~4 90% 223
prT e U, 2 < 4 x 1074 90% 304
prTuT T, 52 < 4 x 1074 90% 250
pu u” L < 4 x 1074 90% -

[=(530) Pis |

Z(1530)° mass m = 1531.80 + 0.32 MeV
Z(1530)~mass m = 1535.0 + 0.6 MeV
(15300 full width I = 9.1 + 0.5 MeV
=(1530) full width I = 9.9F -7 Mev

=(1530) DECAY MODES Fraction (I';/T)

1P = 3G+

)

(S = 1.3)

p
Confidence level (MeV/c)

= 100 % 152
v <4 % 90% 200
| =(1690) 10Py = 307
Mass m = 1690 + 10 MeV [l
Full width ' < 50 MeV
=(1690) DECAY MODES Fraction (F;/T) p (MeV/c)
/\K seen 240
K seen 51
Zata- possibly seen 214
Z(1820) D13 1Py =337
Mass m = 1823 + 5 MeV []
Full width I = 24715 Mev [
Z=(1820) DECAY MODES Fraction (I';/T) p (MeV/c)
AK large 400
K small 320
=7 small 413
=(1530) 7 small 234
Z(1950) 14P) = 129
Mass m = 1950 =+ 15 MeV [/
Full width I = 60 + 20 MeV []
=(1950) DECAY MODES Fraction (T;/T) p (MeVjc)
AK seen 522
K possibly seen 460
=7 seen 518
- ?
=(2030) 10PY =339
Mass m = 2025 + 5 MeV []
Full width I = 20+ 12 Mev [
=(2030) DECAY MODES Fraction (I';/T) p (MeV/c)
AK ~20% 589
K ~ 80 % 533
=7 small 573
=(1530)« small 421
AK T small 501
SKn small 430
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pK~nt a0 seen 758
2 BARYONS pK*(892) n+ seen 579
(s =-3 /= 0) P(K~ 7 )nonresonant ™° (32+ 07)% 758
’ A(1232) K*(892) seen a7
0- = sss pK-mtata= (10 +7 )x1074 670
pK~xt x0n® ( 7.0+ 35)x 103 676
pK~nt x0x0x0 ( 44+ 28)x 1073 573
[2-] I(P) = 0(3) i ,
ronic modes with a p and zero or two K's
JP is not yet measured; %"’ is the quark model prediction. prta~ ( 3.0+ 1.6)x 1073 926
p 1, (980) [K] (24% 16)x1073 621
Mass m = 1672.45 + 0.29 MeV prtata=a~ ( 1.6+ 1.0)x 10-3 851
Mean life 7 = (0.822 + 0.012) x 10710 s pKY K- ( 30+ 1.1)x 103 615
cr = 2.46 cm po Kl < 17 x103  CcL=90% 589

Magnetic moment u = —1.94 + 0.22 upy Hadronic modes with a hy

Decay parameters Ant ( 7.9+ 1.8)x 10~3 863
AK— a = —0.026 + 0.026 Antx0 (32 09)% 843
=0x- a =009 +0.14 Ap® < 4 % CL=95% 639
= a° a =0.05+ 0.21 Antata~ (27 06)% 806
» 30gpt ( 87+ 20)x10~3 824
22— DECAY MODES Fraction (F;/F) Confidence level (MeV/c) 507+ 40 (16+ 06)% 802
K- (GTaL0n % m SOxtgta— ( 9.2+ 33)x 1073 762
=0, (23'&0:7) % 208 sta0 ( 87+ 22)x 1073 826
=0 ( 8'6;1:0 0% 290 Statqa— ( 3.0+ 06)% 803
= OEDA A ot 0 < 12 % CL=95% 579
ZoataT (43+34)x 1074 190 Soptgpt ( 1.6+ 0.6)% 798
- 0_— 5.1 _a Ttatp—a® 569
_0‘;(_1?_30) " ( :':;;-g)x i:_3 3;: Itw [kl ( 24+ 07)% 569
= X . X
= Ve <( o )x 10-3 0% 14 Stetata— o™ (26F 35)x10-3 707
FtKtK- (314 08)x1073 346
AS = 2 forbldden (52) modes It¢ K] ( 30+ 1.3)x10-3 292
An— s2 < 19 x 1074 90% 449 s+ Kt - (57% 33)x10-3 668
okt ( 34+ 09)x 103 652
02(2250)~ 1(4P) = 0?7 == Ktgt ( 3.8+ 1.2)x10~3 564
=(1530)°K* [kl (23% 09)x103 47
Mass m = 2252 + 9 MeV
Full width T = 55 & 18 MeV ) Inclusive modes
p anything (50 +16 )% -
- p anything (no A (12 £19 )% -
£2(2250)~ DECAY MODES Fraction (F;/T) p (MeV/o) n anything (no A) (B0 115 )% -
ZTatK- seen 531 n anything (no A) (29 +17 )% -
Z(1530)°K~ seen 437 A anything (35 +11 )% s=1.4 -
I*+anything M (10 £5)% -
et anything (45+ 1.7)% -

CHARMED BARYONS pe*anything (18£ 09)% -

Aet anything (14 05)% -

(C= +1) Autanything (15+ 09)% -

Af =ude, I¥t=uue, I =udc, £2=ddc,
=t =usc, Z0=dsc, 20 =ssc Ac(2625)* =0

-c

Mass m = 2625.6 + 0.8 MeV
AT 1Py = o(3%) m =y = 3406 + 06 MeV
Full width T < 3.2 MeV, CL = 90%

J not confirmed; § is the quark model prediction.

Mass m = 2285.1 + 0.6 MeV Ac(2625)+ DECAY MODES Fraction (I';/T") p (MeVfc)
Mean life 7 = (0.2001:013) x 10712 5 Aratae seen 182
cr = 60.0 um T (2455) 1 + seen 99
Decay asymmetry parameters T (2455)°xt
At a=—1.03+ 029 At x+ 7~ nonresonant seen 182
Aetve  a=-089+013
Scale factor/ P Zc(2455) I(JP) = 1(%"‘)
A: DECAY MODES Fraction (I';/T) Confidence level (MeV/c)
JP not confirmed; é*‘ is the quark model prediction.
Hadronic modes with a p and one K
pK° (21+ 04)% 872 X.(2455)ttmass m = 2453.1 + 0.6 MeV
pK— =t (4.4+ 0.6)% 822 X(2455)* mass m = 2453.8 + 0.9 MeV
pK*(892)° K] (16 04)% 681 X,(2455)° mass m = 2452.4 + 0.7 MeV (S = 1.1)
A(1232)tH K~ (7 +4 )x1073 709
A(1520)ﬂ'+ k] (39% %3) % 10—3 626 X .(2455) DECAY MODES Fraction (I';/T) p (MeVfc)
+
p K~ =% nonresonant (24% 3% 822 Acm 100 % 9

pKOnt = (2.4+ 0.8) % s=13 753
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=t 0Py = 13

1(4P) not confirmed; }(3) is the quark model prediction.

Mass m = 2465.1 + 1.6 MeV
Mean life 7 = (0.357397) x 10712 5

cr = 106 um

=} DECAY MODES Fraction (I;/T) p (MeVfc)
AK-ntxt seen 785
TtK— ot seen 808
SOK-—gtpt seen 733
Zoatat seen 850

= — 171

= 14P) = 33

1(JP) not confirmed; 3(3) is the quark model prediction.

Mass m = 2470.3 + 1.8 MeV (S = 1.3)
M=o —m-, =52+22MeV (S=11)

c c
Mean life r = (0.098 +9:023) x 10712 5

-0.015
cr =29 um
A few branching ratios but no absolute branching fractions have been
measured.

Eg DECAY MODES Fraction (I';/T) p (MeV/c)
~ ¢+ anything [m] seen -
nt seen 875
“atatas seen 816
pK~K*(892)° seen 406
N K* seen 522

BOTTOM (BEAUTY) BARYON
(B=-1)

A =udb

A 1(JPy = o(3+)

1(JP) not yet measured; 0(3) is the quark model prediction.
Mass m = 5641 + 50 MeV
Mean life 7 = (1.07F312) x 10712 s

A9 DECAY MODES Fraction (I;/T) p (MeV/c)
J/9(18)A seen 1756
pDOr— seen 2383
/1(‘_.L7r+ T seen 2336
AL~ X seen -
/\j X seen -

NOTES

This Summary Table only includes established baryons. The Full Listings in-
clude evidence for other baryons. The masses, widths, and branching fractions
for the resonances in this Table are Breit-Wigner parameters. The Full Listings
also give, where available, pole parameters. See, in particular, the Note on N
and A Resonances.

For most of the resonances, the parameters come from various partial-wave
analyses of more or less the same sets of data, and it is not appropriate to
treat the results of the analyses as independent or to average them together.
Furthermore, the systematic errors on the results are not well understood.
Thus, we usually only give ranges for the parameters. We then also give a best
guess for the mass (as part of the name of the resonance) and for the width.
The Note on N and A Resonances and the Note on A and X Resonances in
the Full Listings review the partial-wave analyses.

When a quantity has “(S = ...)" toits right, the error on the quantity has been
enlarged by the “scale factor” S, defined as S = /XZ/(N — 1), where N is the
number of measurements used in calculating the quantity. We do this when
S > 1, which often indicates that the measurements are inconsistent. When
S > 1.25, we also show in the Full Listings an ideogram of the measurements.
For more about S, see the Introduction.

A decay momentum p is given for each decay mode. For a 2-body decay, p is
the momentum of each decay product in the rest frame of the decaying particle.
For a 3-or-more-body decay, pis the largest momentum any of the products can
have in this frame. For any resonance, the nominal mass is used in calculating
p. A dagger (“1") in this column indicates that the mode is forbidden when
the nominal masses of resonances are used, but is in fact allowed due to the
nonzero widths of the resonances.

[a] The masses of the p and n are most precisely known in u (unified atomic
mass units). The conversion factor to MeV, 1 u = 931.49432 + 0.00028
MeV, is less well known than are the masses in u.

[b] The limit is from neutrality-of-matter experiments; it assumes g, = g, +
ge. See also the charge of the neutron.

[c] The first limit is geochemical and independent of decay mode. The
second limit assumes the dominant decay modes are among those inves-
tigated. For antiprotons the best limit, inferred from the observation of
cosmic ray p's is 75 > 107 yr, the cosmic-ray storage time, but this
limit depends on a number of assumptions. The best direct observation
of stored antiprotons gives 75/B(p — e~ ) > 1848 yr.

[d] There is some controversy about whether nuclear physics and model
dependence complicate the analysis for bound neutrons (from which the
best limit comes). For reactor experiments with free neutrons, the best
limit is > 107 s.

[e] The parameters ga, gv, and gy for semileptonic modes are defined by
Brlna(gv + gavs) + i(gwm/ms;) ox, 4”1Bi, and ¢ay is defined by
8a/8v = |8a/8v|&/®AV. See the “Note on Baryon Decay Parameters”
in the neutron Full Listings.

[f] Time-reversal invariance requires this to be 0° or 180°.

[g] The decay parameters v and A are calculated from a and ¢ using

v = V1-a? cosg, tanA = —é V1-a? sing.

See the “Note on Baryon Decay Parameters” in the neutron Full Listings.

[h] See the Full Listings for the pion momentum range used in this measure-
ment.

[i] The error given here is only an educated guess. It is larger than the error
on the weighted average of the published values.

[j] A theoretical value using QED.

[k] The branching fraction includes all the decay modes of the final-state
resonance.

[/] The value is for the sum of the charge states indicated.
[m] ¢ indicates e or z mode, not sum over modes.
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SEARCHES FOR
FREE QUARKS, MONOPOLES,
SUPERSYMMETRY,
COMPOSITENESS, etc.

Eree Quark Searches |

All searches since 1977 have had negative results.

Searches for Quark and
Lepton Compositeness

I Magnetic Monopole Searches |

Isolated candidate events have not been confirmed. Most experiments
obtain negative results.

I Supersymmetric Particle Searches I

Limits are based on the Minimal Supersymmetric Standard Model.
Assumptions include: 1)7(? (or 7) is lightest supersymmetric particle;
2) R-parity is conserved; 3) my = mg, and all scalar quarks (except 7,
and ) are degenerate in mass.
See the Full Listings for a Note giving details of supersymmetry.
X9 — neutralinos (mixtures of 3, Z°, and H9)
Mass m5z > 15 GeV, CL = 90%  [if m; = 100 GeV
(from cosmology)]
> 18 GeV, CL =90%  [GUT relations assumed]
Mass mgo > 45 GeV, CL =95%  [GUT relations assumed]
2
Mass mso > 70 GeV, CL = 95%  [GUT relations assumed]
3
Mass myz, > 108 GeV, CL = 95%  [GUT relations assumed]
4

Mass mi?

XE — charginos (mixtures of W* and H¥)

Mass mg, > 45GeV, CL = 95% [all m)-@]

1 1
Mass mg. > 99 GeV, CL = 95%  [GUT relations assumed]
2
v — scalar neutrino (sneutrino)

Mass m > 37.1 GeV, CL = 95% [one flavor]
Mass m > 41.8 GeV, CL = 95% [three degenerate flavors]
€ — scalar electron (selectron)

Mass m > 65 GeV, CL = 95% [if mz = 0]
Mass m > 50 GeV, CL = 95% [if my <5 GeV]
Mass m > 45 GeV, CL = 95%  [if my, < 41 GeV]
1
£ — scalar muon (smuon)
Mass m > 45 GeV, CL = 95% [if mgpp < 41 GeV]
1
7 — scalar tau (stau)
Mass m > 45 GeV, CL = 95% [if mgo < 38 GeV]
1
G — scalar quark (squark)

Scale Limits A for Contact Interactions
(the lowest dimensional Interactions with four fermions)

If the Lagrangian has the form
2 — -—
£ £ Py vdrtie
(with g2/4x set equal to 1), then we define A = Af,_. For the
full definitions and for other forms, see the Note in the Listings

on Searches for Quark and Lepton Compositeness in the full Re-
view and the original literature.

Afi(eeee) > 1.6 TeV, CL =95%

Af (eeee) > 3.6 TeV, CL = 95%
Af(eepp) > 2.6 TeV, CL = 95%
Af(eepp) > 19TeV,CL=95%
Af(eerr) > 1.9TeV,CL=95%
Ap(eerr) > 29TeV, CL=95%
Af(eeee)y > 35TeV, CL =95%
Aj (eeee)y > 2.8 TeV, CL=95%
Afi(eeqq) > 1.7 TeV, CL =95%
Af(eeqq) > 22TeV,CL =95%
Af(brqq) > 1.4 TeV, CL =95%
A (krqq) > 16TeV,CL=95%
Nr(vuvepe) > 3.1 TeV, CL = 90%
Af(gg9qq) > 14Tev, CL=95%
Excited Leptons

The limits from £*+ £*~ do not depend on X (where X is the

££* transition coupling). The A-dependent limits assume chiral

coupling, except for the third limit for e* which is for nonchiral

coupling. For chiral coupling, this limit corresponds to A, = V2.
e** — excited electron

Mass m > 46.1 GeV, CL = 95% (from e*te*™)

Mass m > 91 GeV, CL = 95% (if Az > 1)

Mass m > 127 GeV, CL = 95% (if Ay = 1)

u*+ — excited muon

Mass m > 46.1 GeV, CL = 95%  (from p**u*~)

Mass m > 91 GeV, CL = 95% (if Az > 1)
7+ — excited tau

Mass m > 46.0 GeV, CL = 95%  (from 7*+7*7)

Mass m > 90 GeV, CL = 95% (if Az > 0.18)

v* — excited neutrino

These limits include the effects of cascade decay, for a partic-
ular choice of parameters, u=—250 GeV, tan3=2. The limits
are weakly sensitive to these parameters over much of param-
eter space. Limits assume GUT relations between gaugino
masses and the gauge coupling; in particular that for |u| not
small, mi? ~ mg/6.

Mass m > 90 GeV, CL = 90%  [any mgz <410 GeV]
Mass m > 218 GeV, CL = 90%  [if mz = mg]
£ — gluino
There is some controversy about a low-mass window (1 5
mg S 4 GeV). Several experiments cast doubt on the exis-
tence of this window.

These limits include the effects of cascade decay, for a partic-
ular choice of parameters, u=—250 GeV, tan3=2. The limits
are weakly sensitive to these parameters over much of param-
eter space. Limits assume GUT relations between gaugino
masses and the gauge coupling; in particular that for |u| not
small, mi(l, ~ mg/T.

Mass m > 100 GeV, CL = 90%  [any mg]

Mass m > 218 GeV, CL =90% [if mz < m

q E]

Mass m > 47 GeV, CL = 95%  (from v*7*)

Mass m > 91 GeV, CL = 95%

q* — excited quark

Mass m > 45.6 GeV, CL = 95%

(if Az > 1)

(from ¢*7*)

Mass m > 88 GeV, CL = 95% (if Az > 1)

Mass m > 540 GeV, CL = 95% (PP — q*X)
Color Sextet and Octet Particles
Color Sextet Quarks (gg)

Mass m > 84 GeV, CL = 95%  (Stable qg)
Color Octet Charged Leptons (£g)

Mass m > 86 GeV, CL = 95%  (Stable £g)
Color Octet Neutrinos (vg)

Mass m > 110 GeV, CL =90% (vg — vg)
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TESTS OF CONSERVATION LAWS
Revised by L. Wolfenstein and T.G. Trippe, June 1994.

In keeping with the current interest in tests of conservation laws,
we collect together a Table of experimental limits on all weak and
electromagnetic decays, mass differences, and moments, and on
a few reactions, whose observation would violate conservation
laws. The Table is given only in the full Review of Particle
Properties, not in the Particle Physics Booklet. For the benefit
of Booklet readers, we include the best limits from the Table in
the following text. The Table is in two parts: “Discrete Space-
Time Symmetries,” i.e., C, P, T, CP, and CPT; and “Number
Conservation Laws,” i.e., lepton, baryon, hadronic flavor, and
charge conservation. The references for these data can be found
in the the Full Listings in the Review. A discussion of these tests
follows.

CPT INVARIANCE

General principles of relativistic field theory require invariance
under the combined transformation CPT. The simplest tests of
CPT invariance are the equality of the masses and lifetimes of a
particle and its antiparticle. The best test comes from the limit
on the mass difference between K and e Any such difference
contributes to the CP-violating parameter €. Assuming CPT
invariance, ¢, the phase of € should be very close to 44°. (See
the “Note on C'P Violation in K 2 Decay” in the Full Listings.)
In contrast, if the entire source of CP violation in K© decays
were a K0 — FO mass difference, ¢, would be 44° + 90°. It is
possible to deduce that [1]

2(myg — M) 0| (26+- + 3600 — 0c)

sin ¢

i
Using our best values of the CP-violation parameters, we get
}(m.i(_o —myo)/myo| < 10718 (CL = 90%). Limits can also be
placed on specific C PT-violating decay amplitudes. Given the
small value of (1 — |noo/n4+=1), the value of ¢oo — ¢4— provides
a measure of CPT violation in Kg — 21 decay. Results from
CERN [1] and Fermilab [2] indicate no CPT-violating effect.

CP AND T INVARIANCE

Given CPT invariance, C' P violation and T violation are equiv-
alent. So far the only evidence for CP or T violation comes
from the measurements of 14—, 1go, and the semileptonic decay
charge asymmetry for K, e.g., [n4—| = |A(KY — nFn~)/ A(KY
— wtaT)| = (2.269 £ 0.023) x 1072 and [[(KY — 77etv) —
(K9 — nte v)]/[sum] = (0.333 £ 0.014)%. Other searches
for CP or T violation divide into (a) those that involve weak
interactions or parity violation, and (b) those that involve
processes allowed by the strong or electromagnetic interac-
tions. In class (a) the most sensitive is probably the search
for an electric dipole moment of the neutron, measured to be
< 1.1x107% e cm (95% CL). A nonzero value requires both P
and T violation. Class (b) includes the search for C violation in
71 decay, believed to be an electromagnetic process, e.g., as mea-
sured by T'(n — ptu~n%)/T'(n — all) < 5 x 1076, and searches
for T violation in a number of nuclear and electromagnetic re-
actions.

CONSERVATION OF LEPTON NUMBERS

Present experimental evidence and the standard electroweak
theory are consistent with the absolute conservation of three
separate lepton numbers: electron number L., muon number
L,, and tau number L,. Searches for violations are of the fol-
lowing types:

a) AL =2 for one type of lepton. The best limit comes
from the search for neutrinoless double beta decay (Z.A) —
(Z 4+2,A) + e +e . The best laboratory limit is t;/5 > 1.4 x
10?4 yr (CL=90%) for "Ge.

b) Conversion of one lepton type to another. For
purely leptonic processes, the best limits are on g4 — ey and
1 — 3e, measured as T(p — ey)/T'(x —all) < 5 x 107! and
I(p — 3e)/T(p — all) < 1.0 x 10712, For semileptonic
processes, the best limit comes from the coherent conversion
process in a muonic atom, p~+ (Z,A4) — e~ + (Z, A), mea-
sured as ['(p~Ti — e Ti)/T(¢"Ti — all) < 4 x 10712, Of
special interest is the case in which the hadronic flavor also
changes, as in K; — ey and K+ — wre ut, measured as
INKp — ew)/T(Ky — all) < 33 x 107! and (Kt —
7te~ut)/T(K+ — all) < 2.1 x 1071%. Limits on the conversion
of 7 into e or i are found in 7 decay and are much less stringent
than those for 4 — e conversion, e.g., [(1 — pv)/I'(7 — all) <
4.2 x 1078 and T(1 — ey)/T(1 — all) < 1.2 x 1074

c) Conversion of one type of lepton into another type
of antilepton. The case most studied is u~ + (Z,4) —
et +(Z — 2, A), the strongest limit being I'(z~Ti — etCa)/
I(p~Ti—all) <9 x 10711,

d) Relation to neutrino mass. If neutrinos have mass, then
it is expected even in the standard electroweak theory that the
lepton numbers are not separately conserved, as a consequence
of lepton mixing analogous to Cabibbo quark mixing. However,
in this case lepton-number-violating processes such as g — en
are expected to have extremely small probability. For small
neutrino masses, the lepton-number violation would be observed
first in neutrino oscillations, which have been the subject of
extensive experimental searches. For example, searches for 7,
disappearance, which we label as 7, / 7., give measured limits
A(m?) < 0.0083 eV? for sin?(20) = 1, and sin?(26) < 0.14 for
large A(m?), where 6 is the neutrino mixing angle. Searches
for v, — v set limits A(m?) < 0.09 eV? for sin?(20) = 1, and
sin?(26) < 0.0025 for large A(m?). For larger neutrino masses
(> 1 keV), lepton-number violation is searched for by looking
for anomalous decays such as # — ev,, where v, is a massive
neutrino. If the AL = 2 type of violation occurs, it is expected
that neutrinos will have a nonzero mass of the Majorana type.

CONSERVATION OF HADRONIC FLAVORS

In strong and electromagnetic interactions, hadronic flavor
is conserved, i.e. the conversion of a quark of one flavor
(d,u,s,c,b,t) into a quark of another flavor is forbidden. In
the Standard Model, the weak interactions violate these conser-
vation laws in a manner described by the Cabibbo-Kobayashi-
Maskawa mixing (see the section “Cabibbo-Kobayashi-Maskawa
Mixing Matrix”). The way in which these conservation laws are
violated is tested as follows:

a) AS = AQ rule. In the semileptonic decay of strange par-
ticles, the strangeness change equals the change in charge of
the hadrons. Tests come from limits on decay rates such as
N(Zt — netv)/T(St — all) < 5 x 1075, and from a detailed
analysis of K — mev, which yields the parameter x, measured
to be (Rez, Imz) = (0.006 + 0.018, —0.003 + 0.026). Corre-
sponding rules are AC = AQ and AB = AQ.

b) Change of flavor by two units. In the Standard Model
this occurs only in second-order weak interactions. The classic
example is AS = 2 via K0 — %’ mixing, which is directly mea-
sured by m(Kg)—m(Kp) = (3.510+0.018) x 10712 MeV. There



1229
Tests of Conservation Laws

is now evidence for B® — B mixing (AB = 2), with the corre-
sponding mass difference between the eigenstates (m BY — MpY )

= (0.71£0.06) Tp = (3.140.4) x 10710 MeV. No evidence ex-

ists for DO — D" mixing, which is expected to be much smaller
in the Standard Model.

c) Flavor-changing neutral currents. In the Standard
Model the neutral-current interactions do not change flavor. The
low rate I'(Kf, — ptu™)/T(KL — all) = (7.4£0.4) x 1079 puts
limits on such interactions; the nonzero value for this rate is at-
tributed to a combination of the weak and electromagnetic inter-
actions. The best test should come from a limit on K+ — 7tv7,
which occurs in the Standard Model only as a second-order weak
process with a branching fraction of (1 to 8)x107%, The current
limit is [(K+ — 7o) /T(K+ — all) < 5.2 x 107, Limits for
charm-changing or bottom-changing neutral currents are much
less stringent: I'(D® — p*p~)/T(D° — all) < 1.1 x 1075 and
I'(B® — ptp™)/T(BY — all) < 5.9 x 1075, One cannot isolate
flavor-changing neutral current (FCNC) effects in non leptonic
decays. For example, the FCNC transition s — d + (% + u) is
equivalent to the charged-current transition s — u + (% + d).
Tests for FCNC are therefore limited to hadron decays into lep-
ton pairs. Such decays are expected only in second-order in the
electroweak coupling in the Standard Model.

References
1. R. Carosi et al., Phys. Lett. B237, 303 (1990).
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| TESTS OF DISCRETE SPACE-TIME SYMMETRIES |

CHARGE CONJUGATION (C)

r(x% — 3v)/Tyotal <3.1x 1078, CL = 90%

r((ete ) =0 — 3v)/ [a] <1x1075, CL = 9%0%
T((ete~) =g — 2v)
r((ete™) =y — 4v)/ [a <1x1075, CL =90%

M((ete™) =1 — 3v)
n C-nonconserving decay parameters

nt 2~ 70 left-right asymmetry
parameter

7+ n— 20 sextant asymmetry
parameter

#+ 7~ x0 quadrant asymmetry
parameter

xt x5 left-right asymmetry
parameter

x+ x =« parameter 8 (D-wave)

T(n — 37)/Ttotal

(0.09 + 0.17) x 10—2
(0.18 + 0.16) x 10~2
(=0.17 + 0.17) x 10~2
(0.9 + 0.4) x 10~2

0.05 + 0.06 (S = 1.5)
<5x 1074, CL = 95%

F(n — 7%ete™)/Motal [b] <4x 1075, CL = 90%
(o — 70uu™)/Tiotal [} <5 x 1076, CL = 90%
PARITY (P)

(~0.3+0.8) x 10726 ecm
(3.7 £ 34) x 10719 ecm
<5x 10717 ecm, CL = 95%
<15x 103
(—4+6)x1023 ecm

<11 x 10726 ecm, CL = 95%
<1.5x 10716 ecm, CL = 95%

e electric dipole moment
u electric dipole moment
T electric dipole moment
o — 7t 77)/Teotal

p electric dipole moment
n electric dipole moment
A electric dipole moment

Limits are given at the 90% confidence level, while errors are given as +1 standard deviation.

TIME REVERSAL (T)

(-0.3+£08)x 10726 ecm
(3.7 +£34)x 10719 ecm

e electric dipole moment
1 electric dipole moment
4 decay parameters

transverse et polarization normal to 0.007 + 0.023
plane of u spin, et momentum

ol /A ©0+4)x10-3

B'/A (2+6)x 1073

<5x10~17 ecm, CL = 95%
—0.017 + 0.025

T electric dipole moment

Im(€) in Kﬁs decay (from transverse u pol.)

Im(€) in Kza decay (from transverse p pol.) —0.007 + 0.026
(-4 +£6)x 10723 ecm

<11 x10=26 ecm, CL = 95%

p electric dipole moment
n electric dipole moment
n — pe~ v decay parameters
Ay phase of g4 relative to gy [c]
triple correlation coefficient D (-0.5+ 1.4)x 103
A electric dipole moment <1.5 x 1016 ecm, CL = 95%
triple correlation coefficient D for ¥~ — 0.11 £ 0.10
ne~ v,

(180.07 + 0.18)°

CHARGE CONJUGATION TIMES PARITY (CP)

T weak dipole moment <3.7x 10717 ecm, CL = 95%

Mn— =t x7)/Moral <15x 1073
k* - xEat = rate difference/average (0.07 + 0.12)%
Kk* — 2% 20120 rate difference/average (0.0 £ 0.6)%

Kt o gt 1r°-y rate difference/average

8+ —8,.-)/ (&4 +8,-) for kE
atxta—

CP-violation parameters in K% decay

(0.9 + 3.3)%
(~0.7 £ 0.5)%

im(n4 )2 = (K% —» 7+ x=x0, <0.12, CL = 90%
CP-violating) / (K9 —
xtx—20)

Im(nggp)? = (K — 3x0)/
r(kY — 3x0)

charge asymmetry j for K?_ — atr— a0

[np—yl = |AK] - 7t~ 9)/AKE -

<0.1, CL = 90%

0.0011 =+ 0.0008
(2.15 + 0.26 + 0.20) x 10~3

rtx )|
¢_’,___7 = phase of N4y (72 £ 23 £17)°
lep_ylre <03, CL = 90%
F(K(Z — xOut 17)/Ttotal [d] <5.1x 10-9, CL = 90%
M(K] — xOete™)/Mopal [d] <4.3x10~9, CL = 9%0%
M(KQ ~ =0vP)/Tioral le] <2.2x 1074, CL = 90%

[r(0® - K*+K—)-

r(0° - K+K=))/sum
[Re(ego)| <0.045
[a_(A) + ay (A)] / [a_(A) — ay(A)] —0.03 + 0.06

<0.45, CL = 90%

CHARGE CONJUGATION TIMES PARITY (CP) VIOLATION OBSERVED

charge asymmetry in K?3 decays
§(p) = [M(x~utyy)
—rxtp— 7,,)}/sum
8(e) = [M(r~ et v,)
~ F(rt e~ 7,)]/sum
parameters for K§ — 2 decay
Inool = |A(KY — 2x0)/
A(KY — 2x0)|
Inpo| = AKY — x*n=)/
A(K% - xtx7)|
/e ~ Re(e'/e) = (1—|ngo/ny—|)/3  [f] (15+08)x 1073 (S = 1.8)
¢4 . phaseof n (44.3 + 0.8)°
$0g+ Phase of ngg (43.3 £ 1.3)°
r(KY — xtx~)/Tioral (2.03 £ 0.04) x 1073 (S = 1.2)
r(k9 — 7020)/ryoral (9.14 £ 0.34) x 104 (S = 1.8)

(0.304 + 0.025)%

(0.333 £ 0.014)%

(2.259 + 0.023) x 1073 (S = 1.1)

(2.269 + 0.023) x 1073 (S = 1.1)
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CPT INVARIANCE

(my+ = My,_) [ Maverage
(Mg — m,_) [/ Mayerage
[ge+ + 9o-1/e

(84+ — B¢-) / Baverage
1‘#+ /r“_ mean life ratio
(ry+ = 74=)/ Taverage
(Em— - g#—) / 8average
(m_y —m__)/ Maverage
(T,.-+ - ",r—)/"average
(Myesr = my_) / Mayverage
(Ti+ = Ti=)/ Taverage
Kt - pi v, rate difference/average
KE o xt 20 rate difference/average
[m o = M| / Maverage
phase difference ¢gg — ¢ _
(mp — mp) / Maverage

lap + apl/e

(/"p - |l"ﬁ|) / |“average|
(mp = mz) / Mayerage

(mp = mz) /[ mp

(ta - "Z) / Taverage
(bg+ = leg-1) / |#laverage

(m=_ — m=y)/ Mayerage
(T=- = 7=4) / Taverage
(Mo = Mmze) [ Maverage

l&]
(A}

—0.002 + 0.007
<4 x 1078, CL = 90%
<4x10"8

(-0.5 4 2.1) x 10—12
1.00002 + 0.00008
(2+8)x 10”5

(2.6 +1.6)x10~8
(245)x 1074

(6 +7)x10~%
(-0.6+1.8)x1074
(011 £ 0.09)% (S = 1.2)
(—0.5 + 0.4)%

(0.8 +1.2)%
<9x10™19

(-1.0 £1.0)°
(2+4)x10"8
<2x1075

(2.6 +£29) x 1073
(9 £ 5) x 10~5
(1.0 £0.9) x 10~5
0.04 + 0.09

0.014 + 0.015
(11£27)x10™%
0.02 + 0.18

(0 +5) x 1074

I TESTS OF NUMBER CONSERVATION LAWS I

LEPTON FAMILY NUMBER

Lepton family number conservation means separate conservation

of each of Le, L, L.

NZ - eXuF)/ona
r(Z — eXr¥F)/Mioa
M(Z = wErF)/Mioral
limiton u~ — e~ conversion
o(p~ 325 e~ 325)
a(u™ 32g _, ”“32p~)
o(p~Ti— e™Th)/
o(p~ Ti — capture)
limit on muonium — antimuonium
conversion Rg = G¢c / G¢

F(a™ = €™ veB,)/Mrotal

f(u™ — e~ 7)/Tiotal

ru= — e ete™)/Moral
fu™ — e~ 27)/rto(3|

Fr= = €7 7)/Ttotal

M~ - 27 7)/Trotal

r(r= — e 7%)/otal

M(r~ — u~7%)/Motal

r(r= = e~ KO)/Ioral

M~ = 1™ K9 /Tioral

r(r= — e"n)/Total

F(r™ = u7n)/Ttotal

(e~ = ¢ %)/ Teotal

rr= — l‘“l’o)/rtotal

M(r= — e~ K*(892)0)/Myopa
Fr~ = u= K*(892)°)/Tyotal
F(r= — e t%)/Tyopal
r(r= — e"et e~ )/Total
F(r= — (eun)™)/Ttotal
M(r= — e~ putu™)/Total
F(r™ — et u™u7)/Tiotal

[F
[f
{7

u

03

]
]
]

<6 x 1078, CL = 95%
<1.3x 1075, CL = 95%
<1.9 x 1075, CL = 95%

<7x 10711, CL = 90%
<43 x 10712, cL = 90%
<0.13, CL = 90%

<1.2x 1072, CL = 90%
<49 x10~11, CL = 90%
<1.0x 10712, cL = 90%
<7.2x 10711, cL = 90%
<12 x 1074, CL = 90%
<42 x 1076, CL = 90%
<1.4x 1074, CL = 90%
<4.4 x 1075, CL = 90%
<1.3x 1073, CL = 90%
<1.0 x 10~3, CL = 90%
<6.3 x 1075, CL = 90%
<7.3x 10~5, CL = 90%
<1.9 x 1075, CL = 90%
<2.9 x 1075, CL = 90%
<38 x 1075, CL = 90%
<4.5 x 1075, CL = 90%
<3.4 x 10~5, CL = 90%
<1.3x 1075, CL = 90%
<2.7x 1075, CL = 90%
<1.9 x 105, CL = 90%
<1.6 x 1075, CL = 90%

Limits are given at the 90% confidence level, while errors are given as +1 standard deviation.

(r™ — (nee)™)/Tiotal
rr— — “—en—)/rtm.
Fr= = o~ utu7)/Miotal

rr= — t£xF 1) Notal [i.k]
F(r= — e*wir)/rma, Ul
Mr= — e~ mta™)/Miotal

Mr= — pFat 7 )/Ttotal 1]
F(r~ = w7t 77) Teotal

Mr~ — 527 K7)/Tiotal lik]
F(r= — (ewK)™, all charged)/Tyota

rr= — e~ 7T KF)/Mora [

M= — e~ nt K™)/Total

M(r= — e~ a7 KT)/Tiotal

Mr~ — (uxK)™, all charged)/l’wm

r(r~ = u~ 72 KF)/Motal G}
r(r~ — u~ 7ot K7)/Toral

f(r~™ = p~ 7" KY)/Tiotal

r(r~ — e light spiniess boson)/Myqtq

F(r™ — 7 light spinless boson)/Myoea)

v oscillations. (For other lepton mixing effects in particle decays, see the Full Listings.)

Ve #+ Ve
A(m?) for sin2(20) = 1
sin2(26) for “Large” A(m?2)
VC - Vr
A(m?) for sin2(26) = 1
sin?(ze) for “Large” A(mz)
Ve = Vg
sin2(26) for “Large” A(m?2)
— Ve
A(m?) for sin2(26) = 1
sin2(28) for “Large” A(m?2)
— T,
A(m2) for sin2(20) = 1
sin2(26) for “Large” A(mz)
v, (B,) — ve(Pe)
A(m?2) for sin2(26) = 1
sin2(20) for “Large” A(m?2)
— l/_r
A(m?) for sin2(20) = 1
sin2(2()) for “Large” A(mz)
v, — 7
A(m?) for sin2(26) = 1
sln2(29) for “Large” A(m2)
Vp(ﬁy) = v (7y)
A(m?2) for sin2(26) = 1
sin2(26) for “Large” A(m?2)
Ve 7 Ve
A(m2) for sin2(20) = 1
sin2(20) for “Large” A(m?2)

Yu

v

"

Yu

uu P n

A(m2) for sin?(20) = 1

sin2(26) for A(m?2) = 100ev2 n
Pyt vy

A(m?) for sin2(260) = 1

sin2(20) for 190 eV2 < A(m?) < ]

320 ev2

Mt — “+”e)/rtotal [n}

Mat — u=etetv)/Migeal
r(x® — pte= + e ut)/Mygral
r(kt — p=vetet)/Mgral

MK+ — “+"e)/rtota| [n)
r(kt — xtute™)/Motal
r(kt — xtu=et)/Motal
r(K9 — e uF)/Migral n
r(ot — xtetuF) /Mgl Ul
r(iot — "'+°+“_)/rtotal
o+ — rte ut)/Moral
r(ot — Ktetu™)/Mioral
r(ot — Kte ut)/Miotal
r(00 - ute¥) Mo ul

r(8+ — x+etu=)/Miotal
r(8t — xte ut)/Mioa
rBt — K*etu™)/Mora

<2.7x 1075, CL = 90%
<1.4 x 1075, CL = 90%
<1.7x 1075, CL = 90%
<6.3x 1075, CL = 90%
<6.0 x 1073, CL = 90%
<2.7x 1075, CL = 90%
<3.9 x 1075, CL = 90%
<3.6 x 1075, CL = 90%
<1.2x 1074, CL = 90%
<7.7x 1075, CL = 90%
<5.8 x 1075, CL = 90%
<2.9x 1075, CL = 90%
<5.8 x 1075, CL = 90%
<7.7x 1075, CL = 90%
<7.7x 1075, CL = 90%
<7.7x 1075, CL = 90%
<7.7x 1075, CL = 90%
<3.2x 1073, CL = 95%
<6 x 1073, CL = 95%

<0.0083 eV2, CL = 90%
<0.14, CL = 68%

<9ev2, CL = 90%
<0.12, CL = 90%

<0.7, CL = 90%

<0.09 eV2, CL = 90%
<25 x 1073, CL = 90%

<0.14 eV2, CL = 90%
<0.004, CL = 95%

<0.075 eV2, CL = 90%
<3x1073, CL = 90%

<0.9 eV2, CL = 90%
<0.004, CL = 90%

<22 eV2?, CL = 90%
<4.4x 1072, CL = 90%

<1.5eV2, CL = 90%
<8 x 1073, CL = 90%

<2.3ev2
<7x 1072, CL = 90%

<0.23 or >1500 ev?
<0.02, CL = 90%

<7 or >1200 eV?
<0.02, CL = 90%

<8.0 x 1073, CL = 90%
<1.6 x 1076, CL = 90%
<1.72 x 1078, CL = 90%
<2.0x 1078, CL = 90%
<4 x 1073, CL = 90%
<2.1x 10710, cL = 90%
<7x 1079, CL = 90%
<3.3x 10711, CL = 90%
<3.8 x 1073, CL = 90%
<3.3x 1073, CL = 90%
<3.3x 1073, CL = 90%
<3.4x 1073, CL = 90%
<3.4x 1073, CL = 90%
<1.0 x 1074, CL = 90%
<6.4 x 1073, CL = 90%
<6.4 x 1073, CL = 90%
<6.4 x 1073, CL = 90%
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rBF — Ktemut)/Migtal
(g0 - et #F)/Tiotal
r(8% — et rF)/Tora
r(8% — uErF)/Moral

y]
Ul
gl

<6.4 x 1073, CL = 90%
<5.9 x 1076, CL = 90%
<53x 1074, CL = 90%
<83 x 1074, CL = 90%

TOTAL LEPTON NUMBER

Violation of total lepton number conservation also implies violation
of lepton family number conservation.

limiton u~ — et conversion
a(u~ 32g _, e-§-325|m)/
o(u=32s = u“32P')
o(u=12T) o e+127spr)
o(u= 1271 = anything)
o(u~Ti— etca)/
o(p~ Ti — capture)
F(r~™ = 77 7)/Ttotal
Mr= — x-«o)/rm,,
M= — pte~e™)/Motal

r(=— — lix:‘:‘l—')/rtotal

Mr~ — eFrta=) Mol

F(r~ = etr™77)/Motal

Mr~ — aFaEe=)/Tota

r(r= = pte=27)/Total

Mr~ = ExFKT)/Tora)

M(r= — (emK)™, all charged)/lyoeq
M(r~ = et r™ K7)/Tyotal

T(r= — (uwK)™, all charged)/Tyopa)
r(r= — ptn— K_)/rtotal

r(r= — 77)/Ttotal

r(r= = B7%)/Tiotal

r(r= — Pn)/Ttotal
Ve — (ﬁe)L
aA(m?2) for sin2(26) = 1
a2sin2(20) for “Large” A(m?2)
vy — (e )t
at(m?) for sin2(26) = 1
a?sin2(29) for “Large” A(m2)
r(xt — ut7e)/Miotal
r(kt — 7= ptet)/Motal

(Kt — x~etet)/Mgral
Pk — 7= wt ut)/Tioral
rk+ — “+Ve)/rtotal
r(kt — x0et5,)/Total
o+ — =~ etet)/Migal
rOt — = utut)/Fiopa
r(Dt - =~ et ut)/Myotal
(Dt - k=etet)/Mora
r(Dt = K= utut)/Tiona
rDt — K~ et ut)/Miotal
rBT — n=etet)/Mora
r(8+ — x= ut ut)/Miotal
r(BY — x~ et ut)/Mioral
re+ — K~ etet)/Miotal
18t — K=utut)/Mora)
r(BY — K™ et ut)/Miora
(=" - pl‘—l‘—)/r(otal

(k]
U]

i

[ik]

(]
[n]

<9x 10710, cL = 90%
<3x 10710, cL = 90%
<8.9 x 10711, CL = 90%

<2.8 x 1074, CL = 90%
<37 x 1074, CL = 90%
<1.4 x 1075, CL = 90%
<6.3x 1075, CL = 90%
<6.0 x 10~5, CL = 90%
<1.7x 1075, CL = 90%
<3.9x 1075, CL = 90%
<3.9 x 1075, CL = 90%
<1.2x 1074, CL = 90%
<7.7x 1075, CL = 90%
<2.0 x 1075, CL = 90%
<7.7x 1075, CL = 90%
<4.0 x 1075, CL = 90%
<2.9x 1074, CL = 90%
<6.6 x 10~4, CL = 90%
<1.30 x 1073, CL = 90%

<0.14 V2, CL = 90%
<0.032, CL = 90%

<0.16 eV2, CL = 90%
<0.001, CL = 90%
<1.5x 1073, CL = 90%
<7x 1079, CL = 90%
<1.0 x 108, CL = 90%
<1.5 x 1074, CL = 90%
<33 x 1073, CL = 90%
<3x1073, CL = 90%
<4.8 x 1073, CL = 90%
<6.8 x 1073, CL = 90%
<3.7x 1073, CL = 90%
<9.1 x 1073, CL = 90%
<43 x1073, CL = 90%
<4.0 x 1073, CL = 90%
<3.9x 1073, CL = 90%
<9.1 x 1073, CL = 90%
<6.4 x 1073, CL = 90%
<3.9x 1073, CL = 90%
<9.1x 1073, CL = 90%
<6.4 x 1073, CL = 90%
<4 x 1074, CL = 9%0%

Limits are given at the 90% confidence level, while errors are given as +1 standard deviation.

BARYON NUMBER

F(r™ = P7)/Total

r(r= — pr%)/Tiotal
F(r= — Pn)/Ttotal

p mean life

<2.9x 1074, CL = 9%0%
<6.6 x 10~4, CL = 90%
<1.30 x 103, CL = 90%
>1.6 x 1025 years

A few examples of proton or bound neutron decay follow. For limits on many other nucieon

decay channels, see the Baryon Summary Table.

(N — etn)
(N — ptn)
(N - et K)
(N - utK)

mean time for n7 transition in vacuum

> 130 (n), > 550 (p) x 1030 years,

CL = 90%

> 100 (n), > 270 (p) x 1030 years,
CL = 90%

> 1.3 (n), > 150 (p) x 1030 years,
CL = 90%

> 1.1 (n), > 120 (p) x 1030 years,
CL = 90%

[o] >1.2x 108, CL = 90%

ELECTRIC CHARGE (Q)

e mean life / branching fraction
F(n— preTe)/Tiotal

[l >2.7 x 1023 yr, CL = 68%
<9 x 10~24, CL = 90%

AS = AQRULE

Allowed in second-order weak interactions.

r(kt — xtat e 5,)/Miotal
Mkt = st atu=p,)/Motal

<1.2x 1078, CL = 90%
<3.0x 1076, CL = 95%

x=AK? = 7 t+u)/A(KO = 7~ t+v) = A(AS=—AQ)/A(AS=AQ)

real part of x
imaginary part of x
(£t = ntty)/r(£= - nt~p)
r(xt — netve)/Miotal
rct - nu+u”)/rma,
M=% — £~ etve)/Tiotal
I'(E'0 - Fut "u)/rtotal

0.006 + 0.018 (S = 1.3)
—0.003 + 0.026 (S = 1.2)
<0.043

<5 x 106, CL = 90%
<3.0x 1075, CL = 90%
<9 x 10~4, CL = 90%
<9 x 104, CL = 90%

AS = 2 FORBIDDEN

Allowed in second-order weak interactions.

M= = pr~)/Tiotal
r(=0 Pe” ) Ttotal

<4 x 1075, cL = 90%
<1.3x 1073

<1.3x 1073

<1.9x 1075, CL = 90%
<32 x 1073, CL = 90%
<15 x 10™2, CL = 90%
<4 x 1074, CL = 90%
<4 x 1074, CL = 90%
<4 x1074, CL = 90%
<1.9 x 1074, CL = 90%

AS = 2 VIA MIXING

Allowed in second-order weak interactions, e.g. mixing.

(0.5333 + 0.0027) x 1010 A s—1 (S
=1.2)

(3.510 + 0.018) x 10~12 MeV (S =
1.3)

AC =2 VIA MIXING

Allowed in second-order weak interactions, e.g. mixing.

-
M(=Z0 = pu™7,)/Mrotar
M(E™ = n77)/Teotal
F(E7 = ne™ )/ Motal
ME™ = nu75,)/Miotal
M=~ = pr™77)/Tiotai
(= - pn~ e~ Te)/Tiotal
F(E~ = pr~ " 5,)/Motal
(27 = Ax7)/Tiotal
m, o —m,.q

Ki T Ks
meg — Mo

Ki Ks
Mo — Mo
Im po = m sl

r(k+ == (via DO))/r(k~ =t)
T (™ anything (via D0))/F (ut anything)

l[q) <20x 1010 As—1 cL =90%

<0.0037, CL = 90%
<0.0056, CL = 90%
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Tests of Conservation Laws

AB =2 VIA MIXING

Allowed in second-order weak interactions, e.g. mixing.

Xg 0.156 4 0.024

Am gy = mB% - mgo (0.51 + 0.06) x 1012 5 s—1

Xg = Bm /T go 0.71 + 0.06

X 0.62 +0.13

Amo=m_ o -m.o >1.8x 1012 A s~ 1, CL = 95%
Bs BsH BsL

Xg = AmB?/rBE >2.0, CL = 95%

AS =1 WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

(2.74 + 0.23) x 10~7
<23x 1077, CL = 90%
<52 x 1079, CL = 90%
<32x 1077, CL = 90%
<1.0 x 1075, CL = 90%
<1.1x 1078, CL = 90%
(7.4 4 0.4) x 1079

(2.8 +2.8) x 1077
<4.1x 10711, cL = 90%
(9.1 £ 05)x 1078

(6.6 + 3.2) x 1077

<25 x 1078, CL = 90%
<4.9x 1078, CL = 90%

rkt - =tet e )/Toral
1) Thotal
r(K+ — ”+”§)/rtotal

M(KS = ut u7)/Teotal
I‘(K% — ete™)/Miotal

F(K% — roe*e’)/rmtm
I’(K? T #7 )/ Tiotal

I‘(K[Z — 1 T )/ Total
MK — ete™)/Toral

T(KQ — et e v)/Myotal
r(KQ — et e vv)/Tioral Ir
MK — nmta~ete™)/Miotal
T(KY — whu=ete™)/Mioal

-
—_
X
+
4

T(K) — etemete™)/Motal [s] (3.940.7)x 108
Tk = «0ut i) Tiotal <51 x 1079, CL = 90%
T(K — w0ete™)/ Mgy <4.3x 1079, CL = 90%
T(KY = 70um)/Tiota <2.2x 1074, CL = 90%
HEt -~ pete™)/Miotar <7x 1076

AC =1 WEAK NEUTRAL CURRENT FORBIDDEN
Allowed by higher-order electroweak interactions.

rot - xtete ) Mgtal <25 x 1073, CL = 90%

rot - =t ut ™)/ Fgtal <2.9x 1073, CL = 90%
r(0% — et e™)/Total <1.3x 1074, CL = 90%
T(00 — w¥u=)/lotal <1.1 x 1075, CL = 90%

<4.5x 1074, CL = 90%
<8.1x 1074, CL = 90%

r(o® - pPete™)/Miotal
r(00 — pOu*u=)/Moral

AB =1 WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

<3.9x 1073, CL = 90%
<9.1x 1073, CL = 90%
<6 x 1075, CL = 90%

<1.7 x 1074, CL = 90%
<6.9 x 1074, CL = 90%

ret — rtete )/Notal

Tt — ot ut u7)/Miotal

r(Bt — K*tete™)/lMotal

M8 — Kt utu™)/Motal

r(Bt — K*(892)* et e™)/Mora)
r(8*+ — K*(892)* ut u™)/Total <1.2x 1073, CL = 90%
r(6 — et e anything)/Mioral [t] <2.4 x1073, CL = 90%
r(6 — ptu~ anything)/Total [t] <5.0x 1075, CL = 90%
r(8% — et e )/Motal <5.9x 1076, CL = 90%
r(80 — utu7)/Tiotal <5.9x 1076, CL = 90%
r(8% — KOete™)/Myopal <3.0x 1074, CL = 90%
r(8% — KOutu=)/Fotal <3.6 x 1074, CL = 90%
r(8% — K*(892)0et e™)/Mota) <2.9x 1074, CL = 90%
r(8% - Kk*(892)%ut 1)/ Tiotal <2.3x 1075, CL = 90%

Limits are given at the 90% confidence level, while errors are given as +1 standard deviation.

NOTES

In this Summary Table:

When a quantity has “(S = ...)" to its right, the error on the quantity has been
enlarged by the “scale factor” S, defined as S = \/X2/(N — 1), where N is the
number of measurements used in calculating the quantity. We do this when
S > 1, which often indicates that the measurements are inconsistent. When
S > 1.25, we also show in the Full Listings an ideogram of the measurements.
For more about S, see the Introduction.

[a] Positronium data are from A.P. Mills and S. Berko, Physical Review
Letters 18 420 (1967); and K. Marko and A. Rich, Physical Review
Letters 33 980 (1974). Values for 90% confidence level, are from A.P.
Mills, private communication.

[b] C parity forbids this to occur as a single-photon process.

[c] Time-reversal invariance requires this to be 0° or 180°.

[d] Allowed by higher-order electroweak interactions.

[e] Violates CP in leading order. Test of direct CP violation since the in-
direct CP-violating and CP-conserving contributions are expected to be
suppressed.

[f] €' /€ is derived from iﬁoo/TIJ. _ | measurements using theoretical input on
phases.

[g] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys.
Rev. D12, 2744 (1975).

[h] Derived from measured values of ¢, _, oo, ||, 7,0, and |m,q —
s L

Mo, as described in the introduction to this Table.
s

[i] The value is for the sum of the charge states indicated.

[j] A test of additive vs. multiplicative lepton family number conservation.

[k] ¢ means a sum over e and x modes.

(1] A(m?) = 100 eV2.

[m] 190 V2 < A(m?) < 320 eV?.

[n] Derived from an analysis of neutrino-oscillation experiments.

[0] There is some controversy about whether nuclear physics and model
dependence complicate the analysis for bound neutrons (from which the
best limit comes). For reactor experiments with free neutrons, the best
limit is > 107 s.

[p] This is the best “electron disappearance” limit. The best limit for the
mode e~ — vy is > 2.35 x 102 yr (CL=68%).

[q] The D9-D3 limits are inferred from the limit on D° — D% — K+nx~.

[r] See the K(Z Full Listings for the energy limits used in this measurement.

{s] Mg. oo > 470 MeV.

[t] B%, B, and BY not separated.
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1. PHYSICAL CONSTANTS

Table 1.1. Reviewed 1993 by B.N. Taylor, NIST. Based mainly on the “1986 Adjustment of the Fundamental Physical Constants” by
E.R. Cohen and B.N. Taylor, Rev. Mod. Phys. 59, 1121 (1987). The last group of constants (beginning with the Fermi coupling constant)
comes from the Particle Data Group. The figures in parentheses after the values give the 1-standard-deviation uncertainties in the last digits;
the corresponding uncertainties in parts per million (ppm) are given in the last column. This set of constants (aside from the last group) is
recommended for international use by CODATA (the Committee on Data for Science and Technology).

Since the 1986 adjustment, new experiments have yielded improved values for a number of constants, including the Rydberg constant R, the
Planck constant h, the fine-structure constant a, and the molar gas constant R, and hence also for constants directly derived from these, such as
the Boltzmann constant k£ and Stefan-Boltzmann constant o. The new results and their impact on the 1986 recommended values are discussed
extensively in “Recommended Values of the Fundamental Physical Constants: A Status Report,” B.N. Taylor and E.R. Cohen, J. Res. Natl.
Inst. Stand. Technol. 95, 497 (1990); see also E.R. Cohen and B.N. Taylor, “The Fundamental Physical Constants,” Phys. Today, August 1993
Part 2, BG9. In general, the new results give uncertainties for the affected constants that are 5 to 7 times smaller than the 1986 uncertainties,
but the changes in the values themselves are smaller than twice the 1986 uncertainties. Because the output values of a least-squares adjustment
are correlated, the new results cannot readily be incorporated with the 1986 values. Until the next complete adjustment of the constants, the
1986 CODATA set, given (in part) below, remains the set of choice.

Quantity Symbol, equation Value Uncert. (ppm)
speed of light in vacuum c 299 792 458 m s~1 exact*
Planck constant h 6.626 075 5(40)x 10734 J s 0.60
Planck constant, reduced h=h/2n 1.054 572 66(63)x10734 J s 0.60

= 6.582 122 0(20)x10~22 MeV s 0.30
electron charge magnitude e 1.602 177 33(49)x 1071 C = 4.803 206 8(15)x 10710 esu 0.30, 0.30
conversion constant he 197.327 053(59) MeV fm 0.30
conversion constant (he)? 0.389 379 66(23) GeV2 mbarn 0.59
electron mass me 0.510 999 06(15) MeV/c? = 9.109 389 7(54)x10~3 kg 0.30, 0.59
proton mass mp 938.272 31(28) MeV/c? = 1.672 623 1(10)x10~27 kg 0.30, 0.59

= 1.007 276 470(12) u = 1836.152 701(37) me 0.012, 0.020
deuteron mass my 1875.613 39(57) MeV/c? 0.30
unified atomic mass unit (u) (mass 12C atom)/12 = (1 g)/(N4 mol) 931.494 32(28) MeV/c? = 1.660 540 2(10)x10~27 kg 0.30, 0.59
permittivity of free space €0 2 8.854 187 817 ... x10"12 F m™! exact
permeability of free space Ko } coko = 1/c 4 x 1077 N A2 = 12.566 370 614 ... x10~7 N A~2 exact
fine-structure constant a = e2/4mephc 1/137.035 989 5(61)F 0.045
classical electron radius Te = €2 /4megmec? 2.817 940 92(38)x10~ 15 m 0.13
electron Compton wavelength Xe = h/mec = rea”! 3.861 593 23(35)x10‘13 m 0.089
Bohr radius (Maycleus = 90) oo = 4megh?/mee? = rea™? 0.529 177 249(24)x10710 m 0.045
wavelength of 1 eV/c particle  hc/e 1.239 842 44(37)x107% m 0.30
Rydberg energy heRoo = mee /2(4meg)?h2 = mec?a?/2 13.605 698 1(40) eV 0.30
Thomson cross section or = 81r2/3 0.665 246 16(18) barn 0.27
Bohr magneton up = eh/2me 5.788 382 63(52)x 10711 MeV T! 0.089
nuclear magneton puN = eh/2my 3.152 451 66(28)x10~14 MeV T! 0.089
electron cyclotron freq./field Weyel/ B = e/me 1.758 819 62(53)x 10! rad s~1 T~! 0.30
proton cyclotron freq./field “"f:ycl/B =e/my 9.578 830 9(29)x107 rad s~! T—! 0.30
gravitational constant GN 6.672 59(85)x 10~ m3 kg~! s—2 128

= 6.707 11(86)x 10739 hc (GeV/c?)~2 128
standard grav. accel., sea level g 9.806 65 m s~2 exact
Avogadro constant Ny 6.022 136 7(36)x 1023 mol ! 0.59
Boltzmann constant k 1.380 658(12)x10~23 J K~! 8.5

= 8.617 385(73)x 1075 eV K1 8.4
molar volume, ideal gas at STP N4k(273.15 K)/(101 325 Pa) 22.414 10(19)x10~3 m3 mol~! 8.4
Wien displacement law constant b = ApaxT 2.897 756(24)x10~3 m K 8.4
Stefan-Boltzmann constant o = n2k* /60R3c? 5.670 51(19)x10~8 W m—2 K4 34
Fermi coupling constant} Gr/(he)® 1.166 39(2)x 105 GeV—2 20
weak mixing angle sin? §(Mz) (M5) 0.2319(5) 2200
W= boson mass mw 80.22(26) GeV/c? 3200
Z0 boson mass mz 91.187(7) GeV/c? e
strong coupling constant ag(mz) 0.116(5) 43000

7 = 3.141 592 653 589 793 238 e = 2.718 281 828 459 045 235 v = 0.577 215 664 901 532 861
1in = 0.0254 m 1G=10"%T 1eV =1.602 177 33(49) x 107 J kT at 300 K = [38.681 49(33)]"! eV
1A=10nm 1dyne=10"5N 1eV/c? =1.782 662 70(54) x 10736 kg 0° C=273.15K
1 barn = 10728 m? lerg=10"7J 2997 924 58 x 10° esu=1C 1 atmosphere = 760 torr = 101 325 Pa

* The meter is defined to be the length of path traveled by light in vacuum in 1/299 792 458 s. See B.W. Petley, Nature 303, 373 (1983).
tALQ2=0. At Q% ~ m@, the value is approximately 1/128.

¥ See discussion in Sec. 26 “Standard Model of electroweak interactions.”
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2. ASTROPHYSICAL CONSTANTS

Table 2.1. Written and revised with the help of K.R. Lang, K.A. Olive, J. Primack, S. Rudaz, E. M. Standish, Jr., and M.S. Turner. The
figures in parentheses after some values give the 1-standard deviation uncertainties in the last digit(s). While every effort has been made to
obtain the most accurate current values of the listed quantities, the table does not represent a critical review or adjustment of the constants,
and is not intended as a primary reference.

Quantity Symbol, equation Value Reference
speed of light c 299792458 m s~! defined [1]
Newtonian gravitational constant GNn 6.67259(85) x 10~ m3kg~1 52 2]
astronomical unit AU 1.495978 706 6(2) x 101! m 13,4]
tropical year (equinox to equinox) (1994) yr 31556925.2 s 3]
sidereal year (fixed star to fixed star) (1994) 31558149.8 s 3]
mean sidereal day 23h 56™ 043090 53 [3]
Jansky Jy 10726 W m~2Hz !
Planck mass Vhe/Gn 1.221047(79) x 10'° GeV/c? uses [2]
=2.17671(14) x 1078 kg
parsec (1 AU/1 arc sec) pc 3.0856775807(4) x 101 m = 3.262...1ly [5]
light year (deprecated unit) ly 0.3066... pc =0.9461... x 1016 m
Schwarzschild radius of the Sun 2GNMg/c? 2.95325008 km 6]
solar mass Mo 1.98892(25) x 10%0 kg 7
solar luminosity Lo 3.846 x 1026 W 8]
solar equatorial radius Rp 6.96 x 108 m 3]
Earth equatorial radius Rg 6.378 140 x 106 m 3]
Earth mass Mg 5.97370(76) x 10%4 kg 9]
luminosity conversion L 3.02 x 1028 x 10704 My W [10]
(M}, = absolute bolometric magnitude
= bolometric magnitude at 10 pc)
flux conversion ZF 2.52 x 1078 x 10704 ™6 W m—2 from above
(myp, = apparent bolometric magnitude)
ve around center of Galaxy O, 220(20) km s~! [11]
solar distance from galactic center R, 8.0(5) kpc [12]
Hubble constant! Hy, 100 hg km s~ Mpc~!
= hg x (9.77813 Gyr)~! (13]
normalized Hubble constant! ho 0.5 < hg < 0.85 [14,15]
critical density of the universe Pec = 3H§/81TGN 2.775 366 27 x 1011 ha MgMpc—3
=1.87882(24) x 1072° hZ g cm ™3
= 1.05394(13) x 107° hZ GeV cm™3
local disk density P disk 3-12 x10724 g cm™3 ~ 3-7 GeV/c? em™3 [16]
local halo density £ halo 3-7 x1072% g cm ™3 x 0.2-0.4 GeV/c? cm™3 [17]
density parameter of the universe! Qo = po/pe 0.1< Q<2 (18]
scaled cosmological constant! Ao = Ac?/ 3H§ 1< <2 [19,20]
scale factor for cosmological constant! c?/3HZ 2.853 x 1051 hy% m?
age of the universe! to 15(5) Gyr [10]
Qohd < 2.4 for tg > 10 Gyr [10]
<1 for to > 10 Gyr, ho > 0.4 [10]
cosmic background radiation (CBR) temperature! To 2.726 + 0.005 K [21]
solar velocity with respect to CBR 369.5+ 3.0 km s™! [22]
energy density of CBR Py 4.6477 x 10734 (T/2.726)% g cm™3 [10]
=0.26071 (T/2.726)* eV cm™3
number density of CBR photons Ty 410.89 (T/2.726)® cm™3 [10]
entropy density/Boltzmann constant s/k 2892.4 (T/2.726)% cm—3 [10]

t Subscript 0 indicates present-day values.
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References:

1. B.W. Petley, Nature 303, 373 (1983).

2. E.R. Cohen and B.N. Taylor, Rev. Mod. Phys. 59, 1121 (1987). The set of constants resulting from this adjustment has been recommended
for international use by CODATA (Committee on Data for Science and Technology).

3. The Astronomical Almanac for the year 1994, U.S. Government Printing Office, Washington, and Her Majesty’s Stationary Office, London
(1993). Where possible, the values as adjusted for the fitting of the ephemerides to all the observational data are used.

4. JPL Planetary Ephemerides, E. Myles Standish, Jr., private communication (1989).
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3. BIG-BANG COSMOLOGY

Revised November 1993 by K.A. Olive.

At early times, and today on a sufficently large scale, our
Universe is very nearly homogeneous and isotropic. The most
general space-time metric for a homogeneous, isotropic space is the
Friedmann-Robertson-Walker metric (with ¢ = 1) [1,2,3]:

+ 12 (d6? +sin? 0dp?)| .

dr?
T (3.1)

ds? = dt? - R2(t

s ® K2
R(t) is a scale factor for distances in comoving coordinates. With
appropriate rescaling of the corrdinates, x can be chosen to be +1,
—1, or 0, corresponding to closed, open, or spatially flat geometries.
Einstein’s equations lead to the Friedmann equation

L\ 2
R 81 G K A
2 (&) _S7onNp K 4
H "(R) - 3 R2+3’ (3.2)
as well as to
R A 4G
2=3° 3N (p+3p), (3.3)

where H(t) is the Hubble parameter, p is the total mass-energy
density, p is the isotropic pressure, and A is the cosmological constant.
(For limits on A, see the Table of Astrophysical Constants; we will
assume here A = 0.) The Friedmann equation serves to define the
density parameter Qg (subscript 0 indicates present-day values):

K/RE=H3(Q-1),  Q=po/pc; (3.4)
and the critical density is defined as
_ 3H? —29 ;2 -3
pe = g- an 188 x 107" h* gem™" (3.5)
with
Ho =100hg km s™! Mpc™! = ho/(9.78 Gyr) . (3.6)

Observational bounds give 0.4 < hg < 1. The three curvature
signatures £k = +1,—1, and 0 correspond to Qp > 1, < 1, and = 1.
Knowledge of € is even poorer than that of hg. Luminous matter
(stars and associated material) contribute Qjyy < 0.01. There is no
lack of evidence for copious amounts of dark matter: rotation curves of
spiral galaxies, virial estimates of cluster masses, gravitational lensing
by clusters and individual galaxies, and so on. The minimum amount
of dark matter required to explain the flat rotation curves of spiral
galaxies only amounts to Qg ~ 0.1, while estimates for Q¢ based upon
cluster virial masses suggests 9 ~ 0.2 — 0.4. The highest estimates
for the mass density come from studies of the peculiar motions of
galaxies (including our own); estimates for o obtained by relating
peculiar velocity measurements to the distribution galaxies within a
few hundred Mpc approach unity. A conservative range for the mass
density is: 0.1 < Qg < 2. The excess of Qg over Qy,, leads to the
inference that most of the matter in the Universe is nonluminous dark
matter.

In an expanding universe, the wavelength of light emitted from a
distant source is shifted towards the red. The redshift z is defined
such that 1+ z is the ratio of the detected wavelength (A) to emitted
(laboratory) wavelength ()Ae) of some electromagnetic spectral feature.
It follows from the metric given in Eq. (3.1) that

14 z=MX/Ae =Rp/Re (3.7)
where Re is the value of the scale factor at the time the light was
emitted. For light emitted in the not too distant past, one can expand
R, and write Re =~ Rp + (te — to)Rp. For small (compared to HO'I)
At = (te — to), Eq. (3.7) takes the form of Hubble’s law

Ro
z = At— =~ (Hy , 3.8
Reo [ (3.8)

where £ is the distance to the source.

Energy conservation implies that

p=-3(R/R)(p+p), (3.9)
so that for a matter-dominated (p = 0) universe p « R™3, while
for a radiation-dominated (p = p/3) universe p o R~%. Thus the
less singular curvature term x/R? in the Friedmann equation can be
neglected at early times when R is small. If the Universe expands
adiabatically, the entropy per comoving volume (= R3s) is constant,
where the entropy density is s = (p +p)/T and T is temperature. The
energy density of radiation can be expressed (with A =c=1) as

2
pr = %N(T)(kT)“ . (3.10)
where N(T) counts the effectively massless degrees of freedom of
bosons and fermions:

NI =Y o5+ or - (3.11)
B F

For example, for my, > kT > me, N(T) = gy + 7/8(ge + 3gv) =
2+ 7/8[4 +3(2)] = 43/4. For my > kT > my, N(T) = 57/4. At
temperatures less than about 1 MeV, neutrinos have decoupled from
the thermal background, i.e., the weak interaction rates are no longer
fast enough compared with the expansion rate to keep ncutrinos
in equilibrium with the remaining thermal bath consisting of v, e™.
Furthermore, at temperatures k7' < me, by entropy conservation, the
ratio of the neutrino temperature to the photon temperature is given
by (TU/T’Y)s =gy/(9y + %!Je) = 4/11.

In the early Universe when p = pr, then R 1/R, so that R < t1/2
and Ht — 1/2 as t — 0. The time-temperature relationship at very
early times can then be found from the above equations:

2.42 (1 MeV )2
t= sec .
N(T) \ kT

(3.12)

At later times, since the energy density in radiation falls off as
R™* and the energy density in non-relativistic matter falls off as
R~3, the Universe eventually became matter dominated. The epoch
of matter-radiation density equality is determined by equating the
matter density at teq, pm = Qopc(Ro /Req)3 to the radiation density,
pr = (72/30)[2 + (21/4)(4/11)*/3](kTo)*(Ro/Req)* where Tp is the
present temperature of the microwave background (see below). Solving
for (Ro/Req) = 1 + z¢q gives

zeq + 1= 00h3/4.2 x 107° = 2.4 x 10* Qphd ;
kTeq = 5.6 Qoh3 eV ;
toq = 0.39(QHZ) Y2 (1 + 2eq)~%/?

= 3.2 x 1010(Qghd) 2 sec . (3.13)
Prior to this epoch the density was dominated by radiation
(relativistic particles; see Eq. (3.10)), and at later epochs matter
density dominated. Atoms formed at z =~ 1300, and by 2z4e. =~ 1100
the free electron density was low enough that space became essentially
transparent to photons and matter and radiation were decoupled.
These are the photons observed in the microwave background today.

The age of the Universe today, tg, is related to both the Hubble
parameter and the value of Qg (still assuming that A = 0). In the
standard model, tg 3> teq and we can write

—-1/2

1
t(,:HO-‘/O (1—90+Qoz-1) b (3.14)

Constraints on t(y yield constraints on the combination Qghg. For
example, tg > 13 x 10° yr implies that Qohg < 0.25 for hg > 0.5,
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or Qohg < 0.45 for hg > 0.4, while t9 > 10 x 10° yr implies that
Qohg < 0.8 for hg > 0.5, or Qohg < 1.1 for hg > 0.4.

The present temperature of the microwave background is Tp =
2.726 £+ 0.005 K as measured by COBE [4], and the number density
of photons ny = (2((3)/72)(kTp)® ~ 411 cm~3. The energy density
in photons (for which gy = 2) is py = (72/15)(kTp)*. At the present
epoch, py = 4.65 x 10~ 4 g cm™3 = 0.26 eV cm™3. For nonrelativistic
matter (such as baryons) today, the energy density is pg = mpgnpg
with ng oc R™3, so that for most of the history of the Universe
np/s is constant. Today, the entropy density is related to the photon
density by s = (4/3)(7%/30)(2 + (21/4)(4/11))(kTp)® = 7.0n,. Big
Bang nucleosynthesis calculations limit n = ng/n, to 2.8 x 10710 <
7 < 4.0 x 10710, The parameter 7 is also related to the portion of Q
in baryons

Qp = 3.66 x 1077 hy 2 (To/2.726 K) , (3.15)
so that 0.010 < Qp h% < 0.015, and hence the Universe cannot be
closed by baryons.
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4. DARK MATTER
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There is increasing evidence for the existence of large quantities of
dark matter in the Universe. The most direct evidence comes from the
astronomical observation of the motion of visible matter (stars and
regions of neutral hydrogen gas) in galaxies. The observed velocities
due to rotational motion in spiral galaxies are measured to be largely
independent of the distance to the center of these galaxies [1](they are
said to have “flat rotational curves”). In the absence of any unseen
component, we would expect that the velocity falls off with increasing
distance, v2 ~ Gy Myis/r. In contrast, a flat rotation curve implies
a total mass Mo =~ G;\,l vgbsr [~ 101" Mg (vops/200 km s~ 1)2
(r/10 kpc)] in excess of the visible mass Myis. It can be inferred
from these observations that there exists a dark matter component
distributed in a (roughly) spherical halo about the galaxy. The
dynamics of groups of galaxies and clusters, as well as the presence
of very hot gas in elliptical galaxies require large quantities of unseen
matter as well [2]. More recent observations of hot x-ray cmitting
gas in clusters of galaxies [3], and of gravitational lensing of high
redshift background galaxies by foreground clusters [4] (which do not
require the cluster to be relaxed), also indicate the presence of dark
matter on cluster scales. In addition, theories of cosmological inflation
predict that the density parameter of the Universe Qo1 = 1, whereas
standard Big Bang nucleosynthesis requires Qparyon < 0.1 [5]. This
implies the existence of nonbaryonic dark matter. Further indirect
evidence comes from our theoretical understanding of the growth
of density perturbations as seeds for galaxy formation. Without the
presence of dark matter, it is very difficult to reconcile the existence
of galaxies (and quasars) at high redshifts with the new measurements
by COBE of the anisotropy of the microwave background radiation [6].
Perturbations in baryon density can grow only after the time of
recombination, i.e. when the baryons decouple from the microwave
background. When Q¢ = 1 due to dark matter, matter domination
occurs much earlier and dark matter perturbations grow for a longer
period, thus avoiding a conflict with the magnitude of the microwave
background anisotropy.

In our own galaxy, the distribution of the visible matter and its
observed circular motion determine the local (solar neighborhood)
dark matter density pPM ~ 0.3 GeV cm™3 [7]. Regardless of the
nature of the dark matter, it must behave as a collisionless gas, with
a broad velocity distribution (typically assumed to be Maxwellian):
(v) =~ Av ~ 300 km s~ 1.

We do not know the identity of the dark matter nor whether there is
more than one type of dark matter. Baryons are difficult to conceal (8]
and in the standard Big Bang model cannot make up all of the
dark matter if Qo1 = 1. By the same token, by comparing the lower
limit of Qparyon 2 0.01 from nucleosynthesis [5], it is very likely that
some of the baryons are dark. Though it is theoretically unlikely that
galactic halos could be made of very dim objects, such as low-mass
stars with masses < 0.1 Mg, recent gravitational microlensing searches
for such objects may have a positive detection [9] (these objects are
sometimes referred to as MACHOS, massive compact halo objects).
There are scveral theoretical elementary particle candidates (WIMPs,
weakly interacting massive particles) that could explain the existence
of dark matter, of which the most commonly discussed are: a neutrino
(if massive), a neutralino (from supersymmetry), and the axion (from
the strong CP problem). These are summarized in Table 4.1.

Table 4.1: Dark Matter Candidates

Type Candidate Possible mass
Hot neutrino 1-10 eV

Cold  neutralino: photino, Higgsino, or bino  20-350 GeV
Cold axion 1075-1073 ¢V

Regardless of the exact identity of the dark matter (DM), its
kinetic energy at the time when dark-matter domination begins

determines the subsequent evolution of the density perturbations
that sced galactic and large structures [10]. If the dark matter is
relativistic (hot dark matter, HDM) only the largest (supercluster)
structures survive and they must fragment to form galactic structure,
whereas if it is nonrelativistic (cold dark matter, CDM), structure
on all scales is preserved. The large-scale distribution of matter in
n-body simulations of a HDM-dominated universe is not compatible
with observations (unless there are point-like density perturbations),
whereas a flat CDM-dominated universe requires that the visible
matter be predominantly concentrated in the denser regions of the
DM distribution (biased galaxy formation). In point of fact, both the
HDM- and CDM-dominated universes have some degree of difficulty
with the size of the microwave background anisotropy measured
by COBE. A mixture of cold and hot dark matter may provide a
better solution to the problem of generating large scale structures. An
example of such a mixture would be a v, with a mass of order a few
¢V and a more massive neutralino.

For a cold dark matter particle species with equal particle (X)
and antiparticle (X)) densities (except for the axions), its cosmological
density at present is [11]

Qx h? ~ 1.6 x 10710 N2 (Tx /Ty)?

—1 _
x (a + Tlfb (vz)f) (vz)f ! (4.1)
with a and b determined from the (velocity averaged) annihilation cross
section, expanded in powers of momentum, (voyx ) =a+ éb (v?)y,
at freezeout temperature Ty ((v?) 5 = 6Tf/Mx) at which the X’s drop
from thermal equilibrium (typically Ty ~ EIGMX) In Eq. (4.1), Np is
the total number of relativistic degrees of freedom at Ty and (Tx /Ty)
is the ratio of the temperatures of X’s and photons at T;. In the
halo of our galaxy (v2) ~ 1075, thus (v 0 %% Jhalo and Qx are closely
related.

Several proposals or experiments exist to detect cold dark matter
candidates. For the case of heavy (M 21 GeV) particles, clastic
scattering from nuclei would produce nuclear recoils with energies of
2 1 keV, and several techniques have been proposed to detect these
recoils. The expected collision rate for a target nucleus mass my is:

R=43 kg™ day™! (;si{j) (10—:Bdcm2)

DM
(0.3 GZV cm‘3)(300<|:rEr‘1!>s’1) ’

where (Jvg|) is the average velocity at which they strike the detector.
Since crossing symmetry relates gq to o x5, R is closely related to
Qx. Dirac neutrinos (and sneutrinos) with masses 0.012-4.7 TeV
have already been excluded by searches done using double-3 decay
detectors {12]. Axions could be detected by their expected coherent
conversion to microwave photons in a tuned cavity. Products of DM
annihilation in the halo (e.g., cosmic ray 3's, e*’s, ¥’s) and the core of
the Sun (¢’s) would indirectly signal the existence of particle DM. The
absence of a signal in high energy solar-v searches using underground
detectors rules out sneutrinos whereas cosmic ray searches do not
constrain theory so far. Experimental limits concerning a number of
dark matter candidates are given in the Full Listings. See the index
under “Dark matter limits.”

Recent LEP results when combined with the above experimental
constraints now completely eliminate massive 4th-generation neutrinos
or sneutrinos as dark matter candidates. Sneutrinos and additional
Dirac and Majorana neutrinos with masses < 40 GeV are excluded
by LEP. This alone eliminates a Majorana neutrino, since the
relic abundance for the neutrinos with masses < 40 GeV would be
Qh2? < 2 x 1073, making them cosmologically uninteresting. In the
case of Dirac neutrinos, if there were a density asymmetry between
v and ¥, it would in principle be possible to have a cosmologically
interesting density even though m, > 40 GeV. However, as described

(4.2)
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in the previous paragraph, Dirac neutrinos (and sneutrinos) below
4.7 TeV are ruled out by direct cold dark matter searches.
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5. INTERNATIONAL SYSTEM OF UNITS (SI)

Sec “The International System of Units (SI),” NIST special publication 330, B.N. Taylor, ed. (USGPO, Washington, DC, 1991).

SI prefixes

Physical Nam. ot o

o4 . a fe 1024 yotta (Y)
quantity of unit Symbol
1021 zetta (Z)
Base units 1018 exa (E)
length meter m 105 peta (P)
mass kilogram kg 1012 tera (T)
time second s 9 .

. 10 giga (G)
electric current ampere A 5
thermodynamic kelvin K 10 mega (M)

temperature 103 kilo (k)
amount of substance mole mol 102 hecto  (h)
luminous intensity candela cd 10 deca  (da)

Supplementary units 10-'  deci (d)

planc angle radian rad 1072 centi  (c)
solid angle steradian sr 10-3  milli (m)

Derived units with special names 1076 micro ()
frequency hertz Hz 107°  nano (n)
energy joule J ! 10712 pico (p)
force newton N 1071 femto  (f)
Oressure pascal Pa
! 10718 atto  (a)
power watt W 21
clectric charge coulomb C 10 aepto  (z)

. . —24
clectric potential volt \Y 10 yocto  (y)
clectric resistance ohm Q
clectric conductance siemens S
clectric capacitance farad F
magnetic flux weber Wb
inductance henry H
magnetic flux density tesla T
Iuminous flux lumen Im
illuminance lux Ix
celsius temperature degree celsius °C
activity (of a becquerel Bq

radioactive source)*
absorbed dose (of gray Gy

ionizing radiation)*
dose equivalent* sievert Sv

*Sce our section 13, on “Radioactivity and radia-
tion protection,” p. 1268.
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6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS
Table 6.1. Table revised June 1994. Gases are evaluated at 20°C, 1 atm, (in parentheses) or at STP [square brackets].
Material Z A Nuclear® Nuclear ® Nuclear® Nuclear¢ dE/dz|,;3Radiation length® Density f Refractive
total inelastic collision interaction MeV Xo lg/cm3] index nf
cross cross length  length [/_T] [g/cm?  [em] () is for gas() is (n-1)x 108
section section Ar Ar g cm () is for gas (g/4] for gas
o [barn] oy [barn] [g/cm?] [g/cm?| () is for gas
Hj gas 1 1.01 0.0387 0.033 43.3 50.8 (4.103) 61.28 865  (0.0838)[0.090] [140]
H; (B.C,26K) 1 1.01 0.0387 0.033 43.3 50.8 4.045 61.28 865 0.0708 1.112
D; 1 201 0.073 0.061 45.7 54.7 (2.052) 122.6 757 0.162[0.177) 1.128
He 2 400 0133 0.102 49.9 65.1 (1.937) 9432 755 0.125[0.178] 1.024[35]
Li 3 694 0.211 0.157 54.6 73.4 1.639 82.76 155 0.534 —
Be 4 9.01 0.268 0.199 55.8 75.2 1.594 65.19 35.3 1.848 —
C 6 12.01 0.331 0.231 60.2 86.3 1.745 42.70 18.8 2.2659 —
N 7 1401 0379  0.265 61.4 87.8 (1.825) 37.99 470  0.808[1.25] 1.205(300]
02 8 16.00 0.420 0.292 63.2 91.0 (1.801) 34.24 30.0 1.14[1.43] 1.22[266]
Ne 10 2018 0507  0.347 66.1 96.6 (1.724) 2894 240  1.207[0.900] 1.092(67)
Al 13 26.98 0.634 0.421 70.6 106.4 1.615 24.01 8.9 2.70 —
Si 14 28.09 0.660 0.440 70.6 106.0 1.664  21.82 9.36 2.33 —
Ar 18 39.95 0.868  0.566 76.4 1172 (1.519) 1955 140  1.40[1.782] 1.233[283]
Ti 22 4788 0995  0.637 79.9 124.9 1.476 16.17 3.56 4.54 —
Fe 26 55.85 1.120  0.703 82.8 131.9 1.451 13.84 1.76 7.87 —
Cu 29 63.55 1.232 0.782 85.6 134.9 1.403 12.86 1.43 8.96 —
Ge 32 72.59 1.365 0.858 88.3 140.5 1.371 12.25 2.30 5.323 —
Sn 50 118.69 1.967 1.21 100.2 163 1.264 8.82 1.21 7.31 —
Xe 54 131.20 2120 1.29 102.8 169 (1.255) 848 277  3.057[5.858] [705)
w 74 183.85 2.767 1.65 110.3 185 1.145 6.76 0.35 19.3 —
Pt 78 195.08 2.861 1.708 113.3 189.7 1.129 6.54 0.305 21.45 —
Pb 82 207.19 2.960 1.77 116.2 194 1.123 6.37 0.56 11.35 —
U 92 238.03 3.378 1.98 117.0 199 1.082 6.00 ~0.32 ~18.95 —
Air, (20°C, 1 atm.), [STP] 62.0 90.0 (1.815) 36.66 [30420] (1.205)[1.29] (273)[293]
H,0 60.1 84.9 1.991 36.08 36.1 1.00 1.33
CO, 62.4 90.5 (1.819) 362  [18310] [1.977] [410]
Shielding concrete * 67.4 99.9 1.711  26.7 10.7 2.5 —
Borosilicate glass (Pyrex) t 66.2 97.6 1.695 28.3 12.7 2.23 1.474
SiO2 (fused quartz) ™ 67.0 99.2 1.697  27.05 11.7 2.32™m 1.458
Methane (CHy) 54.7 74.0 (2417) 465  [64850] 0.423[0.717] [444]
Ethane (CoHg) 55.73  7T5.71 (2.304) 45.66  [34035] 0.509(1.356)™ (1.038)™
Propane (C3Hg) — — (2.262) — — (1.879)
Isobutane ((CHz),CHCHz) 56.3 77.4 (2.239) 452  [16930] [2.67] (1900]
Octane, liquid (CH3(CHz2)eCH3) — — 2.123 — — 0.703
Paraffin wax (CH3(CHz2),CHa, (n) ~ 25) — — 2.087 — — 0.93
Nylon, type 6 — — 1.974 — — 1.14
Polycarbonate (Lexan) - — 1.886 — — 1.200
Polyethylene terephthlate (Mylar) (C5H403) 60.2 85.7 1.848  39.95 28.7 1.39 —
Polyethylene (monomer CH; =CHy) 56.9 78.8 2.076 44.8 ~47.9 0.92-0.95 —
Polyimide film (Kapton) — — 1.820 — — 1.420
Polymethylmethacralate (Lucite, Plexiglas) 59.2 83.6 1.929 40.55 =344 1.16-1.20 ~1.49
(monomer (CHz =C(CH3)CO2CH3))

Polystyrene, scintillator (monomer C¢Hs CH=CH3) 58.4 82.0 1.936  43.8 42.4 1.032 1.581
Polytetrafluoroethylene (Teflon) (monomer CFy =CF3) — — 1.671 — — 2.20
Polyvinyltolulene, scintillator (monomer 2-CHzCgH4CH=CHy) — — 1.956 — — 1.032
Barium fluoride (BaF32) 92.1 146 1.303 9.91 2.05 4.89 1.56
Bismuth germanate (BGO) (BigGe3012) 974 156 1.251 7.98 1.12 7.1 2.15
Cesium iodide (CsI) — — 1.243 — — 4.51
Lithium fluoride (LiF) 62.00 88.24 1.614 39.25 14.91 2.632 1.392
Sodium fluoride (NaF) 66.78 97.57 1.69 29.87 11.68 2.558 1.336
Sodium iodide (Nal) 94.8 152 1.305 9.49 2.59 3.67 1.775
Silica Aerogel © 65.5 95.7 1.83 29.85 =150 0.1-0.3 1.04+0.25p
NEMA G10 plate? 62.6 90.2 1.87 33.0 19.4 1.7 —
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®

SR -

Wo 33 ~nre o

Material Dielectric Young'’s Coeff. of Specific Electrical Thermal
constant (k = €/€¢g) modulus thermal heat resistivity conductivity
() is (k-1)x 108 [108 psi] expansion [cal/g-°C] [uQem(@°C)]  [cal/cm-°C-sec]
for gas [10~6cm/cm-°C])

H, (253.9) - — — — -
He (64) — - — — —

Li — — 56 0.86 8.55(0°) 0.17
Be — 37 12.4 0.436 5.885(0°) 0.38
c — 0.7 0.6-4.3 0.165 1375(0°) 0.057
Ny (548.5) — — - — —
02 (495) — — — — —

Ne (127) — — — — —

Al — 10 23.9 0.215 2.65(20°) 0.53
Si 11.9 16 2.8-7.3 0.162 — 0.20
Ar (517) — — — -

Ti — 16.8 8.5 0.126 50(0°) —

Fe — 28.5 11.7 0.11 9.71(20°) 0.18
Cu — 16 16.5 0.092 1.67(20°) 0.94
Ge 16.0 — 5.75 0.073 -— 0.14
Sn — 6 20 0.052 11.5(20°) 0.16
Xe — — — — — —

W — 50 4.4 0.032 5.5(20°) 0.48
Pt — 21 8.9 0.032 9.83(0°) 0.17
Pb — 2.6 29.3 0.038 20.65(20°) 0.083
U — — 36.1 0.028 29(20°) 0.064

or, o1, Ar, and Ay are energy dependent. Values quoted apply to high energy range given in footnote a or b, where energy dependence is
weak.

. Ototal at 80-240 GeV for neutrons (~ o for protons) from Murthy et al., Nucl. Phys. B92, 269 (1975). This scales approximately as A%77.
- Oinelastic = Ototal — Telastic — Tquasielastic; for neutrons at 60-375 GeV from Roberts et al., Nucl. Phys. B159, 56 (1979). For protons and

other particles, see Carroll et al., Phys. Lett. 80B, 319 (1979); note that o7(p) = a7(n). o scales approximately as A%71.

. Mean free path between collisions (A7) or inelastic interactions (Ay), calculated from A = A/(N x o), where N is Avogadro’s number.
. For minimum-ionizing heavy particles (muons, pions, protons, etc.). Minimum dE/dz calculated in 1994, using density effect correction

coefficients from R. M. Sternheimer, M. J. Berger, and S. M. Seltzer, Atomic Data and Nuclear Data Tables 30, 261-271 (1984). For
clectrons and positrons see S.M. Seltzer and M.J. Berger, Int. J. Appl. Radiat. 35, 665-676 (1984). Ionization energy loss is discussed in
Sec. 10.

. From Y.S. Tsai, Rev. Mod. Phys. 46, 815 (1974); X data for all elements up to uranium may be found here. Corrections for molecular

binding applied for Hy and Dj. Parentheses refer to gaseous form at STP (0°C, 1 atm.).

. Values for solids, or the liquid phase at boiling point, except as noted. Refractive index given for sodium D line.
. For pure graphite; industrial graphite density may vary 2.1-2.3 g/cms.
. Standard shielding blocks, typical composition Oz 52%, Si 32.5%, Ca 6%, Na 1.5%, Fe 2%, Al 4%, plus reinforcing iron bars. The

attenuation length, £ = 115+ 5 g/cmz, is also valid for earth (typical p = 2.15), from CERN-LRL-RHEL Shielding exp., UCRL-17841
(1968).

. Density may vary about +3%, depending on operating conditions.
. Values for typical working conditions with Hy target: 50 mole percent, 29°K, 7 atm.
. Typical scintillator; e.g., PILOT B and NE 102A have an atomic ratio H/C = 1.10.

Main components: 80% SiO2 + 12% B203 + 5% NagO.

. For typical fused quartz; density may vary. The specific gravity of crystalline quartz is 2.64.

. Solid ethane density at —60°C; gaseous refractive index at 0°C, 546 mm pressure.

. n(Si02) + 2n(H20) used in Cerenkov counters, p = density in g/cm®. From M. Cantin et al., Nucl. Instr. and Meth. 118, 177 (1974).
. G10-plate, typical 60% SiO2 and 40% epoxy.
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Table 8.1. Reviewed 1993 by W.C. Martin, NIST. The electronic configurations and ionization energies here are taken from the CRC Handbook
of Chemistry and Physics, 74th Edition, ed. D.R. Lide (CRC Press, Boca Raton, FL, 1993). The electron configuration for, say, iron indicates
an argon electronic core (see argon) plus six 3d electrons and two 4s electrons. The ionization energy is the least energy necessary to remove to
infinity one electron from an atom of the element.

Ground Tonization
Electron configuration state cnergy
Element (3d° = five 3d electrons, etc.) 25+1p, (eV)
1 H  Hydrogen 1s 2812 13.5984
2  He Helium 1s2 1So 24.5874
3 Li Lithium (He)2s 2S1/2 5.3917
4 Be Beryllium (He)2s2 15, 9.3226
5 B  Boron (He)2s2 2p 2Py 8.2980
6 C  Carbon (He)2s2 2p? 3Py 11.2603
7 N Nitrogen (He)2s? 2p? 453/2 14.5341
8 O Oxygen (He)2s% 2p? 3p, 13.6181
9 F  Fluorine (He)2s% 2p° 2Pyy 17.4228
10 Ne Neon (He)2s2 2p® 1Sy 21.5645
11  Na Sodium (Ne)3s 251/2 5.1391
12 Mg Magnesium (Ne)3s? 15, 7.6462
13 Al Aluminum (Ne)3s? 3p 2Py g 5.9858
14  Si  Silicon (Ne)3s? 3p? 3Py 8.1517
15 P Phosphorus (Ne)3s? 3p° 483/ 10.4867
16 S  Sulfur (Ne)3s? 3pt 3p, 10.3600
17 Cl  Chlorine (Ne)3s2 3p° 2Py 12.9676
18 Ar  Argon (Ne)3s2 3pS 15, 15.7596
19 K  Potassium (Ar)  ds 28172 4.3407
20 Ca Calcium (Ar) 452 15, 6.1132
21  Sc  Scandium (Ar)3d 4s° T Dy/o 6.5614
22 Ti Titanium (Ar)3d? 4s° o 3R 6.8282
23 V  Vanadium (Ar)3d® 4s? a Fyy 6.7463
24  Cr  Chromium (Ar)3d5 4s no. 7S3 6.7666
25 Mn Manganese (Ar)3d5 4s? S m Ss/2 7.4340
26 Fe Iron (Ar)3d® 4s2 ; e 5Dy 7.9024
27  Co Cobalt (Ar)3d7 4s? ;0 Fyy 7.8810
28 Ni  Nickel (Ar)3d® 4s° o ¢ 3Ry 7.6398
29  Cu Copper (Ar) 3d104s n ° 28172 7.7264
30  Zn Zinc (Ar) 3d104s2 18y 9.3941
31  Ga Gallium (Ar)3d104s2 4p 2Py )p 5.9993
32  Ge Germanium (Ar) 3d104s2 4p? 3Py 7.900
33 As  Arsenic (Ar) 3d104s2 4p® 1S3/ 9.8152
34 Se  Selenium (Ar) 3d104s2 4p* 3p, 9.7524
35 Br Bromine (Ar) 3d04s2 4p5 2Py/n 11.8138
36 Kr Krypton (Ar)3d104s2 4pb 15, 13.9996
37 Rb Rubidium (Kr)  5s 28172 4.1771
38 Sr  Strontium (Kr) 552 15, 5.6948
39 Y  Yttrium (Kr)4d 5s® T 2D3/o 6.217
40  Zr  Zirconium (Kr)4d? 552 o 3Fy 6.6339
41 Nb Niobium (Kr)4d* 5s a 5Dy /2 6.7589
42 Mo Molybdenum (Kr)4d® 5s oo 783 7.0924
43  Tc  Technetium (Kr)4d® 5s2 S m Ss/2 7.28
44 Ru Ruthenium (Kr)4d 5s ; e 5y 7.3605
45 Rh Rhodium (Kr)4d® 5s ;B 4Py 7.4589
46 Pd Palladium (Kr) 4410 o © 1S, 8.3369
47  Ag Silver (Kr)4d'%5s n 281 7.5762

48 Cd Cadmium (Kr)4d'05s2 1S, 8.9937
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49 In Indium (Kr)4d%5s2 5p 2Py 5.7864
50 Sn Tin (Kr)4d105s2 5p? 3Py 7.3438
51 Sb  Antimony (Kr)4d10552 5p3 48372 8.64
52 Te Tellurium (Kr)4d105s2 5p4 3p, 9.0096
53 I  Iodine (Kr) 4d105s2 5p° 2Py, 10.4513
54 Xe Xenon (Kr)4d195s2 5p6 15, 12.1299
55 Cs Cesium (Xe) 6s 2812 3.8939
56 Ba Barium (Xe) 6s2 1Sy 5.2117
57 La Lanthanum (Xe)  5d 6s2 2Dy)s 5.5770
58 Ce Cerium (Xe)af 5d 6s? e 5.5387
59  Pr Praseodymium  (Xe)4f3 6s2 L 4I, /2 5.464
60 Nd Neodymium (Xe)4f* 652 a 51y 5.5250
61 Pm Promethium (Xe)4f> 652 a 5Hy,, 5.55
62 Sm Samarium (Xe)4f® 632 n Fo 5.6437
63 Eu Europium (Xe)4f7 6s2 b 8s, /2 5.6704
64 Gd Gadolinium (Xe)4f7 5d 652 h D, 6.1500
65 Tb Terbium (Xe)df?  6s2 : SHys;, 58639
66 Dy Dysprosium (Xe)4f10 652 i 515 5.9389
67 Ho Holmium (Xe)4f1 6s2 d 4115/2 6.0216
68 Er Erbium (Xe)4f12 652 e 3He 6.1078
69 Tm Thulium (Xe)af3 652 s 2Fr)a 6.1843
70 Yb Ytterbium (Xe)4ft 652 15, 6.2542
71 Lu Lutetium (Xe)4f145d 652 D35 5.4259
72 Hf Hafnium (Xe)4f145d% 652 T 3R 6.8251
73 Ta Tantalum (Xe)4f145d% 632 o, 4Fy, 7.89
74 W  Tungsten (Xe)4f145d4 652 a 5Do 7.98
75 Re Rhenium (Xe)4f145d° 652 no 6S5/2 7.88
76 Os Osmium (Xe)4f145d® 652 S m 5D, 8.7
77 I Iridium (Xe)4f145d7 652 : e 4Fy/q 9.1

78 Pt Platinum (Xe)4f145d9 6s ; n 3D, 9.0

79  Au Gold (Xe)4f'45d'06s o ¢ 251/, 9.2257
80 Hg Mercury (Xe)4f145d10652 n ° 15, 10.4375
81 T1 Thallium (Xe)4f145d106s2 6p 2Py 6.1083
82 Pb Lead (Xe)4f145d106s2 6p? 3Py 7.4167
83 Bi Bismuth (Xe)4f145d1%6s2 6p3 4S3/2 7.289
84 Po Polonium (Xe)4f145d1%6s2 6p* 3p, 8.4167
85 At Astatine (Xe)4f145d106s% 6p° 2Py,

86 Rn Radon (Xe)4f145d10652 6p® 15y 10.7485
87 Fr  Francium (Rn) 7s 281/2

88 Ra Radium (Rn) 752 150 5.2789
89  Ac Actinium (Rn)  6d 7s? ’Dy/p 5.17
90 Th Thorium (Rn)  6d2 752 3p, 6.08
91 Pa Protactinium (Rn)5f2 6d 7s? A ) 5.89
92 U  Uranium (Rn)5f3 6d 752 c 5Le 6.1941
93 Np Neptunium (Rn)57% 6d 752 t SL11/2 6.2657
94 Pu Plutonium (Rn)5f6 752 1 Fo 6.06
95 Am Americium (Rn)5f7 752 n 8572 5.993
96 Cm Curium (Rn)5f7 6d 752 q D, 6.02
97 Bk Berkelium (Rn)5f9 752 o Hys/2 6.23
98 Cf Californium (Rn)5f10 742 s 5Ig 6.30
99 Es Einsteinium (Rn)5f11 742 ‘Ls/ 6.42
100 Fm Fermium (Rn)5f12 752 3Hs 6.50
101 Md Mendelevium (Rn)5f13 752 2F7/2 6.58
102 No Nobelium (Rn)5f14 742 15, 6.65
103 Lr Lawrencium (Rn)5f146d 7527 2D, /27

104 Rf Rautherfordium  (Rn)5f146d2 7527
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9. High-energy collider parameters

The numbers here were received from representatives of the colliders in 1993 or early 1994. Quantities are, where appropriate, r.m.s. H and V
indicate horizontal and vertical directions. Many of the numbers of course change over the lifetime of a collider; only the latest values are given

here.

9. HIGH-ENERGY COLLIDER PARAMETERS: ete~ Colliders (I)

SPEAR DORIS CESR [CESR+ (phase2)] PETRA PEP
(SLAC) (DESY) (Cornell) (DESY) (SLAC)
Physics start date 1972 1973 1979 [1995] 1978 1980
Physics end date 1990 — —_ 1986 1990
Maximum beam energy (GeV) 4 5.6 6 23.4 15
Luminosity (103%cm~2s71) 10 at 3 GeV 33 at 5.3 GeV 290 at 5.3 GeV 24 at 60
[600 in 1995) 17.5 GeV
Time between collisions (us) 0.75 0.965 0.36 38 2.44
[0.028 in 1995]
Crossing half angle (yu rad 0 0 0 0 0
& (1 rad) (2500 in 1995]
Energy spread (units 10_3) 1 1.2 at 5 GeV 0.6 at 5.3 GeV 1.1 at 17.5 GeV 1
Bunch length (cm) o, x4 o~2at5GeV 1.7 o~ 13at 17.5 GeV 0, =2
Beam radius (106 m) H: 700 H: 740 }at 5 H: 500 H: 430 \at 17.5 H: 340
V: 50 V:~30 JGeV V: 11 V. 13 GeV V: 14
Free space at interaction 125 +1.2 +2.2 (£0.6 445 +37
point (m) to REC quads)
Luminosity lifetime (hr) ~ 3 1.0-1.5 3-4 4 at 17.5 GeV 4
Filling time (min) 15 ~ 15 10 20 15
Acceleration period (s) <100 — - <100
Injection energy (GeV) 2.5 up to 5.6 6 7 15
Transverse emittance H =~ 430 H: 500 }a.t 5 H: 240 H: 140 H ~ 120
(10~% rad-m) V:5-50 SGeV V. 8 V. 2
3*, amplitude function at H:1.2 H:0.59/12.3 H:1.0 H:13 H:1.0
interaction point (m) V:0.08 V:0.04/0.79 V:0.018 V:0.08 V:0.0
Beam-beam tune shift 300 < 280 (space charge 420 H: 160 }at 17.5 550
per crossing (units 10™4) limit at 5.3 GeV) [300 in 1995] V:400 J GeV
RF frequency (MHz) 358 500 500 500 352
Particles per bunch 24 .
N 15 27 26 3é
(units 1010) 7 (17 in 1995] 1 ’ ’
I
Bunches per ring 1 . 7 { Y 5
per species [27 in 1995) -
Average beam current 30 45 at 5.3 GeV 110 11 at 21
per species (mA) [300 in 1995] 17.5 GeV
Circumference (km) 0.234 0.2892 0.768 2.304 2.2
Interaction regions 2 2 1 4 1
Utility insertions 18 10 2 4 5
Magnetic length of dipole (m) 2.35 3.2/1.1 1.6-6.6 5.38 5.4
Length of standard cell (m) 114 13.2 16 14.4 14.35
Phase advance per cell (deg) H:79 H: 140 45-90 (no H: 47 H: 56
V:90 V: 50 standard cell) V: 40 V:33
Dipoles in ring 36 H:28 86 224 192
V: 6
Quadrupoles in ring 46 68 106 360 248
. 0.3 normal
Peak magnetic field (T) 1.1 15 0.8 high field 0.4 at 0.36
23 GeV

at 8 GeV
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HIGH-ENERGY COLLIDER PARAMETERS: ete™ Colliders (II)

The numbers here were received from representatives of the colliders in 1993 or early 1994. Numbers are subject to change. Quantities are,
where appropriate, r.m.s. H, V, and, s.c. indicate horizontal and vertical directions, and superconducting.

BEPC VEPP-4M TRISTAN SLC LEP
(China) (Novosibirsk) (KEK) (SLAC) (CERN)
Physics start date 1989 1994 1987 1989 1989
Maximum beam energy (GeV) 2.2 6 32 50 55
Luminosity (10%0cm=2s~1) 10 50 37 0.35 11
Time between collisions (us) 0.8 0.6 5 8300 22
Crossing angle (p rad) 0 0 0 0 0
Energy spread (units 10~3) 0.58 1 2.3 3 1.0
Bunch length (cm) ~5 5 1.5 0.1 1.8
Beam radius (10~5 m) H: 926 H: 1000 H: 280 H:25 H: 200
V: 61 V: 30 V: 8 V:08 V: 8
Free space at interaction +25 +2 +2.51 128 +35
point (m) ’ ’ ’ ’
Luminosity lifetime (hr) 7-12 2 2 — 20
Filling time (min) 30 15 40 — 90
Acceleration period (s) 120 150 300 — 320
Injection energy (GeV) 1.3 2 8 50 20
Transverse emittance H: 660 H: 400 H: 25.5 H:0.6 H: 36
(10~%7 rad-m) V: 43 V: 20 at 29 GeV V:06 V:2
B*, amplitude function at H:13 H:0.75 H:1.0 H:0.01 H:1.00
interaction point (m) V:0.085 V:0.05 V:0.04 V: 0.006 V:0.04
Beam-beam tune shift 420 500 340 _ 420
per crossing (units 107%)
RF frequency (MHz) 199.53 180 508.5808 — 352.2
Particles per bunch 20 at 2 GeV 15 22 3.0 416
(units 1010)
Bunches per ring 1 2 9 1 det +de”
per species 8et +8e~
Average beam current 40 at 2 GeV 40 7 0.0006 3
per species (mA)
Beam polarization (%) — — — e”: 62 —
Circumference or length (km) 0.2404 0.366 3.02 1.45 +1.47 26.66
Interaction regions 2 1 4 1 4
Utility insertions 4 1 8 — 4
Magnetic length of dipole (m) 1.6 2 5.86 2.5 11.66/pair
Length of standard cell (m) 6.6 7.2 16.1 5.2 79
Phase advance per cell (deg) =~ 60 65 60 108 60490
Dipoles in ring 40 18 264 4604440 | 3280424 inj.
+ 4 weak +8 weak + 64 weak
Quadrupoles in ring 68 150 392 — 520+288
+ 8 s.c.
Peak magnetic field (T) 0.9028 0.6 0.41 0.597 0.135

at 30 GeV
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HIGH-ENERGY COLLIDER PARAMETERS: ete™ Colliders (III)
+ -

Proposed e*e™ colliders. The numbers here were received from representatives of the colliders in 1993 or early 1994. Numbers are subject to
change and many are only estimates; those in parentheses are for later upgrades. Quantities are, where appropriate, r.m.s. H and V indicate
horizontal and vertical directions.

KEKB PEP-II VLEPP, INP
(KEK) (SLAC) (Serpukhov)
Physics start date 1998 1999 ?
Maximum beam energy (GeV) 8x 35 e"xet: 9x3.1 250
(6.5 GeV c.m. max)
Luminosity (103%cm~2s71) 2000 (—10000) 3000 3000
Time between collisions (us) 0.01 (—0.002) 0.0042 —
Crossing angle (u rad) +2800 (— +10,000) 0 ?
Energy spread (units 10~3) 0.7 e~ /et: 0.61/0.81 5-100
Bunch length (cm) 0.5 1.0 0.075
Beam radius (1076 m) H: 140 H: 155 H:1
Ve 14 V: 6.2 V:0.007
Free space at interaction +0.2, +0.2, £1.2
point (m), angular spread (+300/ — 500) mrad cone 4300 mrad cone
Luminosity lifetime (hr) 3 2
Filling time (min) 6 (—13) topping up 3 (topping up) —
Acceleration period (s) — — 0.0033
Injection energy (GeV) 8/3.5 2.8-12 3.5
Transverse emittance H:19 e”: 48 (H), 1.9 (V) H: 02
(10=%7 rad-m) V: 019 et: 64 (H), 2.6 (V) V:3x10-4
*, amplitude function at H:1.0 e”: 0.50 (H),0.02 (V) H:5x 1073
interaction point (m) V:0.01 et: 0.375 (H), 0.015 (V) 14 1074
B e w
RF frequency (MHz) 508 476 1.4x10*
Paf\?rilte: fng?MCh 1.3/3.2 e Jet: 2.7/5.9 10-20
Bunches per ring 1024 (—5120) 1658 1
per species
A"s::gs‘;:;z;“(:‘:)"'“t 220/520 (—1100/2600) e~ /et 990/2140 0.003
Circumference or length (km) 3.02 2.2 2x3
Interaction regions 1 1 (2 possible) 1
Utility insertions 3 5 —
Magnetic length of dipole (m) 2.56/0.42 e~ /et: 5.4/0.45 -
Length of standard cell (m) 19 15.2 1.2
Phase advance per cell (deg) 90 e~ /et: 60/90 20-90
Dipoles in ring 224 e~ /et: 192/192 —
Quadrupoles in ring 343/341 e~ /et: 282/282 20,000
Peak magnetic field (T) 0.3/0.85 e~ /et: 0.18/0.75 —
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HIGH-ENERGY COLLIDER PARAMETERS: ete™ Colliders (IV)

The numbers here were received from representatives of the colliders in 1993 or early 1994. Numbers are subject to change. Quantities are,
where appropriate, r.m.s. H, V, and, s.c. indicate horizontal and vertical directions, and superconducting.

VEPP-2M DA®NE ¢ FACTORY ¢ FACTORY
(UCLA) (Novosibirsk)
Physics start date 1992 1996 ? 1997
Maximum beam energy (GeV) 0.7 2x 0510 0.18 x 1.5 0.55
(1.5 c.m. max.)
Luminosity (10%0cm™=2s1) 6 135(—540) 10 1000
Time between collisions (us) 0.03 0.0108(—0.0027) — 0.06
Crossing angle (p rad) 0 (1.0 to 1.5)x10* — 0
Energy spread (units 10~3) 0.6 0.40 — 0.5
Bunch length (cm) 3 3.0 — 1
Beam radius (10~6 m) H: 400 H: 2100 — H: 65
V:10 V:21 V:65
Free space at interaction +1 +0.46 — +9
point (m)
Luminosity lifetime (hr) 0.3 3.0 —_ continuous
Filling time (min) continuous < 2 (topping up) — continuous
Acceleration period (s) — — — —
Injection energy (GeV) — 0.510 — —
Transverse emittance H: 400 H: 1000 Lo E: H/V: 312/13 H: 400
(1097 rad-m) V:4 V:10 Hi E: H/V: 156/6.2 V: 400
B*, amplitude function at H:0.48 H:45 Lo E: H/V: 0.50/0.02 H:0.01
interaction point (m) V:0.04 V: 0.045 Hi E: H/V: 1.00/0.04 V:0.01
Beam—bean% tune s.hift » 500 400 _ 1000
per crossing (units 107%)
RF frequency (MHz) 200 368.25 Lo E/Hi E=212/500 700
Particles per bunch _
(units 1010) 4 89 16
Bunches per ring 1 30(—120) Lo E/Hi E=1/3 1
per species
Average beam current 100 1313(—5250) Lo E/Hi E=180/43 200
per species (mA)
Circumference or length (m) 18 97.7 Lo E/Hi E=8.5/25.5 36
Interaction regions 2 2 1 1
Utility insertions 1 2x2 — 1
Magnetic length of dipole (m) 1 1.21/0.99 — 0.9
Length of standard cell (m) 4.5 — — 9
Phase advance per cell (deg) 280 _ _ 548
Dipoles in ring 8 8(+4 wigglers) — 16
Quadrupoles in ring 20 51 — 28
Peak magnetic field (T) 1.8 1.2(—1.76) dipoles Lo E/Hi E=1.0/7.0 2.2
1.8 wigglers
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HIGH-ENERGY COLLIDER PARAMETERS: p, pp, and ep Colliders

The numbers here were received from representatives of the colliders in 1993 or early 1994. Numbers are subject to change, and many are only
estimates. Quantities are, where appropriate, r.m.s. H, V, and, s.c. indicate horizontal and vertical directions, and superconducting.

SppS TEVATRON HERA UNK LHC SSC
(CERN) (Fermilab) (DESY) (Serpukhov) (CERN) (USA)
Physics start date 1981 1987 1990 ? 2002 Terminated
Particles collided PP PP ep pp PP Pb Pb pp
Maximum beam energy 0.315 (0.45 in 0.9-1.0 e: 0.030 0.4 (3) 7.0 574 20
(TeV) pulsed mode) p: 0.82
Luminosity 7.5 (1993) 4
6 16 1000 1.0 x 10 0.002 1000
(10%%cm—2s~1) 10 (1994)
Time between collisions (us) 3.8 3.5 0.096 0.165 0.025 0.135 0.016678
Crossing angle (p rad) 0 0 0 0 200 <100 100 to 200
- (135 nominal)
Energy spread (units 10~3) 0.35 0.15 e g-gl +1 (£0.3) 0.1 0.1 0.055
p: 0.
Bunch length (cm) 20 50 e 2-23 70 (40) 75 75 6.0
p: 8.
Beam radius (10~ m) p: T3(H),36(V) 36 e: 280(H),37(V) 70 16 15 48
7t 55(H),27(V) p: 265(H),84(V)
Free space at interaction 16 +6.5 +5.5 +8 32 32 £20
point (m)
Luminosity lifetime (hr) 15 10-40 10 10 10 10 ~24
Filling time (min) 05 120 e: 30 20 7 16 72
p: 20
Acceleration period (s) 10 86 — 100 1200 1500
Injection energy (TeV) 0.026 0.15 e: 0.014 0.065 (0.4) 0.450 2
p: 0.040
Transverse emittance P9 p: 2.6 e: 39(H), 2(V) 18 (2.3) 05 0.5 0.047
(10~ rad-m) p: 5 p: 2.6 p: 10(H),10(V)
,6‘Z amplit.ude fupction at 0.6 (H) 0.5-0.25 e: 2(H),0.7(V) 0.2 (L5) 0.5 0.5 05
interaction point (m) 0.15 (V) p: 7(H),0.7(V)
Beam-beanf tune s.hift . 50 p: 20 e: 190(H),210(V) 50 32 8 head on
per crossing (units 10~%) p: 70 p: 12(H), 9(V) 13 long range
RF frequency (MHz) 100200 53 e: 499.7 200 400 200+ 359.75
p: 208.2/52.05 400
Partic}es pelrobunch P 15 P 15 e: 3.65 30 10 0.009 0.8
(units 1019) p: 8 p: 4.5 p: 10
Bunches per ring 6 6 210 348 2835 496 17,424
per species
Average be.am current p: 6 p: 6.9 e: 58 240 536 6.9 71
per species (mA) P 3 p: 2.0 p: 158
Circumference (km) 6.911 6.28 6.336 20.772 26.659 87.12
Interaction regions 2 2 high & 3 4 2 high & [ 1 4
Utility insertions — 4 1 2 2 2
Magnetic length e: 9.185 5
6.26 6.12 .8 tly 13.50 Mostly 14.928
of dipole (m) 2 ! p 8.82 ° Mostly 13 oSty
Length of standard cell (m} 64 59.5 e i:}[‘r’ 91.8 102.04 180
p:
Phase advance per cell (deg) 90 67.8 e gg 82.5 90 i 90
p:
Dipoles in rin 744 774 e: 396 9204 (2192 1206 H:8336) . .,
P & p: 416 ( ) 24 crossing dipoles v: 8" 2 rings
Quadrupoles in ring 232 216 e ggg 560 (474) 538 2084 } 2 rings
P
H type with s.c. e: C-shaped s.C. s.Cc.
Magnet type bent-up cos @ p: s.c., collared, H type (s.c.) 2in1 cos
coil ends warm iron cold iron cold iron cold iron
Peak magnetic field (T) 14 (2in 44 e: 0.274 0.67 (5) 8.65 6.790
pulsed mode) p: 4.65
P source accum. rate (hr~1) 6 x 1010 5x1010 — — — —

Max. no. P in accum. ring 1.2 x 1012 1x1012 — — _ _
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10. PASSAGE OF PARTICLES THROUGH MATTER

Revised June 1994.

10.1. Notation

Table 10.1: The notation and values given in Table 1.1 are
used. The kinematic variables 3 and v have the usual meanings.
Definitions of other variables used in this section are summarized
below.

Symbol Definition Units or Value
a  Fine structure constant 1/137.0359895(61)
M Incident particle mass MeV/c?

E  Incident particle energy yMc? MeV
T Kinetic energy MeV
mec?  Electron mass x c? 0.51099906(15) MeV
re  Classical electron radius e?/4megc®  2.81794092(38) fm
N4 Avogadro’s number 6.022 136 7(36) x 1023 mol !
ze  Charge of incident particle
Z  Atomic number of medium
A Atomic mass of medium
4T Ngr2mec? /A

g mol~!

0.307075 MeV g1 cm?
for A=1 g mol~!

é Density effect correction to ionization energy loss

hwp Plasma energy /4nNers mec?/a = 28.816+/p(Z/A) ev(@

w;  Fraction by weight of the jth element in a compound or mixture

nj o number of jth kind of atoms in a compound or mixture

Xo Radiation length MeV g~1 cm?
E. Critical energy MeV

E; Scale energy \/4n/a mec? 21.2052 MeV
Rys  Moliere radius MeV g~! cm?

(@) For p in g cm™3.

10.2. Ionization energy loss by heavy particles [1-5]

Moderately relativistic charged particles other than electrons lose
energy in matter primarily by ionization. If the incident particle
velocity (B¢ is larger than that of orbital electrons (~ Zac) and small
enough that radiative effects do not dominate (for example, pion
energy smaller than 100-200 GeV in iron), then the mean rate of
energy loss (or stopping power) is given by the Bethe-Bloch equation,

dE Z 1 [1. 2mec®6%7°Tmax )
_E=Kzzzﬁ [iln ————————ﬁﬂ" m —ﬂz—i] ) (10.1)

Here Tmax is the maximum kinetic energy which can be imparted to a
free electron in a single collision, and the other variables are defined
in Table 10.1. The units are chosen so that dz is measured in mass
per unit area, e.g., in g cm~2. The function as computed for pions
on copper is shown by the solid curve in Fig. 10.1, and for pions on
other materials in Fig. 10.2. A minor dependence on M at the highest
energies is introduced through Tmax, but for all practical purposes
in high-energy physics dE/dr in a given material is a function only
of 8. Except in hydrogen, particles of the same velocity have very
similar rates of energy loss in different materials; there is a slow
decrease in the rate of energy loss with increasing Z. The qualitative
difference in stopping power behavior at high energies between a gas
(He) and the other materials shown in Fig. 10.2 is due to the density
effect correction, 8, discussed below. The stopping power functions are
characterized by broad minima whose position drops from 8y = 3.5 to
3.0 as Z goes from 7 to 100.

In practical cases, most relativistic particles (e.g., cosmic-ray
muons) have energy loss rates close to the minimum, and are said to
be minimum ionizing particles, or mip’s.

Eq. (10.1) may be integrated to find the total range R for a particle
which loses energy only through ionization. Since dE/dz depends
only on 8, R/M is a function of E/M or pc/M. In practice, range is
a useful concept only for low-energy hadrons (R < A, where \j is
the nuclear interaction length), and for muons below a few hundred
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Figure 10.1: Energy loss rate in copper. The function without
the density effect correction is also shown, as is the shell
correction and two low-energy approximations.
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Figure 10.2: Energy loss rate in liquid (bubble chamber)
hydrogen, gaseous helium, carbon, aluminum, tin, and lead.

GeV (above which radiative effects dominate). R/M as a function of
By = pc/M is shown for a variety of materials in Fig. 10.3.

For a point-like charged particle with mass M and momentum
M B, Tmax is given by

T _ 2171.362 ﬂZ,YZ
P 1+ 2yme /M + (me/M)2

It is usual [1,2] to make the low-energy approximation Tmax =
2mec? 8242, valid for 2yme/M < 1; this, in fact, is done implicitly
in many standard references. For pion in copper, the error thus
introduced into dE/dz is greater than 6% at 100 GeV. The correct
expression should be used.

At such energies, the maximum 4-momentum transfer to the
electron can exceed 1 GeV/c, where structure effects significantly

(10.2)
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Figure 10.3: Range of heavy charged particles in liquid (bubble
chamber) hydrogen, helium gas, carbon, iron, and lead. For
example: For a Kt whose momentum is 700 MeV/c, By = 1.42.
For lead we read R/M =~ 396, and so the range is 195 g cm™2.

modify the cross sections. This problem has been investigated by J.D.
Jackson [6], who concluded that corrections to dE/dz are negligible
below energies where radiative effects dominate. While the cross
section for rare hard collisions is modified, the average stopping power,
dominated by many softer collisions, is almost unchanged.

The mean excitation energy I is 101 eV for elements heavier than
oxygen. The values adopted by the ICRU for the chemical elements [7]
are now in wide use; these are shown in Fig. 10.4. Machine-readable
versions can also be found [8]. Given the availability of these constants
and their variation with atomic structure, there seems little point to
depending upon approximate formulae, as was done in the past.

A shell correction is often included in the square brackets of
Eq. (10.1) [3,5,7], to correct for atomic binding having been neglected
in calculating some of the contributions to Eq. (10.1). We show the
Barkas form (3] in Fig. 10.1. For copper it contributes about 1%
at By = 0.3 (kinetic energy 6 MeV for a pion), and the correction
decreases very rapidly with energy. While it is negligible for high-
energy physics applications, this and other low-energy corrections must
be taken into account at lower energies, such as those encountered in
medical physics.

As the particle energy increases, its electric field flattens and
extends, so that the distant-collision contribution to Eq. (10.1)
increases as In 3. However, real media become polarized, limiting the
field extension and effectively truncating this part of the logarithmic
rise [4,9-13]. At very high energies,

6/2 = In(hwp/I) +InBy —1/2, (10.3)
where 6/2 is the density effect correction introduced in Eq. (10.1)
and hwp is the plasma energy defined in Table 10.1. A comparison
with Eq. (10.1) shows that |dE/dz| then grows as ln 3y rather than
In 8242, and that the mean excitation energy I is replaced by the
plasma energy fiwp. The stopping power as calculated with and

22T‘..[....]rmlf..r]m. AAS) RAARS AR AAAR 100
20 —
18 —

= ICRU 37 (1984), as taken from EGS4
% 16 (interpolated values are not marked —|
N /withpoints) .
T RPP, 1992 and earlier =
~ .
12 ) / /Barkas&Berger 1964
10 —--- g e e
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V/

Figure 10.4: Excitation energies (divided by Z) as adopted by
the ICRU [7]. Those based on measurement are shown by points
with error flags; the interpolated values are simply joined. The
solid point is for liquid Hp; the open point at 19.2 is for Hy gas.
Also shown are curves based on two approximate formulae.

without the density effect correction is shown in Fig. 10.1. Since the
plasma frequency scales as the square root of the electron density, the
correction is much larger for a liquid or solid than for a gas, as is
illustrated by the examples in Fig. 10.2.

The remaining relativistic rise can be attributed to large energy
transfers to a few electrons. If these escape or are otherwise accounted
for separately, the energy deposited in an absorbing layer (in contrast
to the energy lost by the particle) approaches a constant value, the
Fermi plateau (see Sec. 10.3 below). The curve in Fig. 10.1 labeled
“Teut = 0.5 MeV” illustrates this behavior. At extreme energies
(e.g., 400 GeV for muons or pions in iron), radiative effects become
important. These are especially relevant for high-energy muons, as
discussed in Sec. 10.9.

For particles moving more slowly than atomic electrons, the above
discussion is inapplicable. At velocities az> 821073 or slightly
lower, the total energy-loss rate is proportional to 8, and non-ionizing
nuclear recoil energy loss contributes substantially to the total [14].
For protons in silicon, |[dE/dz| = 61.23 GeV em?g~! for 4 < 0.005;
the peak occurs at 3 = 0.0126, where |dE/dz| = 522 MeV ecm?g~!. In
neutron-scattering experiments, light output in scintillator has been
observed for recoil protons with energies as low as 30 eV [15].

It is often stated that for B> 2/137, |dE/dz| falls as 372 before
reaching the broad minimum at By = 3.0-3.5. In fact, the slope
is nowhere this great, and |dE/dz| « 87%/3 provides a very good
approximation to the actual function out to 8y > 1. This behavior is
shown in Fig. 10.1, along with the traditional 8~2 proportionality.

The quantity (dE/dz)éz is the mean energy loss via interaction
with electrons in a layer of the medium with thickness éz. For finite
éz, there are fluctuations in the actual energy loss. The distribution
is skewed toward high values (the Landau tail) [1,16]. Only for a thick
layer ((dE/dz)6z > 2mec? 3247 is the distribution nearly Gaussian.
The large fluctuations in the energy loss are due to the small number
of collisions involving large energy transfers. The fluctuations are
smaller for the so-called restricted energy loss rate, as discussed in
Sec. 10.3 below.

A mixture or compound can be thought of as made up of thin

layers of pure elements in the right proportion (Bragg additivity). In
this case,

dF dF
FED DL

where dE/dz|; is the mean rate of energy loss (in MeV g cm
in the jth element. Eq. (10.1) can be inserted into Eq. (10.4) to
find expressions for (Z/A), (I), and (6); for example, (Z/A) =

, (10.4)
i

..2)
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Y wjZij/A; =Y n;Z;/ Y n;A;. However, (I) as defined this way is
an underestimate, because in a compound electrons are more tightly
bound than in the free elements, and (6) as calculated this way has
little relevance, because it is the electron density which matters.
If possible, one uses the tables given in Refs. 13 and 12, which
include effective excitation energies and interpolation coefficients for
calculating the density effect correction for the chemical elements and
nearly 200 mixtures and compounds. If a compound or mixture is not
found, then one uses the recipe for § given in Ref. 10 (or Ref. 8), and
calculates (I) according to the discussion in Ref. 11. (Note the “13%”
rule!)

Ionization losses by electrons and positrons [12] are not discussed
here. Above the critical energy, which is a few tens of MeV in most
materials, bremsstrahlung is the dominant source of energy loss.
This important case is discussed below. The contributions of various
electron energy-loss processes in lead are shown in Fig. 11.4.

10.3. Restricted energy loss rates for relativistic
ionizing particles

Fluctuations in energy loss are due mainly to the production of a
few high-energy knock-on electrons. Practical detectors often measure
the energy deposited, not the energy lost. When energy is carried off
by energetic knock-on electrons, it is more appropriate to consider the
mean energy loss excluding energy transfers greater than some cutoff
Tecut- The restricted energy loss rate is

dE

_dE 2Z 11 QmeC2ﬂ272Tupper
dz

=Kz——|=In
T<Tou AB%|2 r

& (1+TLN>£>_€_§]
2 Tmax

(10.5)
where Tupper = MIN(Tcut, Tmax). This form agrees with the equation
given in previous editions of this Review [17] for Tcut << Tmax
but smoothly joins the normal Bethe-Bloch function (Eq. (10.1)) for
Tcut > Tmax-

10.4. Energetic knock-on electrons (6 rays)

The distribution of secondary electrons with kinetic energies 7> I
is given by [1]

&’N 1

_1p2Z 1 F(T)
dTdz 2

17T (10.6)
for I € T < Tmax, where Tmax is given by Eq. (10.2). The factor F is
spin-dependent, but is about unity for 7' « Tmax. For spin-0 particles
F(T) = (1 — 32T /Tmax); forms for spins 1/2 and 1 are also given
by Rossi [1]. When Eq. (10.6) is integrated from Teyt to Tmax, one
obtains the difference between Eq. (10.1) and Eq. (10.5). For incident
electrons,. the indistinguishability of projectile and target means that
the range of T extends only to half the kinetic energy of the incident
particle. Additional formulae are given in Ref. 18. Equation (10.6) is
inaccurate for T' close to I: for 21 ST <101, the 1/T? dependence
above becomes approximately T~7, with 3 <7 <5 [19].

10.5. Ionization yields

Physicists frequently relate total energy loss to the number of
ion pairs produced near the particle’s track. This relation becomes
complicated for relativistic particles due to the wandering of energetic
knock-on electrons whose ranges exceed the dimensions of the fiducial
volume. For a qualitative appraisal of the nonlocality of energy
deposition in various media by such modestly energetic knock-on
electrons, see Ref. 20. The mean local energy dissipation per local ion
pair produced, W, while essentially constant for relativistic particles,
increases at slow particle speeds [21]. For gases, W can be surprisingly
sensitive to trace amounts of various contaminants [21]. Furthermore,
ionization yields in practical cases may be greatly influenced by such
factors as subsequent recombination [22].

10.6. Multiple scattering through small angles

A charged particle traversing a medium is deflected by many
small-angle scatters. Most of this deflection is due to Coulomb
scattering from nuclei, and hence the effect is called multiple Coulomb
scattering. (However, for hadronic projectiles, the strong interactions
also contribute to multiple scattering.) The Coulomb scattering
distribution is well represented by the theory of Moli¢re [23]. It is
roughly Gaussian for small deflection angles, but at larger angles
(greater than a few 6, defined below) it behaves like Rutherford
scattering, having larger tails than does a Gaussian distribution.

If we define

1
00 = aglx;sne = -ﬁ 0;31:‘19 . (107)
then it is sufficient for many applications to use a Gaussian approxi-
mation for the central 98% of the projected angular distribution, with
a width given by [24,25]

8o = 5‘%—‘2 p \/E/Xg[l + 0.038111(::/X0)] . (10.8)
Here p, B¢, and 2z are the momentum, velocity, and charge number
of the incident particle, and z/Xp is the thickness of the scattering
medium in radiation lengths (defined below). This value of 6y is from
a fit to Molitre distribution [23] for singly charged particles with 8 = 1

for all Z, and is accurate to 11% or better for 1073 < z/Xo < 100.

Eq. (10.8) describes scattering from a single material, while the
usual problem involves the multiple scattering of a particle traversing
many different layers and mixtures. Since it is from a fit to a Moliere
distribution, it is incorrect to add the individual gy contributions in
quadrature; the result is systematically too small. It is much more
accurate to apply Eq. (10.8) once, after finding = and Xg for the
combined scatterer.

Lynch and Dahl have extended this phenomenological approach,
fitting Gaussian distributions to a variable fraction of the Molitre
distribution for arbitrary scatterers [25], and achieve accuracies of 2%
or better.

A

Figure 10.5: Quantities used to describe multiple Coulomb
scattering. The particle is incident in the plane of the figure.

The nonprojected (space) and projected (plane) angular distribu-
tions are given approximately by [23]

L exp _% an , (10.9)
2r 62 262
1 oglane
- df , 10.10
\/-2—7—; % €xp [ 208 plane ( )

where 0 is the deflection angle. In this approximation, 6‘3‘,“3 ~
(0;2”“@’;r + Oglane,y), where the z and y axes are orthogonal to the
direction of motion, and dQ = dfpjlane,z @plane,y- Deflections into
Oplane,c and Opjaney are independent and identically distributed.

Figure 10.5 shows these and other quantities sometimes used to
describe multiple Coulomb scattering. They are

,'p rms 1 rms

plane = 'ﬁ plane = ﬁ bo , (10.11)
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Optane =22 80 - (10.15) Figure 10.6: Two definitions of the critical energy E..
Note that the second term for y pjape equals = 8pj,pe/2 and represents
the displacement that would have occurred had the deflection 6)ape 400 5o T T T R B
all occurred at the single point z/2. ~ 1
For heavy ions the multiple Coulomb scattering has been measured 200 —
and compared with various theoretical distributions [26].
10.7. Radiation length and associated quantities . 100 3 ’0\0\0 710 MeV i
> + g
In dealing with electrons and photons at high energies, it is % 50 - 610 MeV/ o\\/ Z +0.92 B
convenient to measure the thickness of the material in units of the =4 L Z+124 \‘o\
. . . . . . . N
radiation length Xg. This is the mean distance over which a high- <) L N
cnergy electron loses all but 1/e of its energy by bremsstrahlung, and is . N
the appropriate scale length for describing high-energy electromagnetic 20—~ ; gohds
cascades. Xo has been calculated and tabulated by Y.S. Tsai [27]: ases
10 |~
VT, 2Naf, 2 / g
Xo -—4a’re—A—{Z [Lrad_f(Z)} +ZLra,d} ) (10.16) :J | | | |
5 I 1 14l
1 2 5 10 20 50 100

where L4 and L;ad are given in Table 10.2. The function f(Z) is an
infinite sum, but for elements up to uranium can be represented to
4-place accuracy by
£(Z) = a®[(1 + a?)™! +0.20206
~0.0369 a2 + 0.0083 a* — 0.002a°] , (10.17)
where a = aZ [28].

Table 10.2: Tsai’s Lyaq and L4, for use in calculating the
radiation length in an element using Eq. (10.16).

Element Z Liag tad

H 1 5.31 6.144

He 2 4.79 5.621

Li 3 4.74 5.805

Be 4 4.71 5.924
Others >4 In(184.15271/3) In(1194Z72/3)

Although it is easy to use Eq. (10.16) to calculate Xp, the functional
dependence on Z is somewhat hidden. Dahl provides a compact fit to
the data [29):

716.4 g cm™2 A

°= Z(Z + 1) In(287/V2)

(10.18)

Results obtained with this formula agree with Tsai’s values to better
than 2.5% for all elements except helium, where the result is about
5% low.

VA

Figure 10.7: Critical energy for the chemical elements, using
Rossi’s definition [1]. The fits shown are for solids and liquids
(solid line) and gases (dashed line). The rms deviation is 2.2%
for the solids and 4.0% for the gases.

The radiation length in a mixture or compound may be approxi-
mated by
1/Xo =Y wj/X;, (10.19)

where w; and X are the fraction by weight and the radiation length
for the ith element.

An electron loses energy by bremsstrahlung at a rate nearly
proportional to its energy, while the ionization loss rate varies only
logarithmically with the electron energy. The critical energy E.
is sometimes defined as the energy at which the two loss rates
are equal [30]. Berger and Seltzer [30] also give the approximation
E; = (800 MeV)/(Z + 1.2). This formula has been widely quoted,
and has been given in previous editions of this Review [17]. Among
alternate definitions is that of Rossi [1], who defines the critical
energy as the energy at which the ionization loss per radiation length
is equal to the electron energy. Equivalently, it is the same as the
first definition with the approximation |dE/dz|prems =~ E/Xo. These
definitions are illustrated in the case of copper in Fig. 10.6 [31].

The accuracy of approximate forms for . has been limited by the
failure to distinguish between gases and solid or liquids, where there
is a substantial difference in ionization at the relevant energy because
of the density effect. We distinguish these two cases in Fig. 10.7. Fits
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were also made with functions of the form a/(Z + b)®, but a was
essentially unity.
The transverse development of electromagnetic showers in different

materials scales fairly accurately with the Moliére radius Ry, given
by [32,33]

Ry = X0 E,/E. , (10.20)

where E, ~ 21 MeV (see Table 10.1), and the Rossi definition of E, is
used.

In a material containing a weight fraction w; of the element with
critical energy E; and radiation length X, the Moliére radius is
given by

1 1 ijcj
RM_E,Z X;

For very high-energy photons, the total ete™ pair-production cross
section is approximately

(10.21)

o =§(A/XoNy) , (10.22)
where A is the atomic weight of the material and N4 is Avogadro’s
number. Equation Eq. (10.22) is accurate to within a few percent
down to energies as low as 1 GeV. The cross section decreases at
lower energies, as shown in Fig. 11.4 of this Review. As the energy
decreases, a number of other processes become important, as is shown
in Fig. 11.3 of this Review.

10.8. Electromagnetic cascades

When a high-energy electron or photon is incident on a thick
absorber, it initiates an electromagnetic cascade as pair production
and bremsstrahlung generate more electrons and photons with lower
energy. The longitudinal development is governed by the high-energy
part of the cascade, and therefore scales as the radiation length in the
material. Electron energies eventually fall below the critical energy,
and then dissipate their energy by ionization and excitation rather
than by the generation of more shower particles. In describing shower
behavior, it is therefore convenient to introduce the scale variables

t=z/Xp
y=E/E., (10.23)

so that distance is measured in units of radiation length and energy in
units of critical energy.

0.125
30 GeV electron
0.100 incident on iron 2
<
- a
= 0.075 g
:
= 0.050 S
~ . ]
st y ' o ™~ Photons '§
0.025 x1/6.8 2
Electrons
0‘000 & L1 l F N T R 1 I T N N | l }
0 5 10 15 200

t = depth in radiation lengths

Figure 10.8: An EGS4 simulation of a 30 GeV electron-
induced cascade in iron. The histogram shows fractional energy
deposition per radiation length, and the curve is a gamma-
function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes
at Xo/2 intervals (scale on right) and the squares the number of
photons with E > 1.5 MeV crossing the planes (scaled down to
have same area as the electron distribution).

Longitudinal profiles for an EGS4 [8] simulation of a 30 GeV
electron-induced cascade in iron are shown in Fig. 10.8. The number
of particles crossing a plane (very close to Rossi’s IT function [1])
is sensitive to the cutoff energy, here chosen as a total energy of
1.5 MeV for both electrons and photons. The electron number falls off
more quickly than energy deposition. This is because, with increasing
depth, a larger fraction of the cascade energy is carried by photons.
Exactly what a calorimeter measures depends on the device, but it
is not likely to be exactly any of the profiles shown. In gas counters
it may be very close to the electron number, but in glass Cerenkov
detectors and other devices with “thick” sensitive regions it is closer
to the energy deposition (total track length). In such detectors the
signal is proportional to the “detectable” track length Ty, which is
in general less than the total track length T'. Practical devices are
sensitive to electrons with energy above some detection threshold Ey,
and Ty = T F(Ey/E;). An analytic form for F(Ey/E.) obtained by
Rossi [1] is given by Fabjan [34]; see also Amaldi [35].

The mean longitudinal profile of the energy deposition in an
electromagnetic cascade is reasonably well described by a gamma
distribution [36):

dE (bt)a—lebt

= = Egb —F(a) (10.24)

The maximum tmax occurs at (a — 1)/b. We have made fits to shower
profiles in elements ranging from carbon to uranium, at energies from
1 GeV to 100 GeV. The energy deposition profiles are well described
by Eq. (10.24) with

tmax = (a—1)/b=1.0x (Iny + Cj) , i=en, (10.25)
where Ce = —0.5 for electron-induced cascades and Cy = +0.5 for
photon-induced cascades. To use Eq. (10.24), one finds (a — 1)/b
from Eq. (10.25) and Eq. (10.23), then finds a either by assuming
b = 0.5 or by finding a more accurate value from Fig. 10.9. The results
are very similar for the electron number profiles, but there is some
dependence on the atomic number of the medium. A similar form for
the electron number maximum was obtained by Rossi in the context
of his “Approximation B,” [1] (see Fabjan’s review in Ref. 34), but
with Ce = —1.0 and C, = —0.5; we regard this as superseded by the
EGS4 result.

0.8 ]
07 OQrg.m\C»\O\O _-
0.6 - MW -]
bt D/D\D__——DE.LC' j
05 -
. /ﬂ/n—m E
04| .
: ]
ogloed v v vl
10 100 1000 10000
y=E/E,

Figure 10.9: Fitted values of the scale factor b for energy
deposition profiles obtained with EGS4 for a variety of elements
for incident electrons with 1 < Ep < 100 GeV. Values obtained
for incident photons are essentially the same.

The “shower length” Xz = Xgo/b is less conveniently parametrized,
since b depends upon both Z and incident energy, as shown in
Fig. 10.9. As a corollary of this Z dependence, the number of electrons
crossing a plane near shower maximum is underestimated using Rossi’s
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approximation for carbon and seriously overestimated for uranium.
Essentially the same b values are obtained for incident electrons and
photons. For many purposes it is sufficient to take b ~ 0.5.

The gamma distribution is very flat near the origin, while the
EGS4 cascade (or a real cascade) increases more rapidly. As a result
Eq. (10.24) fails badly for about the first two radiation lengths; it was
necessary to exclude this region in making fits.

Because fluctuations are important, Eq. (10.24) should be used only
in applications where average behavior is adequate. Grindhammer
et al. have developed fast simulation algorithms in which the variance
and correlation of a and b are obtained by fitting Eq. (10.24) to
individually simulated cascades, then generating profiles for cascades
using a and b chosen from the correlated distributions [37].

Measurements of the lateral distribution in electromagnetic
cascades are shown in Refs. 32 and 33. On the average, only 10%
of the energy lies outside the cylinder with radius Rps. About
99% is contained inside of 3.5Rjs, but at this radius and beyond
composition effects become important and the scaling with Ry fails.
The distributions are characterized by a narrow core, and broaden as
the shower develops. They are often represented as the sum of two
Gaussians, and Grindhammer [37] describes them with the function

2
f(r)= WL:RRTﬁ ; (10.26)

where R is a phenomenological function of z/X¢ and In E.

10.9. Muon energy loss at high energy

At sufficiently high energies, radiative processes become more
important than ionization for all charged particles. For muons and
pions in materials such as iron, this “critical energy” occurs at
several hundred GeV. Radiative effects dominate the energy loss of
energetic muons found in cosmic rays or produced at the newest
accelerators. These processes are characterized by small cross sections,
hard spectra, large energy fluctuations, and the associated generation
of electromagnetic and (in the case of photonuclear interactions)
hadronic showers. As a consequence, at these energies the treatment
of energy loss as a uniform and continuous process is for many
purposes inadequate.

It is convenient to write the average rate of muon energy loss
as (38]

—dE/dz = a(E) +b(E)E . (10.27)
Here a(F) is the ionization energy loss given by Eq. (10.1), and
b(E) is the sum of ete™ pair production, bremsstrahlung, and
photonuclear contributions. To the approximation that these slowly-
varying functions are constant, the mean range zo of a muon with
initial energy Ey is given by

zo = (1/b)In(a + bEp) . (10.28)
Figure 10.10 shows contributions to b(E) for iron. Since a(E) 2 0.002
GeV g~ 1 cm?, b(E)E dominates the energy loss above several hundred
GeV, where b(E) is nearly constant. The rate of energy loss for muons
in hydrogen, uranium, and iron is shown in Fig. 10.11 [39].

QED calculations of cross sections for bremsstrahlung and ete™
pair production have long been known, but were much improved
around 1970 to meet the needs of cosmic ray physics [40-44].
Rozental showed that the screened atomic electron contribution
could be included by replacing Z2? with Z(Z + 1.2) in the nuclear
bremsstrahlung cross sections and by Z(Z + 1.3) in the case of ete™
pair production [45], and that other corrections might reduce the cross
section by as much as 5%. We take this as the present uncertainty.
Cross sections for both processes have been evaluated independently
by Tsai [27].

A comparison of various improvements to the Bethe-Heitler formula
is given by Wright [46]. For muon energies above 100 GeV, utu~ pair
production is also possible. This process is potentially troublesome
because it can lead to charge misassignment, but it contributes less
than 0.01% to the the total energy loss [39].

T T T

T T MR UBMRALLL R |

T Iron ]
N o B
g 6 -
T 3
w [ .
> SE E
g B
C 4 —~ A
B ” Ppair ]
Rq 7 e =
3 3 E /b/.—— ]
‘°2 9 E_ bremsstrahlung ]
16— 4
R bnuclear ]
0" Y T PN T

1 10 102 108 10* 105

Muon energy (GeV)

Figure 10.10: Contributions to the fractional energy loss by
muons in iron due to ete™ pair production, bremsstrahlung, and
photonuclear interactions, as obtained from Lohmann et al. [39].
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Figure 10.11: The average energy loss of a muon in hydrogen,
iron, and uranium as a function of muon energy. Contributions
to dE/dz in iron from ionization and the processes shown in
Fig. 10.10 are also shown.

Photonuclear interactions account for about 5% of the total energy
loss of high-energy muons in iron, and for about 2% in uranium [47].
The losses are concentrated in rare, relatively hard events.

These radiative cross sections are expressed as functions of the
fractional energy loss v. The bremsstrahlung cross section goes
roughly as 1/v over most of the range, while for the pair production
case the distribution goes as v~3 to v~2 (see Ref. 48). “Hard”
losses are therefore more probable in bremsstrahlung, and in fact
energy losses due to pair production may very nearly be treated as
continuous. The momentum distribution of an incident 1 TeV/c muon
beam after it crosses 3 m of iron is shown in Fig. 10.12. The most
probable loss is 9 GeV, or 3.8 MeV g~lcm?. The full width at half
maximum is 7 GeV/c, or 0.7%. The radiative tail is almost entirely
due to bremsstrahlung; this includes most of the 10% that lost more
than 2.8% of their energy. Most of the 3.3% that lost more than 10%
of their incident energy experienced photonuclear interactions. The
latter can exceed nominal detector resolution [49], necessitating the
reconstruction of lost energy. Electromagnetic and hadronic cascades
in detector materials can obscure muon tracks in detector planes and
reduce tracking efficiency [50].
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Figure 10.12: The momentum distribution of 1 TeV/c muons
after traversing 3 m of iron, as obtained with Van Ginniken’s
TRAMU muon transport code [48].

10.10. Cerenkov and transition radiation [4,51,52]

A charged particle radiates if its velocity is greater than the
local phase velocity of light (Cerenkov radiation) or if it crosses
suddenly from one medium to another with different optical properties
(transition radiation). Neither process is important for energy loss,
but both are used in high-energy physics detectors.

Cerenkov Radiation. The half-angle 6. of the Cerenkov cone for a
particle with velocity SBc in a medium with index of refraction n is

0. = arccos(1/ng)

~ 1/2(1 —1/npB) for small b, e.g. in gases.

The threshold velocity 8 is 1/n, and 4 = 1/(1 — 82)!/2. Therefore,
Beve = 1/(26 + 62)1/2) where § = n — 1. Values of § for various
commonly used gases are given as a function of pressure and
wavelength in Ref. 53. For values at atmospheric pressure, see
Table 6.1. Data for other commonly used materials are given in
Ref. 54.

The number of photons produced per unit path length of a particle
with charge ze and per unit energy interval of the photons is

(10.29)

d2N az? | a?z? 1
—— = sin%g, = 1-
dEdz = hc Te Mec? B2n2(E)
~370sin? 0.(E) eV lem™!  (z2=1), (10.30)
or, equivalently,
2N 27az? 1
dzdx ~ N2 (1 - ﬁ2n2(,\)) ' (1031)

The index of refraction is a function of photon energy E, as is the
sensitivity of the transducer used to detect the light. For practical use,
Eq. (10.30) must be multiplied by the the transducer response function
and integrated over the region for which Sn(E) > 1. Further details
are given in the discussion of Cerenkov detectors in the Detectors
section (Sec. 12 of this Review).

Transition Radiation. The energy radiated when a particle with
charge ze crosses the boundary between vacuum and a medium with
plasma frequency wp is

I = az’yhwy/3 , (10.32)
where
hwp = 1/4wNer3 mecz/a
= /47 Nead, 2 x 13.6 eV . (10.33)

Here N, is the electron density in the medium, 7. is the classical
electron radius, and ao is the Bohr radius. For styrene and similar
materials, \/47rNea.°<,5 % 0.8, so that hwp =~ 20 eV. The typical emission
angle is 1/7.

The radiation spectrum is logarithmically divergent at low energies
and decreases rapidly for hw/yhwp > 1. About half the energy is
emitted in the range 0.1 < hw/yhwp < 1. For a particle with y = 103,
the radiated photons are in the soft x-ray range 2 to 20 eV. The v
dependence of the emitted energy thus comes from the hardening of
the spectrum rather than from an increased quantum yield. For a
typical radiated photon energy of yhwp/4, the quantum yield is

azz'th,, / Yhwp
3 4

az? ~0.5% x 22 . (10.34)
More precisely, the number of photons with energy hw > hwp is
given by [55]

22

B 2 a2
Ny(hw > hwp) = ‘-’;— [(m"—h;“;—" - ) + 1"—2} , (10.35)

within corrections of order (hwo/¥fiwp)?. The number of photons above
a fixed energy hwp << 7yhwp thus grows as (Iny)2, but the number
above a fixed fraction of vhw, (as in the example above) is constant.
For example, for iw > yhwp/10, Ny = 2.519 a2 /7 = 0.59% x 22.

The yield can be increased by using a stack of plastic foils with
gaps between. However, interference can be important, and the soft
x rays are readily absorbed in the foils. The first problem can be
overcome by choosing thicknesses and spacings large compared to the
“formation length” D = yc/wp, which in practical situations is tens
of um. Other practical problems are discussed in Sec. 12.
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11. PHOTON AND ELECTRON ATTENUATION
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The photon mass attenuation length A = 1/(u/p) (also known as mfp, mean free path) for various absorbers as a function of
photon energy, where y is the mass attenuation coefficient. For a homogeneous medium of density p, the intensity I remaining after traversal of
thickness ¢ is given by the expression I = Iy exp(—tp/A). The accuracy is a few percent. Interpolation to other Z should be done in the cross
section ¢ = A/AN, cm?/atom, where A is the atomic weight of the absorber material in grams and N4 is the Avogadro number. For a chemical
compound or mixture, use (1/X)eg = Y, w;(1/));, accurate to a few percent, where w; is the proportion by weight of the ith constituent. The
processes responsible for attenuation are given in Fig. 11.4. Not all of these processes necessarily result in detectable attenuation. For example,
coherent Rayleigh scattering off an atom may occur at such low momentum transfer that the change in energy and momentum of the photon

(b) The photon mass attenuation length, high-energy range (note that ordinate is linear scale). The attenuation length is constant beyond the
range shown for at least two decades in energy.
From Hubbell, Gimm, and @verbg, J. Phys. Chem. Ref. Data 9, 1023 (80). See also J.H. Hubbell, Int. J. of Applied Rad. and Isotopes 33,
1269 (82). Data courtesy J.H. Hubbell.

e~ v
o> N ®» © o

Lol l.nnTnnTﬁwqu‘.ulnnrnn—l—unI.Tn—l—nu

P 05

o
IS

0.3
0.2
0.1

o
=)

Photon Pair Conversion Probability

.- l
AT

TSI R

1

\
i

wdeon b b b b b b b e

ol

5 10 20 50 100 20
Photon energy (MeV)

500 1000

Figure 11.2: Probability P that a photon
interaction will result in conversion to an ete~
pair. Except for a few-percent contribution from
photonuclear absorption around 10 or 20 MeV,
essentially all other interactions result in Compton
scattering off an atomic electron. For a photon
attenuation length A (g/cm?) (Fig. 11.1), the
probability that a given photon will produce an
electron pair (without first Compton scattering) in
thickness ¢ (cm) of absorber of density p (g/cm?) is
P[1 - exp(~tp/M)].
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Contributions to Photon Cross Section in Carbon and Lead
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Figure 11.3: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes.

Op.e. = Atomic photo-effect (electron ejection, photon absorption)
Ocoherent = Coherent scattering (Rayleigh scattering—atom neither ionized nor excited)
Tincoherent = Incoherent scattering (Compton scattering off an electron)
kn = Pair production, nuclear field
ke = Pair production, electron field
onuc = Photonuclear absorption (nuclear absorption, usually followed by emission of a neutron or other particle)

From Hubbell, Gimm, and @verbg, J. Phys. Chem. Ref. Data 9, 1023 (80). The photon total cross section is assumed approximately flat for
at least two decades beyond the energy range shown. Figures courtesy J.H. Hubbell.

Fractional Energy Loss for Electrons and Positrons in Lead
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0.20 Figure 11.4: Fractional energy loss per radiation
length in lead as a function of electron or positron
energy. Electron (positron) scattering is considered

Positrons Lead (Z = 82)
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Elect:
-~ 1.0 ¢ Tong 0.15 as ionization when the energy loss per collision is
'o & bl e below 0.255 MeV, and as Moller (Bhabha) scattering
> remsstrahlung & when it is above. Adapted from Fig. 3.2 from Messel
%I 3 g and Crawford, Electron-Photon Shower Distribution
Ry 0.10 Function Tables for Lead, Copper, and Air Absorbers,
' o5 Pergamon Press, 1970. Messel and Crawford use

Xo(Pb) = 5.82 g/cm?, but we have modified the
figures to reflect the value given in the Table of Atomic
0.05 and Nuclear Properties of Materials, namely Xo(Pb)
=64 g/cmz. The development of electron-photon
cascades is approximately independent of absorber
Ly when the results are expressed in terms of inverse

0 10 E (MeV) 100 1000 radiation lengths (i.e., scale on left of plot).
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12. PARTICLE DETECTORS

Updated 1992 by D.G. Coyne, R.W. Fast, R.D. Kephart, B. Mansoulie,
H.F.W. Sadrozinski, H.G. Spieler, and C.L. Woody

In this section we give various parameters for common detector
components. The quoted numbers are usually based on typical devices,
and should be regarded only as rough approximations for new designs.
A more detailed discussion of detectors can be found in Ref. 1.
In Table 12.1 are given typical spatial and temporal resolutions of
common detectors.

Table 12.1: Typical detector characteristics.

Resolution Dead
Detector Type Accuracy (rms) Time Time
Bubble chamber 10 to 150 pum 1 ms 50 ms®
Streamer chamber 300 pm 2 us 100 ms
Proportional chamber > 300 pmb*® 50 ns 200 ns
Drift chamber 50 to 300 um 2 ns? 100 ns
Scintillator — 150 ps 10 ns
Emulsion 1 pym — —

o . pitch €

Silicon strip 3107 f f
Silicon pixel 2 pm9 f f

% Multiple pulsing time.
b 300 gm is for 1 mm pitch.

Delay line cathode readout can give £150 um parallel to anode
wire.

o

For two chambers.

€ The highest resolution (“7”) is obtained for small-pitch detectors
(<25 pm) with pulse-height-weighted center finding.

f Limited at present by properties of the readout electronics. (Time

resolution of < 15 ns is planned for the SDC silicon tracker.)

9 Analog readout of 34 um pitch, monolithic pixel detectors.

12.1. Plastic scintillators

The photon yield in the frequency range of practical photomultiplier
tubes is &~ 1 photon per 100 eV of charged particle ionization energy
loss in plastic scintillator [2]. One must take into account the light
collection efficiency (<10% for typical 1-cm-thick scintillator), the
attenuation length (1 to 4 m for typical scintillators [3]), and the
quantum efficiency of the photomultiplier cathode ( <25% when folded
with a typical scintillator emission spectrum).

12.2. Inorganic scintillators

Table 12.2 gives a partial list of commonly-used inorganic
scintillators in high-energy and nuclear physics [4-11]. These
scintillating crystals are generally used where high density and good
energy resolution are required. In a crystal which contains nearly
all of the energy deposited by an incident particle, the energy
resolution is determined largely, but not totally, by the light output.
The table gives the light output of the various materials relative
to Nal, which has an intrinsic light output of about 40000 photons
per MeV of energy deposit. The detected signal is usually quoted in
terms of photoelectrons per MeV produced by a given photodetector.
The relationship between photons/MeV produced and p.e.’s/MeV
detected involves factors for light collection efficiency (typically
10-50%, depending on geometry) and the quantum efficiency of
the detector (~ 15-20% for photomultiplier tubes and ~ 70% for
silicon photodiodes for visible wavelengths ). The quantum efficiency
of the detector is usually highly wavelength dependent and should
be matched to the particular crystal of interest to give the highest
quantum yield at the wavelength corresponding to the peak of the
scintillation emission. The comparison of the light output given in
Table 12.2 is for a standard photomultiplier tube with a bialkali
photocathode. For scintillators which emit in the UV, a detector with
a quartz window should be used.

Table 12.2: Properties of several inorganic crystal scintillators.

NaI(Tl) BGO BaF; CsI(Tl) CsI(pure)
Density (g/cm?) 367 713 4.89 4.53 4.53
Radiation length (cm) 259 1.12 2.05 1.85 1.85
Moliére radius (cm) 4.5 2.4 3.4 3.8 3.8
dE/dz (MeV /cm) 4.8 9.2 6.6 5.6 5.6
(per mip)
Nucl. int. length (cm) 414 220 29.9 36.5 36.5
Decay time (ns) 250 300 0.77 1000 10,36
620° ~ 1000%
Peak emission A (nm) 410 480 220f 565 305f
) 310° ~ 480°
Refractive index 1.85 2.20 1.56 1.80 1.80
Relative light output ~ 1.00  0.15 0.05/ 0.40 0.10f
0.20° 0.02¢
Hygroscopic very no slightly somewhat somewhat

f = fast component, s = slow component

12.3. Cerenkov detectors

Cerenkov detectors utilize one or more of the properties of Cerenkov
radiation discussed in the Passages of Particles through Matter section
(Sec. 10 of this Review): the existence of a threshold for radiation;

the dependence of the Cerenkov cone half-angle 6. on the velocity
of the particle; the dependence of the number of emitted photons on
the particle’s velocity. The presence of the refractive index n in the
relations allows tuning these quantities for a particular experimental
application (e.g., using pressurized gas and/or various liquids as
radiators).

The number of photoelectrons (p.e.’s) detected in a given device or
channel is

o222
Npe. = L——g/ecou(E) edet(E) sin? 0.(E)dE (12.1)
Te MeC

where L is the path length in the radiator, ey is the efficiency
for collecting the Cerenkov light, €qe; is the quantum efficiency of
the transducer (photomuitiplier or equivalent), and a?/(re mec?) =
370 cm~leV~1. The quantities €co)l, €qet, and 6, are all functions of
the photon energy E, although in typical detectors 6. (or, equivalently,
the index of refraction) is nearly constant over the useful range of
photocathode sensitivity. In this case,

Npe. ~ LNp <sin2 9c) (12.2)
with
2,2
a?z
No = —— dE . .
(i] " /ecolledet E (12.3)

We take z = 1, the usual case in high-energy physics, in the following
discussion.

Threshold Cerenkov detectors make a simple yes/no decision based
on whether the particle is above/below the Cerenkov threshold velocity
Bt = 1/n. Careful designs give (€con) 2 90%. For a photomultiplier
with a typical bialkali cathode, [ egetdE = 0.27, so that

Npe./L~90 cm™! <sin2 oc> (i.e, No=90cm~l). (12.4)
Suppose, for example, that n is chosen so that the threshold for species
a is pt; that is, at this momentum species a has velocity 8, = 1/n. A
second, lighter, species b with the same momentum has velocity G, so

cos 0c = B4/0B, and
Np.e. 1 mz - mg
L

pZ+mZ

~ 90 cm™ (12.5)

For K/m separation at p =1 GeV/c, Npe./L = 16 cm™! for 7's and
(by design) 0 for K'’s.
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For limited path lengths Npe. can be small, and some minimum
number is required to trigger external electronics. The overall
efficiency of the device is controlled by Poisson fluctuations, which can
be especially critical for separation of species where one particle type
is dominant [12].

A related class of detectors uses the number of observed
photoelectrons (or the calibrated pulse height) to discriminate between
species or to set probabilities for each particle species [13].

Differential Cerenkov detectors exploit the dependence of 6. on 3,
using optical focusing and/or geometrical masking to select particles
having velocities in a specified region. With careful design, a velocity
resolution of 63/ &~ 1074-107° can be obtained [12,14].

Ring-Imaging Cerenkov detectors use all three properties of
Cerenkov radiation in both small-aperture and 47 geometries.
They are principally used as hypothesis-testing rather than yes/no
devices; that is, the probability of various identification possibilities
is established from 6. and Npe. fo_r a particle of known momentum.
In most cases the optics map the Cerenkov cone onto a circle at the
photodetector, often with distortions which must be understood.

The 4m devices [15,16] typically have both liquid (CgF14, n = 1.276)
and gas (CsF12, n = 1.0017) radiators, the light from the latter being
focused by mirrors. They achieve 3 o separation of e/7/K/p over wide
ranges, as shown in Table 12.3. Great attention to detail, especially
with the minimization of UV-absorbing impurities, is required to get
{€cotl) 2 50%.

Table 12.3: Momentum range for 30 separation in the SLD
ring-imaging Cerenkov detector.

Particle pair Mom. range for 3 o separation

e/m p<5 GeV/c
m/K 0.23<p<20 GeV/e
K/p 0.82<p<30 GeV/e

The phototransducer is typically a TPC/wire-chamber combination
sensitive to single photoelectrons and having charge division or
pads. This construction permits three-dimensional reconstruction
of photoelectron origins, which is important for transforming the
Cerenkov cone into a ring. Single photoelectrons are generated by
doping the TPC gas (for instance, ethane/methane in some proportion)
with ~ 0.05% TMAE [tetrakis(dimethylamino)ethylene] [17], leading
to photon absorption lengths along the Cerenkov cone of ~ 30 mm.
The readout wires must be equipped with special structures (blinds
or wire gates) to prevent photon feedback from avalanches generating
cross-talk photoelectrons in the TPC. Drift-gas purity must be
maintained to assure mean drift lengths of the order of meters without
recombination (i.e., lifetimes of > 100 us at typical drift velocities
of 2 4 cm/us). The net (eget)’s reach 30%, with the limitation being
the TMAE quantum efficiency.

Photon energy cutoffs are set by the TMAE (E > 5.4 eV), the
UV transparency of fused silica glass (F < 7.4 eV), and the CgF14
(E < 7.1 eV). With effort one gets 50 < Ny < 100 for complete rings
using liquid or gas. This includes losses due to electrostatic shielding
wires and window/mirror reflections, but not gross losses caused by
total internal reflection or inadequate coverage by the TPC’s.

Such numbers allow determination of ring radii to ~0.5% (liquid)
and ~2% (gas), leading to the particle species separations quoted
above. Since the separation efficiencies may have “holes” as a function
of p, detailed calculations are necessary.

12.4. Transition radiation detectors (TRD’s)

It is evident from the discussion in the Passages of Particles
Through Matter section (Sec. 10 of this Review) that transition
radiation (TR) only becomes useful for particle detectors when the
Lorentz factor > 103, In practice, TRD’s are used to provide e/
separation when p2>1 GeV/c. (The momentum is usually measured
elsewhere in the detector.) Since a soft x ray is radiated with about
1% probability per boundary crossing, practical detectors use radiators
with several hundred interfaces, e.g. foils of lithium or plastic in a
gas. Absorption inside the radiator and interference effects between
interfaces are important {18,19].

A practical detector is composed of several similar modules, each
consisting of a radiator and an x-ray detector. The radiator is made of
foils or fibers of a low-Z material (for low absorption) in a low-Z gas
such as helium. The x-ray detector is usually a wire chamber operated
with a xenon-rich mixture in order to obtain a high conversion
efficiency. As transition radiation is emitted at small angles, the
chamber usually detects the sum of the ionization of the particle and
of converted TR photons. The discrimination between electrons and
pions can be based on the charges measured in each sct, or on more
sophisticated methods using pulse-shape analysis. The TRD in the
D@ experiment serves as an example [20,21].

The major factor in the performance of a TRD is its overall length.
Very roughly, the pion rejection factor for a detector with 90% electron
efficiency is 10 (L/20 cm), where L is the overall length of a radiator
with foils. Radiators with fibers are easier to build, but generally
provide a rejection factor which is at least a factor of two lower.

12.5. Silicon photodiodes and particle detectors

Silicon detectors are p-n junction diodes operated at reverse bias.
This forms a sensitive region depleted of mobile charge and sets up
an electric field that sweeps charge liberated by radiation to the
electrodes. The thickness of the depleted region is

W= \/ZL(%IM;) = V2pe(V + Vi) ,

where V = external bias voltage

(12.6)

Vi = “built-in” voltage (=~ 0.8 V for resistivities typically used
in detectors

n = doping concentration

e = electron charge

€ = dielectric constant = 11.9 ¢g = 1 pF/cm

p = resistivity (typically 1-10 k2 cm)

u = charge carrier mobility
= 1350 cm? V~1 s~ for electrons (n-type material)
= 450 cm? V~1 57! for holes (p-type material)

or

W =05 um x \/p(V+Vy;) for n-type material, (12.7)
and

W =0.3 um x \/p(V +Vy;) for p-type material, (12.8)
where V is in volts and p is in  cm.

The corresponding capacitance per unit area is
€= ~1[pF/em] & (12.9)
= ~ 1[pF/cm] &7 . .

In strip detectors the capacitance is dominated by the strip-to-strip
fringing capacitance of ~ 1-1.5 pF cm™! of strip length at a strip
pitch of 25-50 pm.

About 3.6 eV is required to create an electron-hole pair. For
minimum-ionizing particles, the most probable charge deposition in a
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300 pm thick silicon detector is about 4 fC (25000 electrons). Readily
available photodiodes have quantum efficiences > 70% for wavelengths
between 600 nm and 1 um. UV extended photodiodes have useful
efficiency down to 200 nm. In applications in which photodiodes
detect light from scintillators, care must be taken so that signal from
the scintillator is larger than that produced by particles going through
the photodiode.

Collection time decreases with increased depletion voltage, and can
be reduced further by operating the detector with “overbias,” i.e., a
bias voltage exceeding the value required to fully deplete the device.
The collection time is limited by velocity saturation at high fields; at
an average field of 10* V/cm, the collection times is about 15 ps/um
for electrons and 30 ps/um for holes. In typical strip detectors of
300 pm thickness, electrons are collected within about 8 ns, and holes
within about 25 ns.

Position resolution is limited by transverse diffusion during charge
collection (typically 5 um for 300 pm thickness) and by knock-on
electrons. Resolutions of 3-4 ym (rms) have been obtained in beam
tests. In magnetic fields, the Lorentz drift can increase the spatial
spread appreciably (see “Hall effect” in semiconductor textbooks).

Radiation damage occurs through two basic mechanisms:

1. Bulk damage due to displacement of atoms from their lattice sites.
This leads to increased leakage current, carrier trapping, and
changes in doping concentration. Displacement damage depends
on the nonionizing energy loss, i.e., particle type and energy. The
dose should be specified as a fluence of particles of a specific type
and energy.

2. Surface damage due to charge build-up in surface layers, which
leads to increased surface leakage currents. In strip detectors the
inter-strip isolation is affected. The effects of charge build-up are
strongly dependent on the device structure and on fabrication
details. Since the damage is determined directly by the absorbed
energy, the dose should be specified in these units (rad or Gray).

The increase in leakage current due to bulk damage is Ai = a¢
per unit volume, where ¢ is the particle fluence and a the damage
coefficient (a ~ 2 x 10717 A/cm for minimum ionizing protons and
pions after long-term annealing; roughly the same value applies for
1 MeV neutrons). The doping concentration in n-type silicon changes
as n = ngexp(—8¢) — B¢, where ng is the initial donor concentration,
8§ ~ 6 x 1014 ¢m? determines donor removal, and 8 ~ 0.03 cm™!
describes acceptor creation. This leads to an initial increase in
resisitivity until type-inversion changes the net doping from n to p.
At this point the resistivity decreases, with a corresponding increase
in depletion voltage. The safe operating limit of depletion voltage
ultimately limits the detector lifetime. Strip detectors have remained
functional at fluences beyond 104 cm~2 for minimum ionizing
protons. At this damage level, charge loss due to recombination and
trapping also seems to become significant.

12.6. Proportional and drift chambers

Proportional chamber wire instability. The limit on the voltage V
for a wire tension T', due to mechanical effects when the electrostatic

repulsion of adjacent wires exceeds the restoring force of wire tension,
is given by (SI units) [22]

V< 2%\/41reoT ,

where s, ¢, and C are the wire spacing, length, and capacitance per
unit length. An approximation to C for chamber half-gap ¢ and wire
diameter d (good for s <t) gives [23]

<sorl/2 [t L 5, (2
V <59T [£+ﬂ_lln(7rd) :

(12.10)

(12.11)

where V is in kV, and T is in grams-weight equivalent.

Proportional and drift chamber potentials The potential distribu-
tions and fields in a proportional or drift chamber can usually be

calculated with good accuracy from the exact formula for the potential

around an array of parallel line charges g (coul/m) along z and located
aty=0,z=0, s, +2s, ...,

Vo= g e (7) s ()]}

(12.12)

Errors from the presence of cathodes, mechanical defects, TPC-type
edge effects, etc., are usually small and are beyond the scope of this
review.

12.7. Calorimeters

Electromagnetic calorimeters. The development of electromagnetic
showers is discussed in the “Passage of Particles Through Matter”
section (Sec. 10 of this Review). Formulae are given for the
approximate description of average showers, but since the physics
of electromagnetic showers is well understood, detailed and reliable
Monte Carlo simulation is possible. EGS4 has emerged as the
standard [24].

The resolution of sampling calorimeters (hadronic and electro-
magnetic) is usually dominated by sampling fluctuations, leading to
fractional resolution ¢ /E scaling inversely as the square root of the
incident energy. Homogenous calorimeters, such as solid Nal(T1), will
in general not have resolution varying as 1/ VE. At high energies
deviations from 1/ VE occur because of noise, pedestal fluctuations,
nonuniformities, calibration errors, and incomplete shower contain-
ment. Such effects are usually included by adding a constant term to
o/E, either in quadrature or (incorrectly) directly. In the case of the
hadronic cascades discussed below, noncompensation also contributes
to the constant term.

In Table 12.4 we give resolution as measured in detectors using
typical EM calorimeter technologies. In almost all cases the installed
calorimeters yield worse resolution than test beam prototypes
for a variety of practical reasons. Where possible actual detector
performance is given. For a fixed number of radiation lengths, the
FWHM in sandwich detectors would be expected to be proportional
to /2 for t (= plate thickness) > 0.2 radiation lengths [25].

Given sufficient transverse granularity early in the calorimeter,
position resolution of the order of a millimeter can be obtained.

Table 12.4: Resolution of typical electromagnetic calorimeters.
E is in GeV.

Detector Resolution
Nal(Tl) (Crystal Ball [26]; 20 X;) 2.7%/E/4
Lead glass (OPAL [27)) 5%/VE
Lead-liquid argon (NA31 [28]; 80 cells: 27 Xp, 1.5 mm Pb 7.5%/VE

+ 0.6 mm Al + 0.8 mm G10 + 4 mm LA)

Lead-scintillator sandwich (ARGUS [29], LAPP-LAL (30]) 9%/VE
Lead-scintillator spaghetti (CERN test module) [31] 13%/VE
Proportional wire chamber (MAC; 32 cells: 13 Xp, 23%/ vE

2.5 mm typemetal + 1.6 mm Al) [32]

Hadronic calorimeters [33,34]. The length scale appropriate for
hadronic cascades is the nuclear interaction length, given very roughly
by

A~ 35¢g cm—241/3 | (12.13)
Longitudinal energy deposition profiles are characterized by a sharp
peak near the first interaction point (from the fairly local deposition
of EM energy resulting from 7%’s produced in the first interaction),
followed by a more gradual development with a maximum at

Z/A] = tmax = 0.2In(E/1 GeV) + 0.7 (12.14)

as measured from the front of the detector.
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The depth required for containment of a fixed fraction of the
energy also increases logarithmically with incident particle energy.
The thickness of iron required for 95% (99%) containment of cascades
induced by single hadrons is shown in Fig. 12.1 [35]. Two of the sets
of data are from large neutrino experiments, while the third is from
a commonly used parametrization. Depths as measured in nuclear
interaction lengths presumably scale to other materials. From the
same data it can be concluded that the requirement that 95% of the
energy in 95% of the showers be contained requires 40 to 50 cm (2.4 to
3.0 A;) more material material than for an average 95% containment.
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Figure 12.1: Required calorimeter thickness for 95% and 99%
hadronic cascade containment in iron, on the basis of data from
two large neutrino detectors and the parametrization of Bock

et al. [35].

The transverse dimensions of hadronic showers also scale as Aj,
although most of the energy is contained in a narrow core.

The energy deposit in a hadronic cascade consists of a prompt EM
component due to 7° production and a slower component mainly due
to low-energy hadronic activity. In general, these energy depositions
are converted to electrical signals with different efficiencies [36]. The
ratio of the conversion efficiencies is usually called the intrinsic e/h
ratio. If e/h = 1.0 the calorimeter is said to be compensating. If it
differs from unity by more than 5% or 10%, detector performance is
compromised because of fluctuations in the 70 content of the cascades.
Problems include:

a) A skewed signal distribution;

b) A response ratio for electrons and hadrons (the “e/m ratio”)
which is different from unity and depends upon energy;

c) A nonlinear response to hadrons (the response per GeV is
proportional to the reciprocal of e/7);

d) A constant contribution to detector resolution, almost propor-
tional to the degree of noncompensation. The coefficient relating
the constant term to |1 — e/h| is 14% according to FLUKA
simulations, and 21% according to Wigman'’s calculations [33].

In most cases e/h is greater than unity, particularly if little
hydrogen is present or if the gate time is short. This is because much
of the low-energy hadronic energy is “hidden” in nuclear binding
energy release, low-energy spallation products, etc. Partial correction
for these losses occurs in a sampling calorimeter with thick plates,
because a disproportionate fraction of electromagnetic energy is
deposited in the inactive region. For this reason, it is very unlikely
that a fully sensitive detector such as BGO or glass can be made
compensating.

Compensation has been demonstrated in calorimeters with 2.5
mm scintillator sheets sandwiched between 3 mm depleted uranium
plates [38] or 10 mm lead plates [39]; resolutions o/E of 0.34/VE

and 0.44/VE were obtained for these cases (E in GeV). The former
was shown to be linear to within 2% over three orders of magnitude
in energy, with approximately Gaussian signal distributions.

dE /dzx resolution in argon. Particle identification by dE/dz is

dependent on the width of the distribution. For relativistic incident
particles with charge e in a multiple-sample Ar gas counter with no
lead [40],

dE l dE
dz IFWHM / dz

where N = number of samples, z = thickness per sample (cm), p =
pressure (atm.). Most commonly used chamber gases (except Xe) give
approximately the same resolution.

=0.96 N—0.46 (zp)—0.32 ,
most probable

(12.15)

Free electron drift velocities in liquid jonization chambers [41-44].
Velocity as a function of electric field strength is given in Fig. 12.2.
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Figure 12.2: Electron drift velocity as a function of field
strength for commonly used liquids.

12.8. Measurement of particle momenta in a uni-
form magnetic field [45]

The trajectory of a particle with momentum p (in GeV/c) and
charge ze in a constant magnetic field B is a helix, with radius
of curvature R and pitch angle A. The radius of curvature and

momentum component perpendicular to B are related by

pcosA=03zBR, (12.16)

where B is in tesla and R is in meters.

The distribution of measurements of the curvature ¥ = 1/R is
approximately Gaussian. The curvature error for a large number of
uniformly spaced measurements on the trajectory of a charged particle
in a uniform magnetic field can be approximated by

(8k)2 = (8kres)? + (6kms)? (12.17)

where 6k = curvature error
Skres = curvature error due to finite measurement resolution

6kms = curvature error due to multiple scattering.

If many (> 10) uniformly spaced position measurements are made
along a trajectory in a uniform medium,

€ 720

6kres=z72' N+4d'

(12.18)

where N = number of points measured along track
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L' = the projected length of the track onto the bending plane 8 T T T T TTTT T T3
€ = measurement error for each point, perpendicular to the - l 3
trajectory. 7 E -
If a vertex constraint is applied at the origin of the track, the 6 E_ _.;E
coefficient under the radical becomes 320. __E ®ZEUS oCDF S ALEPH 3
The contribution due to multiple Coulomb scattering is approxi- » 5 e eH1 —
mately i 4 E o TOPAZ e DELPHI 3
(0.016)(GeV/e)z [ L N eCLEOT 3
Skms = W\/X:O , (12.19) R 3 E_ e VENUS _E
2 —
where p = momentum (GeV/c) 1 i_ _E
z = charge of incident particle in units of e E 3

L = the total track length 05: L ‘110 26 S SE)LLIII(% % . '580

Xo = radiation length of the scattering medium (in units of
length; the X( defined elsewhere must be multiplied by
density)

B = the kinematic variable v/c.

More accurate approximations for multiple scattering may be found
in the section on Passage of Particles Through Matter (Sec. 10
of this Review). The contribution to the curvature error is given

approximately by 6kms ~ 83;';1';;‘% /L2, where s;'l‘:le is defined there.

12.9. Superconducting solenoids for collider detec-
tors

12.9.1. Basic (approzimate) equations: In all cases SI units are
assumed, so that B is in tesla, E is in joules, dimensions are in
meters, and pg = 47 X 1077,

Magnetic field. The magnetic field at the center of a solenoid of
length L and radius R, having N total turns and a current I is

uoNI

B0 = 7w

(12.20)

Stored energy. The energy stored in the magnetic field of any
magnet is calculated by integrating B2 over all space:

1
E= ——/BzziV . 12.21

0 (12.21)
For a solenoid with an iron flux return in which the magnetic field is
< 2T, the field in the aperture is approximately uniform and equal to
poNI/L. If the thickness of the coil is small, (which is the case if it is
superconducting), then

E =~ (v/2u0)B*R*L . (12.22)
Cost of a superconducting solenoid [46]:
Cost (in M$) = 0.523 [(E/(1 MJ)]0-662 (12.23)

Magnetostatic computer programs. It is too difficult to solve the
Biot-Savart equation for a magnetic circuit which includes iron
components and so iterative computer programs are used. These
include POISSON, TOSCA [47], and ANSYS [48].

12.9.2. Scaling laws for thin solenoids: For a detector in which
the calorimetry is outside the aperture of the solenoid, the coil must
be thin in terms of radiation and absorption lengths. This usually

means that the coil is superconducting and that the vacuum vessel

encasing it is of minimum real thickness and fabricated of a material
with long radiation length. There are two major contributers to the
thickness of a thin solenoid:

Stored energy (MJ)

Figure 12.3: Ratio of stored energy to cold mass for existing
thin detector solenoids.

1. The conductor, consisting of the current-carrying superconducting
material (usually Cu/Nb-Ti) and the quench protecting stabilizer
(usually aluminum), is wound on the inside of a structural
support cylinder (usually aluminum also). This package typically
represents about 60% of the total thickness in radiation lengths.
The thickness scales approximately as B2R.

2. Approximately another 25% of the thickness of the magnet comes
from the outer cylindrical shell of the vacuum vessel. Since this
shell is susceptible to buckling collapse, its thickness is determined
by the diameter, length, and the modulus of the material of which
it is fabricated. When designing this shell to a typical standard,
the real thickness is

t = P.D23((L/D) — 0.45(t/ D)*%)/2.6Y"* | (12.24)

where t = shell thickness (in), D = shell diameter (in), L = shell
length (in), Y = modulus of elasticity (psi), and P. = design
collapse pressure (= 30 psi). For most large-diameter detector
solenoids, the thickness to within a few percent is given by [49]

t = P.D?5(L/D)/2.6Y"* . (12.25)

12.9.3. Properties of collider detector solenoids: The physical
dimensions, central field, stored energy and thickness in radiation
lengths normal to the beam line of the superconducting solenoids
associated with the major colliders are given in Table 12.5.

Table 12.5: Properties of superconducting collider detector
solenoids.

Experiment-Lab Field Bore Dia Length Energy Thickness

(T) (m) (m) MJ) (Xo)
CDF-Fermilab 1.5 2.86 5.07 30 0.86
Topaz-KEK 1.2 2.72 5.4 19.5 0.70
Venus-KEK 0.75 3.4 5.64 12 0.52
Cleo II-Cornell 1.5 2.9 3.8 25 2.5
Aleph—-CERN 1.5 5.0 7.0 130 1.7
Delphi-CERN 1.2 5.2 7.4 109 4.0
H1-DESY 1.2 5.2 5.75 120 1.2
Zeus-DESY 1.8 1.72 2.85 10.5 0.9

The ratio of stored energy to cold mass (E/M) is a useful
performance measure. One would like the cold mass to be as small
as possible to minimize the thickness, but temperature rise during
a quench must also be minimized. Ratios as large as 8 kJ/kg may
be possible (final temperature of 80 K after a fast quench with
homogenous energy dump), but some contingency is desirable. This
quantity is shown as a function of total stored energy for some major
collider detectors in Fig. 12.3.
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12.10. Radiation levels in detectors at hadron col-
liders

An SSC Central Design Group task force made a study of radiation
levels to be expected in SSC detectors [50]. Its model assumed

o The machine luminosity at /s = 40 TeV is . = 1033 em™ 2571,
and the pp inelastic cross section is ojpe; = 100 mb. This
luminosity is effectively achieved for 107 s yr~!. The interaction
rate is thus 108 s=1, or 10!5 yr—1;

All radiation comes from pp collisions at the interaction point;

The charged particle distribution is (a) flat in pseudorapidity
for |n| < 6 and (b) has a momentum distribution whose
perpendicular component is independent of rapidity, which is
taken as independent of pseudorapidity:

d?Ng,

12.26
dndp, (12.26)

=H f(py)

(where p; = psin8). Integrals involving f(p,) are simplified
by replacing f(py) by 6(py — (py)); in the worst case this
approximation introduces an error of less than 10%;

e Gamma rays from 70 decay are as abundant as charged particles.
They have approximately the same n distribution, but half the
mean momentum;

At the SSC (y/s = 40 TeV), H = 7.5 and (p,) =~ 0.6 GeV/c;
assumed values at other energies are given in Table 12.7. Together
with the model discussed above, these values are thought to
describe particle production to within a factor of two or better.

It then follows that the flux of charged particles from the interaction
point passing through a normal area da located a distance r; from
the beam line is given by

dN, 1.2 x 10851
dc“ = (12.27)
Qa T,L

In a typical organic material, a relativistic charged particle flux of
3 x 10° cm™2 produces an ionizing radiation dose of 1 Gy, where
1 Gy = 1 joule kg™! (= 100 rads). The above result may thus be
rewritten as dose rate,

. 0.4 MGy yr !
S - L (12.28)
(ri/1cm)
If a magnetic field is present, “loopers” may increase this dose rate by
a factor of two.

In a medium in which cascades can develop, the ionizing dose
or neutron fluence is proportional to dN,/da multiplied by (E)%,
where (E) is the mean energy of the particles going through da and
the power « is slightly less than unity. Since E ~ p = p, /sinf and
r; = rsinf, the above expression for dNgy, /da becomes

Dose or fluence* = T% cosh?t@p = ;z_sx% . (12.29)
The constant A contains the total number of interactions ojne [ -Zdt,
so the ionizing dose or neutron fluence at another accelerator scales as
Tinel f.i’dt H <pi_>u~

The dose or fluence in a calorimeter scales as 1/r2, as does the
neutron fluence inside a central cavity with characteristic dimension 7.

Under all conditions so far studied, the neutron spectrum shows
a broad log-normal distribution peaking at just under 1 MeV. In a
2 m radius central cavity of a detector with coverage down to |n| = 3,
the average neutron flux is 2 x 102 cm~2yr~!, including secondary
scattering contributions.

Values of A and o are given in Table 12.6 for several relevant
situations. Examples of scaling to other accelerators are given in
Table 12.7. It should be noted that the assumption that all radiation
comes from the interaction point does not apply to the present
generation of accelerators.

Table 12.6: Coefficients A/(100 cm)? and « for the evaluation
of calorimeter radiation levels at cascade maxima under SSC
nominal operating conditions. At a distance r and angle

# from the interaction point the annual fluence or dose is
A/(r?sin?teg).

Quantity A/(100 cm)?  Units {p.) o
Necutron flux 1.5x 102 cm™2yr~! 0.6 GeV/e 0.67
Dose rate from photons 124 Gy yr! 0.3 GeV/c 0.93
Dose rate from hadrons 29 Gy yr~! 0.6 GeV/c 0.89
Table 12.7: A rough comparison of beam-collision induced
radiation levels at the Tevatron, UNK, high-luminosity LHC,
and SSC.
Tevatron UNK-3 LHC SSC
V5 (TeV) 1.8 6 16 40
Znom (cm™2s71) 2x 1030 4x103%2  4x10%*  1x10%3
Tinel 59 mb 80 mb 86 mb 100 mb
4.1 4.5 6.3 7.5
(p1) (GeV/e) 0.46 0.52 0.55 0.60
Relative dose rateb 5x 1074 0.2 27 1

¢ High-luminosity option.

b Proportional to Lom Tinel H (p1 )7

The constant A includes factors evaluated with cascade simulation
programs as well as constants describing particle production at the
interaction point. It is felt that each could introduce an error as large
as a factor of two in the results.
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13. RADIOACTIVITY & RADIATION PROTECTION

Revised Sept. 1991 with assistance from N.A. Greenhouse.

The International Commission on Radiation Units and Measure-
ments (ICRU) recommends the use of SI units. Therefore we list SI
units first, followed by cgs (or other common) units in parentheses,
where they differ.

o Unit of activity = becquerel (curie):

1 Bq = 1 disintegration s~ [= 1/(3.7 x 101%) Ci]
e Unit of absorbed dose = gray (rad):

1 Gy =1 joule kg~ ! (= 10% erg g~! = 100 rad)

= 6.24 x 1012 MeV kg~! deposited energy

e Unit of exposure, the quantity of z- or - radiation at a point in
space integrated over time, in terms of charge of either sign produced
by showering electrons in a small volume of air about the point:

=1 coul kg~ ! of air (roentgen; 1 R = 2.58x10~4 coul kg~!)

= 1 esu cm~3(= 87.8 erg released energy per g of air)
Implicit in the definition is the assumption that the small test volume
is embedded in a sufficiently large uniformly irradiated volume that
the number of secondary electrons entering the volume equals the
number leaving. This unit is somewhat historical, but appears on
many measuring instruments.
o Unit of equivalent dose (for biological damage) = sievert [= 100
rem (roentgen equivalent for man)]: Equivalent dose in Sv = absorbed
dose in grays x wg, where wg (radiation weighting factor, formerly
the quality factor Q) expresses long-term risk (primarily cancer and
leukemia) from low-level chronic exposure. It depends upon the type
of radiation and other factors, as follows [1]:

Table 13.1: Radiation weighting factors.

Radiation wR

X- and ~v-rays, all energies 1
Electrons and muons, all energies 1
Neutrons < 10 keV 5
10-100 keV 10

> 100 keV to 2 MeV 20

2-20 MeV 10

> 20 MeV 5

Protons (other than recoils) > 2 MeV 5

Alphas, fission fragments, & heavy nuclei 20

o Natural annual background, all sources: Most world areas,
whole-body equivalent dose rate = (0.4-4) mSv (40-400 millirems).
Can range up to 50 mSv (5 rems) in certain areas. U.S. average
~ 3.6 mSv, including &~ 2 mSv (= 200 mrem) from inhaled natural
radioactivity, mostly radon and radon daughters (0.1-0.2 mSv in open
areas. Average is for a typical house and varies by more than an order
of magnitude. It can be more than two orders of magnitude higher in
poorly ventilated mines).

e Cosmic ray background in counters (Earth’s surface):

~ 1 min~! ¢cm~2 sr. For more accurate estimates and details,
see the Cosmic Rays scction (Sec. 14 of this Review.

o Fluxes (per cm?) to deposit one Gy, assuming uniform irradiation:
~ (charged particles) 6.24x10°/(dE/dz), where dE/dz (MeV
g~! cm?), the energy loss per unit length, may be obtained from the

Mean Range and Energy Loss figures.

~ 3.5 x 10° cm™2 minimum-ionizing singly-charged particles in
carbon.

~ (photons) 6.24x10%/[Ef/)], for photons of energy E (MeV),
attenuation length A (g cm™2) (sece Photon Attenuation Length
figure), and fraction f <1 expressing the fraction of the photon’s
energy deposited in a small volume of thickness <« A but large enough
to contain the secondary electrons.

~ 2 x 10!! photons cm™2 for 1 MeV photons on carbon (f =~ 1/2).

(Quoted fluxes are good to about a factor of 2 for all materials.)
* Recommended limits to exposure (whole-body dose):*

CERN: 15 mSv yr~!

U.K.: 15 mSv yr~!

U.S.: 50 mSv yr~! (5 rem yr~1)t
o Lethal dose: Whole-body dose from penetrating ionizing radiation
resulting in 50% mortality in 30 days (assuming no medical treatment)
2.5-3.0 Gy (250-300 rads), as measured internally on body longitudinal
center line. Surface dose varies due to variable body attenuation and
may be a strong function of energy.

For a recent review, see E. Pochin, Nuclear Radiation: Risks and
Benefits (Clarendon Press, Oxford, 1983).
*  The ICRP recomendation 1] is 20 mSv yr~!
5 years, with the dose in any one year < 50 mSv.

averaged over

t Many laboratories in the U.S. and elsewhere set lower limits.

Reference:

1. ICRP Publication 60, 1990 Recommendation of the International
Commission on Radiological Protection Pergamon Press (1991).
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14. COSMIC RAY FLUXES

The fluxes of particles of different types depend at the ~ 10% level
on the latitude, their energy, and the conditions of measurement.
Some typical sea-level values [1] for charged particles are given below:

I, flux per unit solid angle per unit horizontal area about vertical
direction

= j(6 = 0, ¢) [0 = zenith angle, § = azimuthal angle] ;

J1 total flux crossing unit horizontal area from above
= / 7(6,8) cos6 dQ [dQ2 = sin6 db d¢)] ;
0<=n/2

J2 total flux from above (impinging on a sphere of unit cross-
sectional area)

0<w/2

Total Hard Soft
Intensity Component Component
I, 1.1x102 08x102 0.3x10%2m™2s™! sterad~!
Ji 1.8x102 13x102 05x102m~2s7!
J2 24x10%2 1.7x102 07x102m 2571

Very approximately, about 75% of all particles at sea level are
penetrating, and are muons (the dominant portion of the hard

component at sea level). The sea-level vertical flux ratio for protons to
muons (both charges together) is about 3.5% at 1 GeV/c, decreasing
to about 0.5% at 10 GeV/c.

The muon flux at sea level has a mean energy of 2 GeV and a
differential spectrum falling as E~2, steepening smoothly to E—36
above a few TeV. The angular distribution is cos? 8, changing to secf at
energies above a TeV, where 6 is the zenith angle at production. The
+ charge ratio is 1.25-1.30. The mean energy of muons originating in
the atmosphere is roughly 300 GeV at slant depths 2 a few hundred
meters. Beyond slant depths of ~ 10 km water-equivalent, the muons
are due primarily to in-the-earth neutrino interactions (roughly 1/8
interaction ton~! year~! for E, > 300 MeV, ~ constant throughout
the earth) [2]. Muons from this source arrive with a mean energy of
20 GeV, and have a flux of 2 x 10™2 m~2 s~1 sterad~! in the vertical
direction and about twice that in the horizontal [3], down at least as
far as the deepest mines.

Updated April 1986.
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15. COMMONLY USED RADIOACTIVE SOURCES

Table 15.1. Updated November 1993 by E. Browne.

Particle Photon
Type of Energy Emission Energy Emission
Nuclide  Half-life decay (MeV) prob. (MeV) prob.
#Na 2.603 y 8%, EC 0.545 90%  0.511 Annih.
1275 100%
3¢Mn 0.855y EC 0.835 100%
Cr K x rays 26%
ggFe 273y EC Mn K x rays:
0.00589 25%
0.00649 3.4%
37Co 0.744y EC 0.014 9%
0.122  86%
0.136  11%
Fe K x rays 58%
89Co 5271y B~ 0.316 100% 1.173  100%
1333 100%
88Ge 0742y EC Ga K x rays 44%
— 88Ga g+, EC 1.899 90%  0.511 Annih.
1077 3%
29sr 285y (B~  0.546 100%
-0y g~ 2283 100%
1%¢Ru 1.020y B~ 0.039 100%
— 196Rh B~ 3541 79% 0512 21%
0.622  10%
19%¢d 1267y EC 0.063e”  41%  0.088 3.6%
0.084 e~ 45% Ag K x rays 100%
0.087 e~ 9%
113Sn 0315y EC 0364e”  29% 0392 65%
0.388 ¢~ 6% In K x rays 97%
137Cs 302y B~ 0514e”  94% 0662 85%
1.176 e~ 6%
133Ba 1054y EC 0.045 e~ 50% 0.081  34%
0.075 e~ 6% 0356  62%
Cs K x rays 121%
0Bi 31.8y EC 048le” 2%  0.569  98%
0.975 e~ 7%  1.063 5%
1.047 e~ 2% 1770 1%
Pb K x rays 78%
228 Th 1912y 6a: 5.341 to 8.785 0.239  44%
367: 0.334 to 2.246 0.583  31%
2.614  36%
(©%iRa —2Rn %P0 —2Pb Ui — 2U2Po)
2lAm 4327y o 5443 13%  0.060 36%
5.486 85% Np L x rays 38%
2lAm/Be 4322y 6 x 1075 neutrons (4-8 MeV) and
4 x 1075%9’s (4.43 MeV) per Am decay
HiCm 1811y «a 5.763 24%  PulL xrays ~ 9%
5.805 76%
282cf 2.645 y o (97%) 6.076 15%
6.118 82%

Fission (3.1%)
~ 20 ~’s/fission; 80% < 1 MeV
~ 4 neutrons/fission; (En) = 2.14 MeV

“Emission probability” is the probability per decay of a given emission;
because of cascades these may total more than 100%. Only principal
emissions are listed. EC means electron capture, and e~ means
monoenergetic internal conversion (Auger) electron. The intensity of
0.511 MeV ete™ annihilation photons depends upon the number of
stopped positrons. Endpoint 8% cnergies arc listed. In some cases
when energies are closely spaced, the y-ray values are approximate
weighted averages. Radiation from short-lived daughter isotopes is
included where relevant.

Half-lives, energies, and intensities are from E. Browne and
R.B. Firestone, Table of Radioactive Isotopes (John Wiley & Sons,
New York, 1986), recent Nuclear Data Sheets, and X-ray and
Gamma-ray Standards for Detector Calibration, IAEA-TECDOC-619
(1991).

Neutron data are from Neutron Sources for Basic Physics and
Applications (Pergamon Press, 1983).
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16. PROBABILITY

Revised June 1994.

16.1. General [1-5]

Let z be a possible outcome of an observation. The probability of
z is the relative frequency with which that outcome occurs out of
a (possibly hypothetical) large set of similar observations. If z can
take any value from a continuous range, we write f(z;6) dz as the
probability of observing z between z and z + dz. The function f(z;0)
is the probability density function (p.d.f.) for the random variable
z, which may depend upon one or more parameters 6. If z can take
on only discrete values (e.g., the non-negative integers), then f(z;9)
is itself a probability, but we shall still call it a p.d.f. The p.d.f. is
always normalized to unit area (unit sum, if discrete). Both z and 6
may have multiple components and are then often written as column
vectors. If f is unknown and we wish to estimate its value from a
given set of data measuring z, we may use statistics (see Sec. 17).

The cumulative distribution function F(a) is the probability that
z < a:

F(a) = /_aoo f(z)dz . (16.1)

Here and below, if z is discrete-valued, the integral is replaced by
a sum. The endpoint a is expressly included in the integral or sum.
Then 0 < F(z) < 1, F(z) is nondecreasing, and Prob(a < z < b) =
F(b) — F(a). If z is discrete, F(z) is flat except at allowed values of
z, where it has discontinuous jumps equal to f(z).

Any function of random variables is itself a random variable, with
(in general) a different p.d.f. The ezpectation value of any function
u(z) is

Blu(e) = [ ‘: w(z) f(z) de , (16.2)

assuming the integral is finite. For u(z) and v(z) any two functions
of z, E(u+v) = E(u)+ E(v). For ¢ and k constants, E(cu + k) =
cE(u) + k.

The nth moment of a distribution is

(o o]
an =E(z") = / z" f(z)dz , (16.3a)
—00
and the nth moment about the mean of z, ai, is
(o)
mp=El(z - )" = / (z — 1) f(z)dz . (16.3b)
—o0
The most commonly used moments are the mean x and variance o'2:
u=ap (16.4a)
02 = Var(z) =mg = ag — u? . (16.4b)

The mean is the location of the “center of mass” of the probability
density function, and the variance is a measure of the square of its
width. Note that Var(cz + k) = c2Var(z).

Any odd moment about the mean is a measure of the skewness
of the p.d.f. The simplest of these is the dimensionless coefficient of
skewness v, = m3/o3.

Besides the mean, another useful indicator of the “middle”
of the probability distribution is the median Teq, defined by
F(zmed) = 1/2; i.e., half the probability lies above and half lies below
Tmed- For a given sample of events, zeq is the value such that
half the events have larger ¢ and half have smaller z (not counting
any that have the same z as the median). If the sample median lies
between two observed z values, it is set by convention halfway between
them. If the p.d.f. for = has the form f(z — ) and g is both mean
and median, then for a large number of events N, the variance of the
median approaches 1/[4Nf2(0)], provided £(0) > 0.

Let z and y be two random variables with a joint p.d.f. f(z,y).
The marginal p.d.f. of  (the distribution of z with y unobserved) is

file) = /_ °; fay)dy, (16.5)

and similarly for the marginal p.d.f. fa(y). We define the conditional
p.d.f. of z, given fixed y, by

fa(ylz) fi(z) = f(z,y) . (16.6a)
Similarly, the conditional p.d.f. of y, given fixed z, is
fa(zly) f2(y) = f(=z,y) . (16.6b)

From these definitions we immediately obtain Bayes’ theorem [2]:

_ f3l) filz) _ _ fa(ylz) fi(z)
falzly) = H0) = ThHl) h@ds (16.7)
The mean of z is
Itz=/_:/-sz(20,31)¢11:1131=/_o:oa:fl(z)da:, (16.8)

and similarly for y. The correlation between z and y is a measure of
the dependence of one on the other:

pzy =E [(z — pa)(y - #y)] [0z 0y = Cov(z,y)/0z 0y , (16.9)
where o, and oy are defined in analogy with Eq. (16.4b). It can be

shown that —1 < pzy < 1. Here “Cov” is the covariance of  and y, a
2-dimensional analogue of the variance.

Two random variables are independent if and only if

fz9) = Ai(@) £) - (16.10)
If z and y are independent then pr; = 0; the converse is not
necessarily true except for Gaussian-distributed =z and y. If z and

y are independent, Efu(z) v(y)] = E[u(z)] E[v(y)], and Var(z + y)

= Var(z)+Var(y); otherwise, Var(z +y) = Var(z)+Var(y)+
2Cov(z,y), and E(u v) does not factor.

In a change of continuous random variables from ¢ = (z1,...,zs),
with p.d.f. f(z) = f(z1,...,2n), to ¥ = (¥1,.--,Yn), a one-to-one
function of the z;’s, the p.d.f. g(y) = g(v1,...,yn) is found by
substitution for (z1,...,zn) in f followed by multiplication by the
absolute value of the Jacobian of the transformation; that is,

yun(YJ] - (16.11)

9(y) = f [wi(y),...
The functions w; express the inverse transformation, z; = w;(y) for
i=1,...,n, and |J| is the absolute value of the determinant of the
square matrix Jj; = 0z;/0y;. If the transformation from z to y is
not one-to-one, the situation is more complex and a unique solution
may not exist. For example, if the change is to m < n variables, then
a given y may correspond to more than one z, leading to multiple
integrals over the contributions [1].

To change variables for discrete random variables simply substitute;
no Jacobian is necessary because now f is a probability rather than a
probability density.

If f depends upon a parameter set 6, a change to a different
parameter set ¢; = ¢;(0) is made by simple substitution; no Jacobian
is used.
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16.2. Characteristic functions

The characteristic function ¢(u) associated with the p.d.f. f(z) is
essentially its (inverse) Fourier transform, or the expectation value of
exp(iuz):

#(u) = B(e) = / > e f )y |

-0

(16.12)

It is often useful, and several of its properties follow [1].

It follows from Egs. (16.3a) and (16.12) that the nth moment of
the distribution f(z) is given by

-

n
du u=

(16.13)

=/°o z" f(z)dz = an .
0 —00

Thus it is often easy to calculate all the moments of a distribution
defined by ¢(u), even when f(z) is difficult to obtain.

If fi(z) and fa(y) have characteristic functions ¢;(u) and ¢a(u),
then the characteristic function of the weighted sum az + by is
¢1(au)p2(bu). The addition rules for common distributions (e.g.,
that the sum of two numbers from Gaussian distributions also has a
Gaussian distribution) easily follow from this observation.

Let the (partial) characteristic function corresponding to the
conditional p.d.f. fa(z|z) be ¢2(ulz), and the p.d.f. of z be fi(z). The
characteristic function after integration over the conditional value is

8(w) = [ daluls) fr(a)ds (16.14)
Suppose we can write ¢ in the form

da(ulz) = A(u)ei9M* . (16.15)
Then

o(uv) = A(u)¢1(g(u)) . (16.16)

The semi-invariants &, are defined by
ad K
¢(u) = exp (; n—’!‘(iu)") = exp (inlu - Logu? 4. ) . (16.17)

The k,’s are related to the moments a, and m,. The first few
relations are

K1 = a1 (= u, the mean)
kg =mp = az—a? (=02, the variance)

K3 =m3 = a3 — 3ajaz + 201% . (16.18)

16.3. Some probability distributions

Table 16.1 gives a number of common probability density functions
and corresponding characteristic functions, means, and variances.
Further information may be found in Refs. 1-6; Ref. 6 has particularly
detailed tables. Monte Carlo techniques for generating each of them
may be found in our Sec. 18.3. We comment below on all except the
trivial uniform distribution.

16.3.1. Binomial distribution: A random process with exactly
two possible outcomes is called a Bernoulli process. If the probability
of obtaining a certain outcome (a “success”) in each trial is p, then
the probability of obtaining exactly r successes (r =0,1,2,...,n) in
n trials, without regard to the order of the successes and failures,
is given by the binomial distribution f(r;n,p) in Table 16.1. If r
successes are observed in n, trials with probability p of a success, and
if s successes are observed in ns similar trials, then t = r + g is also
binomial with ny = n, + ng.

16.3.2. Poisson distribution: The Poisson distribution f(r;u)

gives the probability of finding exactly r events in a given interval of
z (e.g., space and time) when the events occur independently of one
another and of z at an average rate of u per the given interval. The
variance 02 equals . It is the limiting case p — 0, n — oo, np = p
of the binomial distribution. The Poisson distribution approaches the
Gaussian distribution for large p.

Two or more Poisson processes (e.g., signal + background, with
parameters ps and up) that independently contribute amounts ns and
np to a given measurement will produce an observed number n =
ng + ny, which is distributed according to a new Poisson distribution
with parameter p = ps + pp.

16.3.3. Normal or Gaussian distribution:  The normal (or
Gaussian) probability density function f(z;u,02) given in Table 16.1
has mean Z = p and variance o°. Comparison of the characteristic
function ¢(u) given in Table 16.1 with Eq. (16.17) shows that all
semi-invariants K, beyond kg vanish; this is a unique property of the
Gaussian distribution. Some properties of the distribution are:

rms deviation = ¢

probability z in the range g + o = 0.6827

probability z in the range p + 0.67450 = 0.5

expection value of |z — p|, E(|z — u|) = (2/7)/%0 = 0.7979¢
half-width at half maximum = (21n2)'/2¢ = 1.1770

The cumulative distribution, Eq. (16.1), for a Gaussian with u =0
and 2 = 1 is related to the error function erf(y) by

F(z;0,1) = 1 [1 4 erf(z/v2)] . (16.19)
The error function is tabulated in Ref. 6 and is available in computer
math libraries and personel computer spreadsheets. For a mean p and
variance o2, replace z by (¢ — u)/o. The probability of z in a given
range can be calculated with Eq. (17.29).

For z and y independent and normally distributed, z = az + by
obeys f(z; apz + buy, a?02 + bzaz); that is, the weighted means and
variances add.

The Gaussian gets its importance in large part from the central limit
theorem: If a continuous random variable z is distributed according to
any p.d.f. with finite mean and variance, then the sample mean, T,
of n observations of z will have a p.d.f. that approaches a Gaussian as
n increases. Therefore the end result Y." z; = nZTn of a large number
of small fluctuations z; will be distributed as a Gaussian, even if the
z; themselves are not.

For x a set of n (not necessarily independent) Gaussian random
variables z; arranged into a column vector, the joint p.d.f. is the
multivariate Gaussian:
v|~1/2 (16.20)

1
f(z;M,V)=W l

X exp [—%(m—u)T vl (m—u)] VI #0.

Here V is the covariance matriz of the z’s, with V;; = Var(z;) and Vj;
= E[(z; — pi)(zj — pj)] = pij 0; 05, and |V] is the determinant of V.
(If V is singular, there is a linear relation among some of the variables,
and so one should eliminate dependent variables and work with an
independent set.) The quantity p;; is the correlation coefficient for z;
and z;, and |p,-j[2 <1. Forn=2, f(z;u,V) is

1
f(zlvzz; ﬂlv/—"?:dlaazip) = ———2
2wo109y/1 —p
» -1 [(@1—p1)?® _ 2p(z1 — p1)(z2 — p2)
P\ 20 =2 a2 0102
1

+ (l‘z—uz)z]} ‘

2
92

(16.21)
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Table 16.1: Some common probability density functions, with corresponding characteristic functions and means and
variances. In the Table, I'(k) is the gamma function, equal to (k — 1)! when k is an integer.
Probability density function Characteristic
Distribution f (variable; parameters) function ¢(u) Mean Variance 02
1/(b-a) a<z<b eibu _ giau a+b (b—a)?
Uniform z;a,b) = _ T= —_—
f ) { 0 otherwise (b - a)iu 2 12
1 .
Binomial f(rin,p) = ﬁ o (g + pei) F=np npq
r=0,12,...,n; 0<p<1l; g=1-p
et ; _
Poisson f(rip) = 5 T= 0,1,2,...; u>0 explu(e’ — 1)] F=u u
Normal f(z;p,02) = 1 exp(—(z — p)?/202) exp(ipu — 302u?) T=u o2
(Gaussian) oV
—o<z<o00; -oo<pu<oo; >0
Zn/2—1 e—2/2
x2 zn)=————; 220 1— 24u)~"/2 zZ=n 2n
f(zn) 2T (n]2) > ( )
—(n+1)/2 z
, oy 1 Tln+1)/2] AN i=0 n/(n—2)
Student’s ¢ f(tn) = = T T(n)2) 1+ - forn > 2 forn >3
—00<t<o00; n not required to be integer
zk—l ,\k e—Az
Gamma flz; M\ k) = —Tm ;i 0<z<o0; (1 —du/r)"k T=k/\ k/\2
k not required to be integer
The marginal distribution of any z; is a Gaussian with mean p; and
variance Vj;. V is n X n, symmetric, and positive definite. Therefore
for any vector X, the quadratic form XT V-1 X = C, where C is any
positive number, traces an n-dimensional ellipsoid as X varies. If 1,000

X; = (z; — pi)/o;, then C is a random variable obeying the X2(n)
distribution, discussed in the following section. The probability that
X corresponding to a set of Gaussian random variables z; lies outside
the ellipsoid characterized by a given value of C (= X?) is given by
Eq. (16.22) and may be read from Fig. 16.1. For example, the “s-
standard-deviation ellipsoid” occurs at C = s2. For the two-variable
case (n = 2), the point X lies outside the one-standard-deviation
ellipsoid with 61% probability. (This assumes that u; and o; are
correct.) For X; = z;/0;, the ellipsoids of constant X? have the same
size and orientation but are centered at p. The use of these ellipsoids
as indicators of probable error is described in Sec. 17.5.1.

It is a characteristic of the multivariate Gaussian that p;; = 0 is

necessary and sufficient for z; and z; to be independent. For a given
covariance matrix V, there always exist nonsingular n X n matrices
H such that HHT = V; H is usually upper or lower triangular in
the most efficient algorithms. Then z = H™!(z — u) is a vector of n
independent Gaussian random variables with zero mean and with a
covariance matrix equal to the identity matrix.

16.3.4. X2 distribution: If z,,...,z, are independent Gaussian
distributed random variables, the sum z = Y "(z; — p.i)z/a'i2 is
distributed as a X2 with n degrees of freedom, X2(n). Under a linear
transformation to n dependent Gaussian variables z}, the X2 at each
transformed point retains its value; then z = X'T V=1X' as in the
previous section. For a set of z;, each of which is X2 (n;), 3 z; is a new
random variable which is X2 (3" n;).

Fig. 16.1 shows the confidence level (CL) obtained by integrating
the tail of f(z;n):

CL(X?) = A ~ ) da . (16.22)

This is shown for a special case in Fig. 16.2, and is equal to 1.0
minus the cumulative distribution function F(z = X2; n). It is useful

Confidence level CL for fits

¢ for confidence intervals
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Figure 16.1: The confidence level versus X2 for n degrees of
freedom, as defined in Eq. (16.22). The curve for a given n

gives the probability that a value at least as large as X2 will be
obtained in an experiment; e.g., for n = 10, a value X2 > 18 will

occur in 5% of a large number of experiments.

For a fit, the

CL is a measure of goodness-of-fit, in that a good fit to a correct
model is expected to yield a low X2 (see Sec. 17.4.0). For a
confidence interval, & measures the probability that the interval
does not cover the true value of the quantity being estimated
(see Sec. 17.5). The dashed curve for n = 20 is calculated using
the approximation of Eq. (16.23).
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in evaluating the consistency of data with a model (see Sec. 17): The
CL is the probability that a random repeat of the given experiment
would observe a greater X2, assuming the model is correct. It is also
useful for confidence intervals for statistical estimators (see Sec. 17.5),
in which case one is interested in the unshaded area of Fig. 16.2.

0.25

T T IS M

0.20 - n=10 =
§0.15;“ -]
f.\?z< L ]
Ko - 10% of area ]
S010¢ (CL = 10%)

0.05 -

0'003.,.|...,|....1 .

0 5 10 15 20 25 30

X2

Figure 16.2: Illustration of the confidence level integral given
in Eq. (16.22). This particlar example is for n = 10, where the
area above 15.99 is 0.1.

Since the mean of the X2 distribution is equal to n, one expects in a
“reasonable” experiment to obtain X2 =~ n. While caution is necessary
because of the width and skewness of the distribution, the “reduced
x2" = X2/n is a sometimes useful quantity. Figure 16.3 shows xX2/n
for useful CL’s as a function of n.

2.5

x%/n

|l|l|llll|l|llIllllllllllllllll lllLlelllll

0 10 20 30 40 50
Degrees of freedom n

0.0

Figure 16.3: Confidence levels as a function of the “reduced
X2" = X2 /n and the number of degrees of freedom n. Curves are
labeled by the probability that a measurement will give a value
of Xz/n greater than that given on the y axis; e.g., for n =10, a
value X2/n > 1.8 can be expected 5% of the time.

For large n, the CL is approximately given by [1,7]

CLO?) ~ — [T ee?/2 g 16.23
( )"“m € T ( . )
v

where y = V2X2 — /2n — 1. This approximation was used to draw
the dashed curves in Fig. 16.1 (for n = 20) and Fig. 16.3 (for
CL = 5%). Since all the functions and their inverses are now readily
available in standard mathematical libraries (such as IMSL, used
to generate these figures, and personal computer spreadsheets, such
as Microsoft ® Excel [8]), the approximation (and even figures and
tables) are seldom needed.

16.3.5. Student’s t distribution: Suppose that z and z;, ..., 2,
are independent and Gaussian distributed with mean 0 and variance 1.
We then define

n
=34, and t= —~ (16.24)
1

Va/n

The variable z thus belongs to a X2(n) distribution. Then ¢ is
distributed according to a Student’s ¢ distribution with n degrees of
freedom, f(¢;n), given in Table 16.1.

The Student’s ¢ distribution resembles a Gaussian distribution with
wide tails. As n — oo, the distribution approaches a Gaussian. If
n = 1, the distribution is a Cauchy or Breit- Wigner distribution. The
mean is finite only for n > 1 and the variance is finite only for n > 2,
so for n =1 or n = 2, t does not obey the central limit theorem.

As an example, consider the sample mean T = Y z;/n and the
sample variance s2 = 3 (x; — F)?/(n — 1) for normally distributed
random variables z; with unknown mean g and variance o2. The
sample mean has a Gaussian distribution with a variance o2/n, so
the variable (Z — u)/+/02/n is normal with mean 0 and variance 1.
Similarly, (n — 1) s?/6? is independent of this and is X2 distributed
with n — 1 degrees of freedom. The ratio

(& — )/ /o%/n

_T—p

t = = 16.25
Vin-1)s2je2 (n—=1) +/s2/n ( )
is distributed as f(¢; n — 1). The unknown true variance o2 cancels,

and t can be used to test the probability that the true mean is some
particular value p.

In Table 16.1, n in f(¢;n) is not required to be an integer. A
Student’s ¢ distribution with nonintegral n > 0 is useful in certain
applications.

16.3.6. Gamma distribution: For a process that generates events
as a function of z (e.g., space or time) according to a Poisson
distribution, the distance in z from an arbitrary starting point
(which may be some particular event) to the kt* event belongs to
a gamma distribution, f(z; A, k). The Poisson parameter u is A per
unit z. The special case k = 1 (i.e., f(z; A, 1) = Ae™>?) is called the
ezponential distribution. A sum of k' exponential random variables
z; is distributed as f(3_ z;; A\, k).

The parameter k is not required to be an integer. For A = 1/2 and
k = n/2, the gamma distribution reduces to the X2(n) distribution.
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17. STATISTICS

Revised June 1994 with the help of R. Cousins, F. James, G. Lynch,
B. P. Roe, and M. Roos

17.1. General [1-6]

A probability density function with known parameters enables us
to predict the frequency with which a random variable will take on a
particular value (if discrete) or lie in a given range (if continuous). In
parametric statistics we have the opposite problem of estimating the
parameters of the p.d.f. from a set of actual observations.

We refer to the true p.d.f. as the population; the data form a sample
from this population. A statistic is any function of the data, plus
known constants, which does not depend upon any of the unknown
parameters. A statistic is a random variable if the data have random
errors. An estimator is any statistic whose value is intended as a
meaningful guess for the value of an unknown parameter; we denote
estimators with hats, e.g., @.

Often it is possible to construct more than one reasonable estimator.
Let a represent the true value of a parameter to be estimated; a is a
vector a if there is more than one parameter. Then if & is an estimator
for o, desirable properties for & are: (a) Unbiased; bias b = E(@) — a,

where the expectation value is taken over a hypothetical set of similar
experiments in which @ is constructed the same way. The bias may
be due to statistical properties of the estimator or to systematic errors
in the experiment. If we can estimate the average bias b we usually
subtract it from @ to obtain a new &’ = @ — b. However, b may
depend upon a or other unknowns, in which case we usually try to
choose an estimator which minimizes its average size. (b) Minimum
variance; the minimum possible value of Var(@) is given by the
Rao-Cramér-Frechet bound:

Varmin = [1 + 8b/8a)? /I(a) ;
n 2
% Z In f(z;; a)]
i=1

(Compare with Eq. (17.6) below.) The sum is over all data and b
is the bias, if any; the z; are assumed independent and distributed
as f(z;; ), and the allowed range of z must not depend upon
a. The ratio € = Vary,/Var(@) is the efficiency. An efficient
estimator (with € = 1) exists only for certain cases. The square
root of the variance expresses the expected spread of @ about its
average value, as would be observed in a large number of repeats
of the same measurement. (c) Minimum mean~squared error (mse);
mse = E[(@ — @)?] = V(&) + b%. The mse combines the error due
to any bias quadratically with the variance, which expresses only the
spread about E(&), as distinct from «, the true value. (d) Robust;
a robust estimator is not sensitive to errors in our assumptions, e.g.,
to departures from the assumed p.d.f. due to such factors as noise.

(17.1)

I{(a)=E

These criteria (and others) allow us to evaluate any procedure for
obtaining @. In many cases these criteria conflict. The bias, variance,
and mse may depend on the unknown . In this case the optimum
prescription for @ may depend on the range in which we assume a to
lie.

Following are techniques in common use for obtaining estimators
and their standard errors o(@) = /Var(a@). When the conditions
of the central limit theorem are satisfied, the interval @ + o(@)
forms a 68.3% confidence interval. This is a random interval in that
its endpoints depend upon the randomly sampled data; its meaning
here will be taken to be that in 68.3% of all similar experiments the
interval will include the true value a. One should be aware that in
most practical cases the central limit theorem is only approximately
satisfied and accordingly confidence intervals which depend on that are
only approximate. Confidence intervals are discussed in Section 17.5
below.

17.2. Data with a common mean

Suppose we have a set of N independent measurements y; assumed
to be unbiased measurements of the same unknown quantity g with a
common, but unknown, variance o2 resulting from measurement error.
Then

1 N
ﬁ:NZw (17.2)
i=1
8= i( -8 = (BGD) - %) (17.3)
o —ﬁ Yi— 4 —ﬁ Yy 13 .

are unbiased estimators of  and 2. The variance of i is 02/N. If the
common p.d.f. of the y; is Gaussian, these statistics are independent.
Then, for large N, the variance of 52 is 20 /N. If the y; are Gaussian
or N is large enough that the central limit theorem applies, then &
is an efficient estimator for y. Otherwise Zi is sometimes subject to
large fluctuations, e.g., if the p.d.f. for y; has long tails. In this case
the median of the y; may be a more robust estimator for p, provided
the median and mean are expected to lie at the same point in the
p.d.f. for y. For Gaussian y, the median has asymptotic (large-N)
efficiency 2/7 =~ 0.64. Student’s t-distribution provides an example in
which there are large tails. In this case, for large N the efficiency of
the sample median relative to the sample mean is (o0, oo, 1.62, 1.12,
0.96, 0.80, 0.64) for (1, 2, 3, 4, 5, 8, 00) degrees of freedom.

If 02 is known, fi as given in Eq. (17.2) is still the best estimator
for p; if p is known, substitute it for Z in Eq. (17.3) and replace N — 1
by N, to obtain a somewhat better estimator 52.

If the y; have different, known, variances a?, then

1 N
L= - S wivi, (17.4)
is an unbiased estimator for g with smaller variance than Eq. (17.2),
where w; = 1/0? and w = ¥" w;. The variance of i is 1/w.

17.3. The method of maximum likelihood

17.3.1.

“From a theoretical point of view, the most important general
method of estimation so far known is the method of mazimum
likelihood” [1). We suppose that a set of independently measured
quantities z; came from a p.d.f. f(z;a), where « is an unknown set
of parameters. The method of maximum likelihood consist of finding
the set of values, &, which maximizes the joint probability density for
all the data, given by

General:

(o) =[[f(@iia) , (17.5)

where & is called the likelihood. It is usually easier to work with
In ¥, and since both are maximized for the same set of o, it is
sufficient to solve the likelihood equation

oln%
=0 .
Bon, (17.6)
The solution is called the mazimum likelihood estimate of . The
importance of the approach is shown by the following proposition,
proved in Ref. 1:

If an efficient estimate & of o erists, the likelihood equation will
have a unigue solution equal to @.

In evaluating .2, it is important that any normalization factors
in the f’s which involve a be included. However, we will only be
interested in the maximum of .Z and in ratios of .# at different a’s;
hence any multiplicative factors which do not involve the parameters
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we want to estimate may be dropped; this includes factors which
depend on the data but not on a.

If the solution to Eq. (17.6) is at a maximum, 8 In ¥ /8ay will have
negative slope in its vicinity. In many practical problems, one often
uses nonlinear algorithms for finding the maximum, and must be alert
to various possibilities for error: (a) Eq. (17.6) may yield a minimum,
therefore one must check the second derivative; (b) there may be
more than one maximum—one must try to find the global maximum;
(c) the global maximum may lie at a boundary of the physical region.
in which case Eq. (17.6) will not find it.

If an unbiased, efficient estimator exists, this method will find it. If
81n & /day, is linear in the vicinity of the root, an efficient estimator
is guaranteed; other efficient cases are discussed in the literature. For
large data samples, the central limit theorem will usually assure this
condition in some significant neighborhood of zero; hence the estimator
is usually efficient in that case, provided certain conditions are met
(e.g., that the solution does not lie on a boundary). In this case,
in the neighborhood of the maximum In.# is a downward-curving
paraboloid and & is proportional to a multivariate Gaussian.

The results of two or more experiments may be combined by
forming the product of the .#’s, or the sum of the In #’s.

Under a one-to-one change of parameters from a to 8 = B(a),
the maximum likelihood estimate is simply B(&), given the solution
a for a. That is, the maximum likelihood solution for B is found
by simple substitution of & into the transformation equation. It is
possible that the new solution @ will be a biased solution for the true
value of B even if & is not biased, and vice-versa. In the asymptotic
limit (of large amounts of data) both & and B will (usually) converge
to unbiased solutions, but at different rates.

Except in special cases like the least-squares method, the value
of the likelihood function at the solution does not necessarily tell us
whether the final fit was a sensible description of the data or not. In
special cases such as the one discussed in Sec. 17.3.3, one can define
a quantity which approaches the X2-distribution in the limit of a
large number of counts in the experiment, but in general some other
strategy must be used. For example, data generated by Monte Carlo
simulations of the experiment can be analyzed by the same method.
If the experimental likelihood is lower than that of some agreed-upon
fraction of these results, one should question the appropriateness of
the p.d.f. At the same time one can check for bias in the solution.

17.3.2. Error estimates:

The covariance matrix V may be estimated from
8%n &

-1
Vm = (E{‘aan dam D '

If 81n ¥ /dan is linear, the “expectation” operation in Eq. (17.7) has
no effect because the second derivative of In.Z is constant. Otherwise,
it may be approximated by taking the average of the quantity in square
brackets over a range of an and oy, near the solution. For complex
cases it may be more practical to evaluate s-standard-deviation errors
from the contour

17.7)

In Z(a) = In Lnax — $2/2 , (17.8)
where In %nax is the value of In% at the solution point (compare
with Eq. (17.27), below). The extreme limits of this contour parallel
to the a, axis give an approximate s-standard-deviation confidence
interval in an. These intervals may not be symmetric and they may
even consist of two or more disjoint intervals. This procedure gives
one-standard-deviation errors in oy equal to v/Vinn (not summed) of
Eq. (17.7) if the estimator is efficient. If it is not efficient, the level of
confidence implied by the value of s is only approximate.

17.3.3.

In the case of Poisson-distributed data in a counting experiment,
the unbinned maximum likelihood method (where the index ¢ in
Eq. (17.5) labels events) is preferred if the total the number of events
is very small. If there are enough events to justify binning them
in a histogram, then one may alternatively maximize the likelihood
function for the contents of the bins (so 7 labels bins). This is
equivalent to minimizing [7]

Application to Poisson-distributed data:

=3 [2(N}h — NPbs) 4 2NPbs In( NPbs /Ni“‘)] : (17.9)

1

where N;’bs and NI-th are the observed and theoretical (from f)
contents of the ith bin. In bins where Nf’bs = 0, the second term
is zero. This function asymptotically behaves like a classical X2 for
purposes of point estimation, interval estimation, and goodness-of-fit.
It also guarantees that the area under the fitted function f is equal to
the sum of the histogram contents (as long as the overall normalization
of f is effectively left unconstrained during the fit), which is not
the case for X2 statistics based on a least-squares procedure with
traditional weights.

17.4. Method of least squares

The method of least squares can be derived from the maximum
likelihood theorem. We suppose a set of N measurements at points
z;. The ith measurement y; is assumed to be chosen from a Gaussian
distribution with mean F(z;; &) and variance aiz, Then

N
. — F(zy;: 2
x? = —2In & + constant = E {y—l———-(:“—a)] .
1 73

(17.10)

Finding the set of parameters o which maximizes .Z is equivalent to
finding the set which minimizes X2.

In many practical cases one further restricts the problem to the
situation in which F(z;;a) is a linear function of the am’s,

Flziia) =Y on fa(2) , (17.11)

where the f, are k linearly independent functions (e.g., 1, z, z2, ...,
or Legendre polynomials) which are single-valued over the allowed
range of z. We require ¥ < N, and at least k& of the z; must be
distinct. We wish to estimate the linear coefficients ;. Later we will
discuss the nonlinear case.

If the point errors ¢; = y; — F(z;; &) are Gaussian, then the
minimum X2 will be distributed as a X2 random variable with
n = N — k degrees of freedom. We can then evaluate the goodness-
of-fit (confidence level) from Figs. 16.1 or 16.3, as per the earlier
discussion. The confidence level expresses the probability that a
worse fit would be obtained in a large number of similar experiments
under the assumptions that: (a) the model y = ¥ an fn is correct
and (b) the errors ¢; are Gaussian and unbiased with variance
a?. If this probability is larger than an agreed-upon value (0.001,
0.01, or 0.05 are common choices), the data are consistent with the
assumptions; otherwise we may want to find improved assumptions.
As for the converse, most people do not regard a model as
being truly inconsistent unless the probability is as low as that
corresponding to four or five standard deviations for a Gaussian
(6x 1073 or 6 x 1075, see Sec. 17.5.1). If the ¢; are not Gaussian, the
method of least squares still gives an answer, but the goodness-of-fit
test would have to be done using the correct distribution of the
random variable which is still called “x2.”

Finding the minimum of X2 in the linear case is straightforward:

ox? i — 2nOn Jn\Ti
10X :me(mi)(y Za? fn( ))

'Eaa,,. 2

_yn f:;(zi) Y Y _f“(L‘L%."L(I_‘) . (1112)
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With the definitions
gm = Z%’ fm(zi)/":’2
i

and

(V&_I)mn = an(l“) fﬂl(zi)/oiz )

(17.13)

(17.14)

the k-element column vector of solutions &, for which 8x? /Bam =0
for all m, is given by

a=Vig. (17.15)

Non-independent y;’s

More generally, the measured y;’s are not independent. Then the
set of oiz’s must be replaced by the N x N covariance matrix Vj,.
Then, if H is the N x k matrix with element H;, = fn(z;), the
solution & is given by the solution to the normal equation

HTV, 'H)a=HTV, 1y, (17.16a)
or, formally,
a=HTV,'H) T HT v, 'y=Dy, (17.16b)

where y is the N-element vector of measured y;’s. The normal
equations may be solved by numerical methods much more computa-
tionally efficient than brute application of Eq. (17.16b). In particular,
HT V-1 H is sometimes singular or nearly singular. In such cases
there is at least one f, which may be expressed as a linear combination
of others (or nearly so) when evaluated at the data points. The best
procedure is usually to drop such functions from the expansion (or
set &n = 0). See Press [8], Maindonald [9], or Basilevsky [10] for
discussions.

In terms of the k x N matrix D, the standard covariance matrix for
the & is estimated by

V=DV, DT. (17.17)
If the measured y;’s are independent, Vj, is diagonal with iith element
o? and V; is obtained from Eq. (17.14) above.
The expected covariance [see Eq. (16.9)] of @n and &m is estimated
by
E[(en - @n)(am — &m)] = (Va)nm (17.18)
Even when the y;’s are independent (diagonal V})), @, and @m may
not be (nondiagonal V3). For the model function y = " an fn(z), the

estimated variance of an interpolated or extrapolated value of y at a
point z is

B |- )] = o’)

=" (Va)am fn(2) fm(2) -

n,m

(17.19)

Example: straight-line fit
For the case of a straight-line fit, y(z) = a; + ag z, one obtains, for
independent measurements y;, the following estimates of a; and a3,

@1 = (g1 S22 — 92 S$12)/D, (17.20)

@2 = (92 S11 — 91 512)/D, (17.21)
where

(511, S12, S22) = Y_(1, =4, z3)/o? , (17.22a)

(91, 92) = D _(1, z)wi/o? . (17.22b)
respectively, and

D = S11 S22 — 5122 . (17.23)
The covariance matrix of the fitted parameters is:

Via V12> 1 ( S22 —Slz>
= = . 17.24
(V12 Voo D\ -S12 Sn ( )

The estimated variance of an interpolated or extrapolated value of
y at point z is:

- 1 8 S\ ?2
(v- ytrue)zlest = El_ + T)l (z - i—) . (17.25)

17.4.1. General comments:

If y is not linear in the fitting parameters an, or if the errors o;
depend upon y and therefore on ay,, the solution vector may have
to be found by iteration of Eqs. (17.13)-(17.15) or Eq. (17.16b). The
same results may be obtained by numerical techniques from the sum
of squares, x2, directly, if we have a reasonable first guess oy for the
solution vector:

242\ ~1 2
a=a - (%52—)&0 : %’% . (17.26a)
and
x2\ !
Vg =2 (W)a , (17.26b)

where 8X2/8e is a k-element vector whose nt* element is 9X2/8ay,
8%x2/8a? is a k x k matrix with mnt* element 82x2/(8am - dan),
and all derivatives are to be evaluated at the points indicated. If

“x2” is a true X2, the second-derivative matrix is independent of o;
therefore the shape of the X2 as a function of « is a paraboloid and
Eq. (17.26a) will give the solution immediately. Otherwise one may
need to iterate Eq. (17.26a) to arrive at a solution (Newton-Raphson
method). The CERN program MINUIT [11] offers several iteration
schemes for solving such problems.

Note that in Eq. (17.16b), one needs only a matrix proportional
to Vj to find &. Hence, for example, if the variances a? of the errors
are unknown but assumed equal and independent, and E(e;) = 0,
one can still solve for &. One cannot, however, solve for V3 or
evaluate goodness-of-fit. These can be estimated from the residuals,
r; = ¥ (z;) — yi, where ¥ (z;) is the fitted curve at z;, because study
of the r; enables one to estimate V;. In addition, the residuals can
be used to look for evidence of bias such as trends in the data not
incorporated in the model [4].

The errors on the solution & are independent of the value of X2
at minimum—they depend only upon the shape about the minimum.
Eq. (17.26b) implies that s-standard-deviation limits on the elements
of & are given by the set of &’ such that

X)) =x2, +8%; (17.27)
(This is a special case of Eq. (17.8).) This equation, which defines
a contour in a-space, is often convenient for estimating errors in
applications of least-squares techniques to nonlinear cases, where the
second derivative [Eq. (17.26b)] may be a rapidly varying function of
a. If the problem is highly nonlinear, all such contours are, at best,
only approximations to desired exact confidence regions which would
have some given probability of covering the true value of a. It may
be that Eq. (17.27) will define a set of disjoint regions. In addition,
iteration of Eq. (17.26a) may require sophisticated techniques [8,11] to
reach convergence in a practical amount of computation. For example,
in cases involving many variables in a, especially if the correlations
are large, simplex or other techniques which do not involve explicit
calculation of derivatives are often to be preferred. Such techniques
are designed to find their way through complicated nonlinear problems
without diverging to infinite & (unless the minimum is actually at
infinity).

The method of least squares is sometimes used in cases where the
distribution is not Gaussian or not known to be Gaussian. In such
cases it can still be used, but it is then not a special case of the
maximum-likelihood method, and the theorems having to do with
that approach no longer apply. However, if (a) the distribution of
¥i — > o fr(z;) has an expectation value of zero (unbiased) and
(b) has a finite, known, fixed variance o? (does not depend on c),
then estimates of a obtained by minimizing X2 will be unbiased and
have the smallest possible variance of all linear unbiased estimates
(Gauss-Markov theorem). This statement is more general than the
least-squares method as a special case of the maximum likelihood
method in that the distributions do not have to be Gaussian, but more
restrictive in that it applies only when the fitting function is linear in
the ay's.
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For example, in counting experiments one often groups the data in
bins in order to associate a Poisson error with each bin. In this case
y; is the bin height and the error depends on the expectation value
of the theory in each bin, as estimated by the best fit of the model.
Since the variances are functions of the fitting parameters, neither
the conditions of the Gauss-Markov theorem nor the assumption of
Gaussian distributions (with or without fixed variances) in the context
of the maximum likelihood approach are valid without a large-number
approximation, and so an unbiased or efficient least-squares fit is not
guaranteed. In such cases it seems more sensible to use one of the
approaches discussed in Sec. 17.3.3.

17.5. Errors and confidence intervals

We measure a mass, lifetime, or other physical quantity under
the assumption that a “true answer” « exists. The conditions of
the measurement introduce a random element, and our measurement
(or combination of measurements) @exp samples a distribution with
p.d.f. f(@;a). The unknown constant a appears as a parameter. We
suppose that for every value of a we can find two values v;(a,¢€) and
v2(e, €) such that repeated experiments would produce results in the
interval v; < @ < 9 a fraction 1 — ¢ of the time, where

v2
l-e= f(@;a)da .
"

(17.28)

This situation is shown in Fig. 17.1 (ignore the “unphysical region”
part of the graph for now), where the region between the curves
v1(a,€) and y2(a,¢€) is indicated by the domain D(e). It can be
argued that since the point (@actual, @exp) belongs to D, then our
statement that repeated experiments would produce values of @ in the
interval 71 < @ < 73 is equivalent to the statement that the confidence
interval ¢; < a < ¢z includes aetua) With probability 1 — e [1,6]. (We
will call € the confidence coefficient.) In this “confidence interval”
or frequentist approach, a is a parameter, not a statistical variable.
Instead, ¢; and ¢y vary from experiment to experiment and are
statistical variables. It is very different to say that a lifetime 7 is to
be found in the interval 79 + o, with 68% probability than to say that
the interval 7o &+ o (which can vary from experiment to experiment)
includes the actual, fixed, value of the lifetime with 68% probability.

The actual choice of v; and 72, such that f_;’lz f@a)da=1-¢,
can be made in an infinite number of ways, but in practical situations
there are usually additional criteria. For a Gaussian distribution, for
example, choosing the limits symmetric about the mean minimizes the
length of the interval. The area of the excluded tail on either side is
then €/2. For a Poisson distribution negative values cannot occur, so
v(@, a) (with @ an integer and o the Poisson mean) might be taken as
the curve below which € of the area under the distribution lies. (In
this case the curve really consists of discrete points, since @ can have
only discrete values.) For ¢ = 0.05 the curve starts at (o, &) = (3.0,0).
If in a given experiment no decays to a certain final state are seen,
we might then conclude that a < 3.0 excludes the actual value of o
with 95% probability. This statement can be converted to a similar
statement about the branching fraction.

In Sec. 16 we discussed such confidence limits for a X2 distribution
(where € was called CL). Here we discuss confidence intervals for the
Gaussian and Student’s ¢-distribution, and confidence limits for the
Poisson case. We then discuss the much more contentious situation
in which the horizontal line at ordinate @ in Fig. 17.1 enters D(e)
at a boundary for unphysical values of a, so that at least c; is

undefined—for example, if we find M2 = —30 + 50 eV2.

Extensive tables and graphs were once used to find confidence
intervals and limits, but by now their main function is to confirm that
software is working. FORTRAN mathematical libraries (IMSL, NAG,
CERNLIB) are readily available, and a wide range of distributions
are available in personal computer spreadsheet applications such as
Microsoft ® Excel [12]. Its built-in functions CHIDIST, NORMDIST,
and TDIST (Student’s t-distribution), along with “Solver,” were used
to produce or check the numbers given in this section.

T

o ] i

' Unphysical | |
region for o ; |
' S Yo,

| A
AAAAAAAA S

QL exp--
!
o

Qactual

Possible experimental values &

1
I
l
i
i

Physical quantity o

Figure 17.1: Confidence intervals for a single unknown
parameter «. One might think of the p.d.f. f(@;a) as being
plotted out of the paper as a function of @ along each vertical
line of constant a. The domain D(e) contains a fraction 1 — & of
the area under each of these functions.

17.5.1. Gaussian errors:

If the data are such that the distribution of the estimator(s)
satisfies the central limit theorem discussed in Sec. 16.3.3, the
Gaussian distribution is the basis of the error analysis. If there is
more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known o,

s ~
l-e= /Au+ F(z; i, 0%) dz = erf (%) (17.29)
—& o

f(x; [1,0)

0
(x—fi)/o

Figure 17.2: Illustration of a symetric 90% confidence interval
(unshaded) for a measurement of a single quantity with Gaussian
errors. Integrated probabilities, defined by ¢, are as shown.

is the probability that the true value of p will fall within

+6 (6 > 0) of the measured f. This interval will cover u in a
fraction 1 — ¢ of all similar measurements. Fig. 17.2 shows a § = 1.640
confidence interval unshaded. The choice § = /Var(z) = o gives an
interval called the standard error which has 1 — e = 68.27% if o is
known. Confidence coefficients € for other frequently used choices of §
are given in Table 17.1.

For other §, find ¢ as the ordinate of Fig. 16.1 on the n = 1 curve
at X2 = (§/0)2. We can set a one-sided (upper or lower) limit by
excluding above & + § (or below i — §); €’s for such limits are 1/2 the
values in the table above.

We have increased confidence that the interval covers the true value
as 1 — ¢ increases, or X2 increases. We must be careful to distinguish
this case from the other major use of Fig. 16.1, evaluation of
goodness-of-fit (Sec. 17.4.0). In that case we have increased confidence
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Table 17.1: Area of the tails € outside +6 from the mean of a
Gaussian distribution.

e (%) 6 £ (%) 5
31.73 1o 20 1.28¢
4.55 20 10 1.640
0.27 30 5 1.960
6.3x1073 | 40 1 2.580
5.7x1075 50 0.1 3.290
2.0x10~7 | 60 0.01 3.890

in the fit as X2 decreases. In an attempt to reduce possible confusion
in this discussion, we will use the & notation (which corresponds to
notation used in hypothesis testing [4]) when discussing confidence

intervals and CL notation when discussing goodness-of-fit. Elsewhere
in this Review, where the confusion between fit confidence level and
interval (usually an upper or lower limit) confidence level does not

arise, we follow the common practice of using “CL” to refer to the

confidence level of the interval. This CL is understood to represent

1—e.

If the variance o2 of the estimator is not known, but must be
estimated from the data, then we need to incorporate the error in &
into our confidence interval using Student’s ¢ distribution. If we have
N data points with which we estimate k parameters, the Gaussian
approximation is adequate for N — k > 1. Otherwise replace é§ by a
factor TG, T being defined by

T
loe= / F(EN —k)dt (17.30)
-T

where f for the Student’s ¢-distribution is defined in Table 16.1. T is
tabulated in Ref. 13 and in Table 17.2.

Table 17.2: t limits containing 1 — € of the area of Student’s
t-distribution f(t; N — k).

e (%)

N -k 31.67 10.00 5.00 4.55 1.00 0.27
1 1.84 6.31 12.71 13.97 63.66 235.78

2 1.32  2.92 430 4.53 9.92 19.21

3 1.20 2.35 3.18 331 584 9.22

4 1.14 213 2.78 2.87 4.60 6.62

5 1.11  2.01 2.57 265 4.03 5.51
10 1.05 1.81 2.23 228 3.17 3.96
20 1.03 1.72 2.09 213 285 3.42
00 1.00 1.64 1.96 2.00 2.58 3.00

For multivariate a@ we must consider pairwise correlations.
Assuming a multivariate Gaussian, Eq. (16.20), and subsequent
discussion the standard error ellipse for the pair (@m,a&,) may be
drawn as in Fig. 17.3.
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Figure 17.3: Standard error ellipse for the estimators &m, and
Grn. In this case the correlation is negative.

The minimum X2 or maximum likelihood solution is at
(@m,an). The standard errors oy, and o, are defined as shown,

where the ellipse is at a constant value of X2 = sznin + 1 or

In.% = In %nax — 1/2. The angle of the major axis of the ellipse is
given by
tan2¢ = 2/:;"_%@

o2 (17.31)
For non-Gaussian or nonlinear cases, one may construct an analogous
contour from the same X2 or In.¥ relations. Any other parameters
ay, ¢ # m,n must be allowed freely to find their optimum values for
every trial point.

For any unbiased procedure (e.g., least squares or maximum
likelihood) being used to estimate k& parameters a;, i = 1,...,k, the
probability 1 — € that the true values of all k lie within the s-standard
deviation ellipsoid may be found from Fig. 16.1. Read the ordinate as
€; the correct value of € occurs on the n = k curve at X2 = s2. For
example, for k = 2, the probability that the true values of a; and
ag simultaneously lie within the one-standard-deviation error ellipse
(s = 1), centered on @1 and @, is 39%. This probability only assumes
Gaussian errors, unbiased estimators, and that the model describing
the data in terms of the o; is correct.

17.5.2.

Because the outcome of a Poisson process is an integral number
of events, ng, it is usually not possible to set confidence intervals for
the true Poisson parameter p at a certain exact €. For large ng an
approximate interval can be set using the Gaussian approximation,
in our section on Probability, Sec. 16.3.2, and the techniques of
Sec. 17.5.1.

For small ng we can define an upper limit N for p as being that
value of p such that it would be at least 1 — & (e.g., 90% or 95%)
probable that a random observation of n would then lie above the
observed ng. Thus

Poisson processes—upper limits:

0o no
1l-eg= Z f(n;N); e=2f(n,N) (17.32)
n=ng+1 n=0
0.20 ——————— ey 10
L —0.8
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2 | : 308,
Zo.10L 4 1M
éOlO [ <3 E o)
i 4 o4 §
[ E L=
0.05F 1 E
0.00L I 1 o0

o
N
'S
[)]
[o o]
—
[=)
-
N

Figure 17.4: Illustration of Eq. (17.32) Poisson probabilities
for an assumed mean of N. With an observed count ng = 2,
N = 5.3 as shown gives summed probability 1 — e = 90%. The
dotted summmed probability curve (scale on right) has been
displaced by —0.5 for clarity.

Fig. 17.4 illustrates the case with ng = 2 and 1 — ¢ = 90%, for
which it may be shown that N = 5.3. For any given ng and desired
€ we can obtain N from the X2 Confidence Level figure because of a
relation between the Poisson and the X2: read the ordinate as ¢, find
X2 on the curve for n = 2(ng + 1); then N = X2/2. Some useful values
are given in Table 17.3.

The meaning of these upper limits is that, for a given true u, the
probability is at least 1 — ¢ that one will observe ng which will result
in N which is > u. The probability for that to occur may be higher
than 1 — ¢; for example, if x4 < 2.30 a “90%” upper limit will actually
exceed g 100% of the time. Note from Eq. (17.32) that for ng = 0,
N = —Ine.
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Table 17.3: Poisson upper limits N for ng observed events.

€= £ = E = £ =

ng 10% 5% ng 10% 5%

0 2.30 3.00 6 10.53 11.84
1 3.89 4.74 7 11.77 13.15
2 5.32 6.30 8 13.00 14.44
3 6.68 7.75 9 14.21 1571
4 7.99 9.15 10 1541 16.96
5 9.27 10.51 11 16.60 18.21

17.5.3.

The measurement of a physical constant a results in an estimator
@, together with some knowledge of experimental error and therefore
knowledge of f(&;a), the parameterized p.d.f. that allows us to
state the probability with which repeated experiments would produce
results in a given range. It does not permit us to comment about o
itself, which in this language is a constant, not a statistical variable.
At the beginning of this section we introduced the confidence interval,
or frequentist, approach to the problem, and were able to say that with
a given probability the unknown parameter could be found between
(statistical) limits ¢; and co. But what if a physical boundary exists?
Although polarization should be less than one and mass or its square
should be greater than zero, experimental results do not always fall
inside such a physical boundary because of statistical fluctuations.

Bounded physical region*:

However one might set a limit, there is little question about how to
report and combine data [14]. A given experiment finds an unbiased
estimator & = —5 + 10 for a physical constant (e.g. the square of
the mass of a neutrino, in eVz). This value should be reported as
the primary result. In case the true value is zero, for example, this
“unphysical” result would not be unlikely. It can be combined with
the results of other such experiments by forming the appropriately
weighted average of unbiased results, including negative ones, to find
an unbiased estimator which expresses our best knowledge of the
parameter.

What if we wish to extend our concept of confidence limit to
such a situation? The question of how to calculate an upper limit
in the vicinity of a physical boundary is one of the most divisive in
high-energy physics. We present two main approaches: The confidence
interval, or frequentist, method, and the Bayesian method. “Classical
method” is applied to one or the other by various writers, so we avoid
the term.

Unphysmal
region for a -

Possible experimental values &

Physical quantity o

Figure 17.5: The situation near a physical boundary. In
Fig. 17.1 the horizontal line for a given @exp crossed the domain
D(e), bounded by v;(a,€) and y2(a,€) entirely in the physical
region, entering at c¢; and leaving at c3. The limits v; and o
cannot be defined in a region where a is not defined, so the
functions cannot be continued into the unphysical region. As a
result ¢; (for experiment A) or c; and cy (for experiment B)
cannot be defined. Options 1, 2, and 3 label the ways one might
define confidence intervals, as described in the text.

1. The method of confidence intervals [1,15]. This is the approach
described in the introduction, and requires little further explanation.
It is presently the method in favor [1,6,14]. For a Gaussian distribution
it gives the same result as the Bayesian approach with a flat prior
distribution (see below) if the region containing a with the stated
probability is far from an unphysical region, as in Fig. 17.1. Two cascs
in which this is untrue are shown in Fig. 17.5, where as a matter of
convenience we assume that o must be positive. As before, we can
define limits v; and v2 for each value of the unknown parameter «,
such that we can expect that a fraction 1 — ¢ of repeated experiments
to produce results between these limits. Since this can be done for
cach value of o, the limits are described by the functions v;(a,€) and
v2(e, €). However, these cannot be extended into a region in which «
makes no sense. Experimental result Gexp 4, indicated in Fig. 17.5,
is positive, but if the true value is o,ctyal @ significant fraction of
repetitions of the experiment would produce negative @. In these cases
there is no horizontal intercept c¢;, so without further assumptions
we cannot make a statement about the region which would cover
Qgactual in a given fraction of experiments. Experimental result &exp B
presents a more serious problem, since it is so negative that there
is no physical a for which the point (@,a) lies in the domain D(e).
The reason why the frequentist method gives no confidence interval is
clear: This measured value of @ would be unlikely no matter what the
true value of @ was.

There are several ad hoc ways to set confidence limits in such cases,
although many frequentists would prefer to stop with the weighted
average of unbiased results—if the outcome is exceedingly unlikely,
one should look to the experiment, not to the statistics. The methods
we list below all involve placing c¢; on the physical boundary, which in
our example is at a = 0.

1. If @exp > 71(0,€), as in Experiment A, c3 is defined. Use it for the
upper limit, whether or not &exp > 0.

2. If Gexp < 0, as in Experiment B, use the cp corresponding to
aexp =0.

3. If c¢; is not defined, “lift up” @ to v2(0,¢), where ¢; = 0. Use the
corresponding cg as the upper limit.

These three options are shown in in Fig. 17.5; note that there are
regions where more than one of them can be used, with different
results. The third option is certainly the most conservative. For
Gaussian f(@;a) the upper limit ¢ is a one-sided Gaussian confidence
limit; read the tables for a 90% two-sided limit to obtain 95% one-sided
limit. Alternatively, read the intercepts of the dotted lines in Fig. 17.7.
(The horizontal axis is incorrectly labeled for this application.)

2. The Bayesian approach (3]. This is the approach favored in the

older literature, and has (unfortunately and incorrectly) been referred
to as the “PDG method” in certain papers. To begin with, it is argued
that while « is not a statistical variable, our knowledge of « is less than
complete, and it is fair to describe our uncertainty by treating o as
a statistical variable. The parameterized p.d.f. f(@;a) is replaced by
the conditional p.d.f. f(@la). The confidence limit question can then
be rephrased: Our measurements provide f(@|a), that is, information
about & for a fixed and unknown value of «, while we really want to
know g(a|a@), which tells us that, given our measurement @, the “truc
answer” « lies between a and a + da with probability g(a|&@) da. The
connection is provided by Bayes’ theorem (Eq. (16.7):

~ f(@la) (a)
Here w(a) represents our “advance knowledge” of the value of a.
In the usual case we claim no prior knowledge, so that before the
experiment all physically reasonable values of o are equally probable:
7(a) is a constant over the region of interest and zero in the unphysical
region. This assumption leads to the conclusion that

~ _ | f(@le)/ [ f(@la)da if a is in the physical region;
9lala) = 0 otherwise;

(17.34)
where this time the integral is over the physical region. In Fig. 17.6 we
assume that an ensemble of experiments would produce values for &
which distribute as shown, with a significant probability of obtaining
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results with unphysical values. With our assumed step function r(a),
the effect of Eq. (17.33) or (17.34) is to replace this distribution with
the function shown by the shaded region, except that it is renormalized
to unit area. By stating our confidence at the 90% level that o lies

below the beginning of the dark shaded region, we mean that 90% of
the area in the physical region is in the light shaded region.

Unphysical
region

Physical
region

g(a|@) (before
&~ normalization)

€ of area
in physical
region

aora
Confidence limit 1 - ¢

Figure 17.6: An example of a bounded physical region, in
which a measurement @ can fall in an unphysical region with
significant probability. If we assume that a, the quantity we
are trying to measure, cannot lie in the unphysical region (0
probability) but can lie anywhere in the physical region (“no
prior knowledge”), then Bayes’ theorem says that our new
knowledge of the distribution of e, given our measurement &, is
given by the shaded function after appropriate renormalization.
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Figure 17.7: Application of the Bayesian scheme shown in
Fig. 17.6 to the case of Gaussian f(@|a). For example, if our
measurement & is 1.0 standard deviations negative, then we
conclude that o < 1.150 with 90% probability—however, there
is only a 31% probability that an experimental result as low as
this would occur. Note that these are upper limits, so that the
asymptote for large @/o corresponds to a one-sided confidence
interval, e.g., the asymptote for a 95% confidence level is
a < @+ 1.640, corresponding to a 90% confidence interval for
a two-sided distribution. The dashed lines show the frequentist
limit; if Option 3 is used, these are extended horizontally to the
right for negative a/o.

In most cases of interest in this Review, & is assumed to be a random
value from a Gaussian distribution. Application of the procedure
sketched in Fig. 17.6 then leads to the family of curves shown in
Fig. 17.7. The confidence limit set by this method is always greater
than the [one-sided] confidence interval set without the restriction of
an unphysical region, and approaches it from above as the tail in the

unphysical region becomes unimportant. It is also greater than any
of the limits shown in Fig. 17.5. With a small modification (exclusion
of that portion of the negative tail inside the physical region in
the confidence interval definition), it smoothly approaches the usual
two-sided confidence interval for Gaussian distributions.

Even so, it is not a valid confidence limit. If it were, the interval
would include the true value of a with ezactly 1 — ¢ probability
no matter what the true value was. If the true answer is zero,
our procedure, by guaranteeing a limit greater than zero for any
experiment, also guarantees that the confidence interval for any e
includes a,c4ya) With 100% probability. Only as « increases does the
probability decrease toward the a-independent Gaussian result.

The error function corresponding to the right axis of Fig. 17.7
shows the probability that @/c at or below the given value should
occur. If the experimental value is exceeding improbable, then the
formal confidence limit obtained by this or any other method means
very little.

What about the arbitrariness of w(a)? If the square of the neutrino
mass is measured (o = m2), then should we not take the prior
knowledge distribution as proportional to /a?f There are other
attractive options. Jeffreys points out that if m(a)da = da/a, then
the distributions for @ and o™ are proportional [16], but there are
practical difficulties with this approach. Lynch has investigated prior
distributions that are constant in a, a2, and V/a in the context of
Gaussian f(@&l|a), and has observed that assuming a prior distribution
that is flat in a gives results that are much more satisfactory than one
gets from the others [17]: All three methods have the property that
the probability that the calculated limit contains the correct answer is
100% when a = 0 and approaches the proper value when a >> o, but
the approach to the proper value as a increases is much faster when
the prior distribution is taken to be flat in a. In this case the approach
is also monotonic, giving it the “conservative” property that for no
value of a will the method produce a limit that has a probability of
being correct that is less than the stated confidence limit. Although
there is nothing unique about the limit calculated with a constant
m(a), it has desirable features and no obvious replacement.

Summary: If there is a significant probability of obtaining an
estimator corresponding to an unphysical value for a parameter, there
is no universally accepted way way to make a statement of the sort “a
is less that ca with probability 1 —e.” A variety of upper limits can be
defined, but no method is entirely satisfactory. The Bayesian method
with a flat prior distribution gives a reasonable upper limit which
combines everything we know about the unknown quantity « into a
physically reasonable value, but it does not give a complete summary
of the information contained in the experiment.

17.5.4. Poisson processes with background [18] :

If we observe mp events in a Poisson process which has two
components, signal and background, estimating a limit on the signal
is more complicated. Let pg be the unknown mean (the Poisson
parameter) for the signal and pupg be the mean for the sum of all
backgrounds. Assume up is known with negligible error; however
we don’t know npg, the actual number of events resulting from the
background. We do know that ng < ng. If ug + ug is large, the
Gaussian approximation to the Poisson distribution (see Sec. 16.3.2) is
usually adequate, and one can define confidence intervals or limits as
above, assuming figp ~ pp and therefore fig = ng — pp with variance
equal to ng (larger than fig to allow for the error in 7ig).

Otherwise an upper limit can be defined by extension of the
argument of the preceding section. Let N be the desired upper limit
on ug with confidence coefficient . Set N to be that value of pug such
that any random repeat of the current experiment with ug = N and
the same pp would observe more than ng events in total and would
have ng < ng, all with probability 1 — €. For any assumed N and pp
we can calculate this probability:

ey 32 e + N
n!
n=0 . (17.35)

l-e=1-

n=0
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We adjust N to obtain a desired €. For pg = 0 this converges to
Eq. (17.32). As in that case (see the last paragraph of Section 17.5.2)
this gives a conservative upper limit in that for any given true ug we
get a true probability > 1 — ¢ that N > pug, averaged over a large set
of identically performed experiments. For € = 0.10, Fig. 17.8 shows N
as a function of ng and upg.

N

10 events observed

(9]

90% confidence coefficient
upper limit on signal
S

5 10 15
Expected background (events)

Figure 17.8: 90% confidence coefficient upper limit on the
number of signal events as a function of the expected number
of background events. For example, if the expected background
is 8 events and 5 events are observed, then the signal is 4.0

(approximately) or less with 90% confidence. Dashed portions
indicate regions where it is to be expected that the number

observed would exceed the number actually observed > 99% of
the time, even in the complete absence of signal.

Averaging of experiments and other comparisons require that ng
and pg be quoted and the technique used for upper limit extraction
be given.

If pg > no the experimenter should question the probability of
observing npg as that ng. If this is very small the background, up,
may not have been calculated properly and the upper limit for pug
obtained under those assumptions may be too low. For example, in
Fig. 17.8, the dashed portions of the curves lie in the region where ng
is expected to exceed the observed value 99% of the time (or more),
even in the complete absence of signal. In these regions one should be
cautious about accepting the results of the measurement.

As in the Gaussian case (Sec. 17.5.3), whenever ng < ppg some

experimenters may prefer to use N calculated as if ng =~ pp rather
than the smaller value obtained from the observed ng.

17.6. Propagation of errors

Suppose we have a set of N random variables y; which may be
direct measurements or derived estimators @&, and we have a covariance
matrix V(y) for these. We can make a transformation to a different
set of variables fn = fa(y), 7 =1,...,M (M < N) and obtain best
estimates for the f, from

1, ~ fa(§ +l§NV (%) ._a_:"f_"_ (17.36)
n~ n(Y) 2kn knlY 3yk3ynl7 .
with covariance matrix
7 afi afn ~
Vi(f) =) | Vam(7) . (17.37)
o Qynlg Oum g

For a single-valued function f of a single measurement y with variance
a? (i.e., M =1, N = 1), this becomes

Fr A+ 502"(5)

V(F)y=~ 2f'(3))?.

(17.38)

where the primes denote differentiation with respect to y, evaluated
at 7.

These approximations are based on a Taylor expansion of f about
the true value of y. If f is approximately linear in y over a range of
roughly y; &+ o(y;), the approximation is good and the second-order
terms in (17.36) and (17.38) can be neglected. This is what is usually
done. However, if linearity is badly violated (e.g., f & 1/y and §
is no more than a few o from zero), it should be recognized that
propagation of errors will give very approximate results. In such cases
f = f(7) may be a biased estimator for f even if § is unbiased for y,
and the second-order terms in (17.36) and (17.38) will help to reduce
that bias.

*In addition to the references cited, communications with R.D.
Cousins, F. James, G. Lynch, and B. Roe have been invaluable in
formulating this section.

tThere is an additional problem: Even if we set a confidence limit on

m2 by some particular recipe, it translates into a different confidence

limit on \/m,,§ except when a Bayesian procedure with Jeffreys’

m(a) o 1/a prior distribution is used.
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18. MONTE CARLO TECHNIQUES

Revised June 1994 with the help of T. Adye, O. Dahl, and H.-J. Trost.

Monte Carlo techniques are used to simulate on a computer random
behavior which is too complex to be derived analytically. Most
calculations are based upon pseudorandom numbers, a reproducible
sequence of numbers generated on the open interval (0,1) in such a way
that they satisfy various statistical tests for a uniform distribution,
with independent numbers. (Caution: some commercial random
number generators fill the closed interval [0,1]. The occurrence of 0
or 1 can sometimes cause problems for the algorithms below). No
such numbers are truly uniform and independent. Many commercial
random number generators sacrifice randomness in favor of speed. It
is not rare that unforeseen correlations will introduce non-negligible
errors in the results. A useful test for this is to recompute the same
results with a different algorithm for the pseudorandom numbers. To
improve the performance of an existing generator one may use the
Bays-Durham algorithm [see Ref. 1 for discussion]: (a) Initialize by
generating and storing N (e.g., N = 97) random numbers in an array
v, using the available generator. Generate a new random number u
and save it. (b) On the next call, use this u as an address j = 1+
(integer part of Nu) to select v; as the random number to be returned.
Also save this v; as u for the next call. Replace v; in the array with a
new random number using the available generator. On the next call,
go to (b).

A second problem sometimes encountered in computations requiring
long sequences of random numbers is that all pseudorandom number
generators will eventually begin over and repeat the same sequence.
One may choose algorithms which minimize the number used. One
may also use two or three different generators in different parts of the
program.

Monte Carlo simulations of complex processes break them down
into a sequence of steps. At each step a particular outcome is chosen
from a set of possibilities according to a certain p.d.f. To do this we
must transform our uniform random numbers into random numbers
sampled from different distributions on different ranges.

Two techniques are in wide use to do this. We will discuss only
single variable cases; multiple variable cases use straightforward
extensions of these techniques. We assume we are in possession of a
random number u chosen from a uniform distribution on (0,1).

18.1.

If the desired probability density function is f(z) on the range
—00 < z < 00, its cumulative distribution function (expressing the
probability that z < a) is given by Eq. (16.1). If a is chosen with
probability density f(a), then the integrated probability up to point
a, F(a), is itself a random variable which will occur with uniform
probability density on [0, 1]. If z can take on any value, and ignoring
the endpoints, we can then find a unique z chosen from the p.d.f. f(s)
for a given u if we set

Inverse transform method

u=F(z), (18.1)
provided we can find an inverse of F', defined by
z=F1u). (18.2)

This method is shown in Fig. 18.1a.

For a discrete distribution, F(z) will have a discontinuous jump of
size f(zy) at each allowed zp,k = 1,2,-.-. Choose u from a uniform
distribution on (0,1) as before. Find zj such that

k
F(zg-y) <u < F(zt) =Prob (z < zx) = ) f(zi)

i=1

(18.3)

then zj is the value we seek (note: F(zo) = 0). This algorithm is
illustrated in Fig. 18.1b.

1 —
@ Continuous
F(x) distribution
7
0 A p
. x=F-Yu)
(b) Discrete
F(x) distribution
7 P P . } f( xk )
0 A S S U S
A A x
Xk YR+l

Figure 18.1: Use of a random number u chosen from a uniform
distribution (0,1) to find a random number z from a distribution
with cumulative distribution function F(z).

18.2. Acceptance-rejection method (Von Neumann)

Very commonly an analytic form for F(z) is unknown or too
complex to work with, so that obtaining an inverse as in Eq. (18.2) is
impractical. We suppose that for any given value of = the probability
density function f(z) can be computed and further that enough is
known about f(z) that we can enclose it entirely inside a shape which
is C times an easily generated distribution h(z) as illustrated in
Fig. 18.2.

Figure 18.2: Illustration of the acceptance-rejection method.
Random points are chosen inside the upper bounding figure, and
rejected if the ordinate exceeds f(z). Lower figure illustrates
importance sampling.

Frequently h(z) is uniform or is a normalized sum of uniform
distributions. Note that both f(z) and h(z) must be normalized
to unit area and therefore the proportionality constant C > 1.
To generate f(z), first generate a candidate z according to h(z).
Calculate f(z) and the height of the envelope C h(z); generate u and
test if uC h(z) < f(z). If so, accept z; if not reject  and try again. If
we regard z and uC h(z) as the abscissa and ordinate of a point in a
two-dimensional plot, these points will populate the entire area C h(z)
in a smooth manner; then we accept those which fall under f(z). The
efficiency is the ratio of areas, which must equal 1/C; therefore we
must keep C as close as possible to 1.0. Therefore we try to choose
C h(z) to be as close to f(z) as convenience dictates, as in the lower
part of Fig. 18.2. This practice is called importance sampling, because
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we gencrate more trial values of z in the region where f(z) is most
important.

18.3. Algorithms

Algorithms for generating random numbers belonging to many
different distributions are given by Press [1], Ahrens and Dieter [2],
Rubinstein [3], Everett and Cashwell (4], Devroye [5], and Walck [6].
For many distributions alternative algorithms exist, varying in
complexity, speed, and accuracy. For time-critical applications, these
algorithms may be coded in-line to remove the significant overhead
often encountered in making function calls. Variables named “u” are
assumed to be independent and uniform on (0,1).

In the examples given below, we use the notation for the variables
and parameters given in Table 16.1.

18.3.1.

Generate u; and up. Then v; = 2u; — 1 is uniform on (—1,1), and
vy = uy is uniform on (0,1). Calculate r2 = v} +v. If r2 > 1, start
over. Otherwise, the sine (S) and cosine (C) of a random angle are
given by

Sine and cosine of random angle:

S =2uvy/r? and C = (v? —vd)/r?. (18.4)
18.3.2. Gaussian distribution:
If u; and up are uniform on (0,1), then
21 =sin2ru;y/—21lnug and zp =cos2mwu;y/—2lnug  (18.5)

arc independent and Gaussian distributed with mean 0 and o = 1.

There are many faster variants of this basic algorithm. For example,
construct v; = 2u; — 1 and vy = 2ug — 1, which are uniform on (—1,1).
Calculate r2 = vf +v§, and if r2 > 1 start over. If 72 < 1, it is uniform
on (0,1). Then

—2Inr? —2In72
zZ1 =M —_”7—— and 23 = U2 T

are independent numbers chosen from a normal distribution with

mean 0 and variance 1. zl'- = u + oz; distributes with mean p and

variance o2

(18.6)

For a multivariate Gaussian, see the algorithm in Ref. 7.

18.3.3. X2(n) distribution:

For n even, generate n/2 uniform numbers u;; then

n/2

y=-—2In H u; is X%(n) . (18.7)
i=1

For n odd, generate (n — 1)/2 uniform numbers u; and one Gaussian z
as in Sec. 18.3.2; then

(n—1)/2
H u | +22 is X%(n).

i=1

y=—2In (18.8)

For n2>30 the much faster Gaussian approximation for the
X2 may be preferable: generate z as in Sec. 18.3.2 and use

y= [z +V2n — 1]2 /2; if 2 < —v/2n — 1 reject and start over.

18.3.4.

All of the following algorithms are given for A = 1. For A # 1,
divide the resulting random number z by A.

Gamma distribution:

o If k = 1 (the ezponential distribution), accept z = —(Inu).

o If 0 < k < 1, initialize with v = (e + k)/e (with e = 2.71828...
being the natural log base). Generate uj, up. Define vy = vju;.

Case 1: vy < 1. Define z = vé/k, If ug < e~ %, accept = and
stop, clse restart by generating new up, us.

Case 2: vy > 1. Define ¢ = —In([vy — va)/k). If ug < z*~1,
accept = and stop, else restart by generating new wujp, us.
Note that, for & < 1, the probability density has a pole at
z = 0, so that return values of zero due to underflow must be
accepted or otherwise dealt with.

e Otherwise, if £ > 1, initialize with ¢ = 3k — 0.75. Generate
u; and compute v; = u1(1l — u1) and v = (u; — 0.5)y/c/v1. If
z = k+wvy—1<0, go back and generate new uj; otherwise
generate up and compute vz = 64’!}:1;11,%. Ifug3<1- 2v%/z or if
Invz < 2{[k — 1] In[z/(k — 1)] — v2}, accept = and stop; otherwisc
go back and generate new wu;.

18.3.5.

If p < 1/2, iterate until a successful choice is made: begin with
k = 1; compute P, = ¢" [for k # 1 use P, = f(rx;n,p), and store Py
into B; generate u. If u < B accept r, = k — 1 and stop; otherwise
increment & by 1 and compute next Py and add to B; generate a new
u and repeat. If we arrive at k = n + 1, stop and accept 7,41 =n. If
p > 1/2 it will be more efficient to generate r from f(r;n,q), t.e., with
p and ¢ interchanged, and then set r, =n —r.

Binomaal distribution:

18.3.6.

Iterate until a successful choice is made: Begin with £ = 1 and sct
A =1 to start. Generate u. Replace 4 with uA; if now A < exp(—u),
where p is the Poisson parameter, accept ny = k£ — 1 and stop.
Otherwise increment k& by 1, generate a new u and repeat, always
starting with the value of A left from the previous try. For large
©( 2 10) it may be satisfactory (and much faster) to approximate the
Poisson distribution by a Gaussian distribution (see our Probability
chapter, Sec. 16.3.3) and generate z from f(2;0,1); then accept
z = max(0, [u + z/f + 0.5]) where [] signifies the greatest integer
< the expression.

Poisson distribution:

18.3.7. Student’st distribution:

For n > 0 degrees of freedom (n not necessarily integer), generate
from a Gaussian with mean 0 and 2 = 1 according to the method of
18.3.2. Next generate y, an independent gamma random variate with
k = n/2 degrees of freedom. Then z = zv/2n/,/§ is distributed as a t
with n degrees of freedom.

For the special case n = 1, the Breit-Wigner distribution, generate
uy and ug; set v = 2u; — 1 and vp = 2up — 1. If vf + vg < 1 accept
z = v1 /vg as a Breit-Wigner distribution with unit area, center at 0.0,
and FWHM 2.0. Otherwise start over. For center My and FWHM T,
use W = zI'/2 + M.
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19. ELECTROMAGNETIC RELATIONS

Quantity Gaussian CGS SI
Charge: 2.997 924 58 x 10° esu =1C=1As

Electron charge e: 4.803 206 8 x 10710 esu =1.60217733 x 10719 C
Potential: (1/299.792 458) statvolt (ergs/esu) =1V=1JcC!

Magnetic field:

10* gauss = 10 dyne/esu

=1T=1NA"1p!

Lorentz force:

F=q(E+%xB)

F=q(E+vxB)

Maxwell equations: VD =4nmp VeD=p
vxH-19D _4r vxH-2 3
c ot c ot
VeB=0 VeB=0
10B oB
VXxE+-—=0 VXxE+—=0
+ Py X E+ ot
Materials: D=¢, H=B/u D=¢E, H=B/u
Permitivity of free space: 1 € =8.854187...x 10712 F !
Permeability of free space: 1 po=4m x 1077 N A~2
Fields from potentials: E=-VV - lgé E=-VV - 3_A
c ot at
B=VxA B=VxA
Static potentials: V= % _ [P (') V= 1 % _ / p(r' )
(coulomb gauge) chargesri r—r'| 47eg chm_g r; 4me) |r—r [
1 .
A=< ’), &' A= ¥ L_ /J(',
Ccurrents i ll‘ -r l Wcurrents i 'r -r |
Relativistic transformations: E| =E) E| =E
(v is the velocity of the 1 ,
primed frame as seen =v(EL + VX B) E| =v(E,L +vxB)
in the unprimed frame) B?l - B, Bf| =B,
1 1
B{L=7(BJ~_ZVXE) B'J_=7(B_L—C—ZV>(E)
1
—— =c2x107" NA"2=8.98755...x 10° m F~!; B0 _10-7N A2, = ——— =2.997 924 58 x 108 m 5!
4meg 4w VHEoeo
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19.1. Impedances (SI units)

p = resistivity at room temperature in 1078 Q m:

~ 1.7 for Cu ~ 5.5 for W
~ 2.4 for Au ~ 73 for SS 304
~ 2.8 for Al ~ 100 for Nichrome

(Al alloys may have double the Al value.)

For alternating currents, instantaneous current I, voltage V,
angular frequency w:

V=Vye¥=2I. (19.1)

Impedance of self-inductance L: Z = jwL .
Impedance of capacitance C: Z = 1/jwC .
Impedance of free space: Z = \/up/ep = 376.7 Q .

Impedance per unit length of a flat conductor of width w (high
frequency, v):

1+5)p

Z = ( pr where 6 = effective skin depth ; (19.2)
p 6.6 cm

§=,/— = —=—=—= forCu. 19.3

mvp /v (Hz) (19:3)

19.2. Capacitance € and inductance L per unit
length (SI units)

Flat rectangular plates of width w, separated by d < w:

~ w ~ d
C=¢— ; L=u— H .
€7 ko (19.4)
£ —2+t06 for plastics; 4 to 8 for porcelain, glasses. (19.5)
Coaxial cable of inner radius 71, outer radius r2:
G=—2T . Ty (ry/m) (19.6)
" In (re/r) 2 271} - '
Transmission lines (no loss):
Impedance: Z = VL/C . (19.7)
Velocity: v=1/VL & =1/\/ze . (19.8)

19.3. Synchrotron radiation (CGS units)

For a particle of charge e, velocity v = B¢, and energy E = ymc?,
traveling in a circular orbit of radius R, the energy loss per revolution
SE is

4 62 3 4
For high-energy electrons or positrons (8 = 1), this becomes
8E (in MeV) ~ 0.0885 [E(in GeV)]*/R(in m) . (19.10)

For 4 > 1, the energy radiated per revolution into the photon energy
interval d(hw) is

dI = Sy Fluw/we) d(fw) ,

= (19.11)

where a = €2 /hc is the fine-structure constant and

3y°c
we =S5 (19.12)
is the critical frequency. The normalized function F(y) is
9 o0
Fo) = 3-8y [ Kogsle) o (19.13)
y

where K53 (z) is a modified Bessel function of the third kind. For
electrons or positrons,

hw, (in keV) ~ 2.22 [E(in GeV))3/R(in m) . (19.14)
Fig. 19.1 shows F(y) over the important range of y.
0.6 — T T
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Figure 19.1: The normalized synchrotron radiation spectrum F(y).

Fory>» 1and w < we ,

dI

o) (19.15)

~ 3.3a (wR/c)/? |

whereas for

v>1and w2 3w, ,

dl 3 w2 w]we 55 we
—_— Ry = — - ——+...| . (19.16
ahw) ~ V2 “"’(wc) € [1+72 w b ] (19.16)

The radiation is confined to angles <1/ relative to the instantaneous
direction of motion.

See J.D. Jackson, Classical Electrodynamics, 2°d edition (John Wiley
& Sons, New York, 1975) for more formulae and details. In his book,
Jackson uses a definition of w. that is twice as large as the customary
one given above.
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20. CLEBSCH-GORDAN COEFFICIENTS,
SPHERICAL HARMONICS, AND d FUNCTIONS
J J ..
Note: A v/ is to be understood over every coefficient, e.g., for —8/15 read —+/8/15. Notation:| ..,
[ ] m m
1/2%x1/2 +i — 40 N — 1T
=4/ -—cos :
bi2+12] 1] 0 o 1 AT 2x1/217 S22 3,2 my my | Coefficients
+1/2 -1/72|1/2 1/2) 1 3 o [l ipr+e
-1/2 +1/2]1/2-1/2}-1 Yl1 = —,/— sin@e® +2 -172{1/5 4s5) 5,2 3,2
|-22-12] 2 8 +1 +1/2|4/5 —-1/5 172 +1/2
0 5 /3 2 1 +1-1/2 | 2/5 3/5| 5/2 3/2
s Y, = H(E cos® 6 — 5) 0+1/2 | 3/5 -2/5]-1/2 -1,2
el A s . | AR
T o Yy == 81 sin 8 cos ¢ 2 . /1 1;2 4;5 1;5 5/2
1- 2/3| 372 1,2 o -
+0 +i§§ ;;g —153 -1;2 —152 3/2X1/2 Lol 7 1] |-2+12| 175 —a/5)-502
Y2 = 1 /15 sin2 9 2% 1+3/2 +1,2] 1] +1 +1 | 1
0-1/2} 273 173] 3,2 2 =7\ 3z S ve T2 12 aal 2 1
-1+1/2| 1/3-2/3|-3/2 / /2174 3/
ax1l3 EE — +1/2 +1/23/4-1/4] 0 o
X +3] 3 2 3/2%x1 +5/2 52 32 +1/2-1/21172 12} 2 1
2 +1] 1] +2 +2 [zl i3z +32 ~12+12012-12) -1 -1
+2 0[1/3 2/3 3 2 1 Y32 0| 2/5 35| 572 3,2 12 172 -172| 34 1/4| 2
+1 +1)2/3 ~1/3] +1 +1  +1 +1/2 +1| 3/5 —2/5+1/2 +1/2 +1,2 -3/2 +1/2| 1/4-3/4]-2
+2-1|1/15 1/3  3/5 +3/2-1|1710 2/5 1,2 I-3/2-12] 1
1x1 |2 +1 o0(8/15 1/6-3/10| 3 2 1 +1/2 0| 35 1715 -173| 5,2 372 172
+23 2 1 0+1|6/15 ~1,2 1/10] 0 0 0 —1/2+1|3/10 -8/15 1/6|-1/2 -1/2 -1,2
iy af+1 w2 +1-1{1/5 1/2 3/10 +1/2 -1[3/10 8/15 1/6
+1 of2 12] 2 1 o0 0 of3/s 0 -2/5 3 2 1 172 0| 3/5 -1/15 -1/3| 5/2 3,2
0o+1j12-172] o o o —1+1f1/5 -1/2 3/10f -1 -1 -1 -3,2 +1{1/10 -2/5 1/2}-3/2 -3,2
+1-1(1/6 172 1/3 0-1|6/15 172 1/10 -1/2-1 3/5 2/5] 5,2
0 0/2/3 0-1/3] 2 1 -1 of8/15 -1/6-3/10] 3 2 -3/2 0] 2/5 -3/5}-5/2
-1+101/6 -1/2 173} -1 -1 —2+1[115 -1/3 35 -2 -2 32 -1] 1
- 0-1)12 12] 2 -1-1|2/3 1/3] 3
— —_— m m* _ _ _ - - _ — —
Y=Y 20 1/21 11/21 i = 20 1/|3 22/1 i (jrizmima|irj2 I M)
1= £ _ —im¢ 222 iy g .,
m,0 = \/;“_1 Y[remim = (-1)7791792(jajymami| 251 I M)
j _ (_1ym-m' g — 3 1/2 .
'Fm’,m =(-1) dJm,m’ —mym/ 3/2%3/2 +3| 3 2 dig 1/2 = ©08 3 1;2 —1/2 = —sin 2
V32 4372 1]+2  +2 i !
X 172 .
2372 [l A ] I [ TS 1
b2e3z2] _ifrs/zvo/2 +3/2-1/2 |1/5 1/2 3710 ' 2 ‘ V2
l+2+1/2 31 a1 12 5/2 372 +1§2 +1§2 s o 25 ) T
+1+3/2] 4/7-3/7113/2  +3/2 +3/2 212432 |15 -1/2 310 PO o o] 1 cosf
+2-1/2( 1/7 16/35 2/5 32 —3,2 |1/20 1/4 9/20 14| G11 = —5—
- +1 172| a7 1735 =275 172 5,2 3,2 112 1172 —1/2 |9/20 1/a-1/20-1/8 2
2X2 N 3 0 3/2| 2/7-18/35 1/5| +1/2 +1/2 +1/2 +1/2 -1/2 +1/2 [9/20 -1/4 -1/20 1/4 3 2 1 1
zs2lal +3 +3 +2-3/2| 1135 6/35 25 25| |o3/2 3721720 ~1/4 9/20-1/4) -1 -1 -1)dg o = cosf
+1-1/2|12/35 5/14 0 -3/10 T1/2-3,2] 15 172 3,10
2411172 172] 4 3002 0 172|118/35 3735 -15 15| 12 502 32 12) | Lia-1r2| a5 0 —25f 3 2
t1+2]1/2-1/2) +2 +2  +2 -1 3/2| 4/35-27/70 2/5 -1/10]-1/2 -1/2-1/2 -1/2 ~3/2+41/2| 1/5-172 3/10| -2 -2
+2 03714 172 2/7 +1 -3/2| 4/35 27/70 2/5 1/10 [~ _
+1 1| 47 o0-377] 4 3 2 1 o ahens s Y /2 -3/2)1/2 1/2) 3
0 203/14-1/2 2/7] +1 +1 +1 +1 -1 12[2/35 -5,24 0 3710|772 5,2 3,2 L2132 71/283
(2 —1|1/1¢ 3,00 3,7 1/5 -2 3,2|1/35-6/35 2/5 —2/5)-3/2 -3/2-372 E3/2-3,2) 1
k1 o] 3,7 1/5-1/14-3/10 0 —3,2| 2/7 1835 1/5
o 1| 3/7 -1/5-1/14 3/10 4 3 2 100 -1 -172| 477 -1/35-2/5) 172 5,2
1+ cosf [’} | _ b 1 -1/
dgﬁ 32 = —p cOS 1 2{1/14-3/10 377 -1/5 0 0o 0 o 0 2 12] 1/7-16735 2s5) =572 —s/2
’ 2 2 +2 -2 | 170 1710 2/7 2/5 1/5 1032|471 3| 12
/2 1+cosf . @ +1 -1 | 8/35 2/5 1/14 -1/10 -1/5 —2-1/2| 3,7 -a/1}1/2
dg/z 2= —V3———sin- 0 0 |18/35 0 -2/7 1/5
’ 2 2 -1 1| 8/35 -2/51/14 1710 -1/5] 4 3 2 1 l—z -32] 1
d3‘2 \/3-1 —cos @ [} -2 2| 1/70-1210 2/7 -2/5 1750 -1 -1 -1 -1
3/2,~1/2 = D) 52 (1 + cos(})2 +1 —2[114 3710 37 175
22=\—"%5— 0 -1| 3/7 1/5-1/14-3/10
32 =_l___&59 0 2 -1 ol 377 -1/5-1714 3720] 4 3 2
3/2,-3/2 2 2 2 _ l+cosd sind -2 1|14 -3710 377 -1/5) -2 -2 -2
22 3cosf+1 0 21 o 1+ cosf 0 -2(3/14 172 2/7
21/2= 5 085 G df ;= ———(2cos6 - 1) -1 -1| 477 0-3/77] 4 3
=2 sin%8 2 -2 0314 -1/2 2/7] -3 -3
32 = _M io_ 20 4 2 3 . -1 -2|1/2 1/2] &
1/2,—-1/2 — 2 2 o 1—cosf . dl,O = - 5 sin@ cos @ -2 -1|172-1,2]-4
d2‘_1 =-— sin 8 = 21
2 1—cosf 3 5 1
1 — cosf\ 2 df ;= ———(2cosf+1) dg():(—cos 0——)
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