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Inhomogeneous chiral condensate in the Schwinger model at finite density
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The behavior of the chiral symmetry order parameter (,ff) in the (1+1)-dimensional Schwinger
model at finite chemical potential is studied. We find an inhomogeneous chiral condensate.
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One of the most important concepts in our current un-
derstanding of particle physics is the spontaneous break-
down of the chiral symmetry [l]. It is believed that the
order parameter ( Ptt ) for chiral symmetry is nonvanish-
ing in four-dimensional QCD (QCD4) at sufficiently low
fermion density and temperature. A lot of low energy
particle physics can be understood if we treat pions and
kaons as the Goldstone bosons for the broken chiral sym-
metry [2]. It is also believed that as we raise temperature
and/or fermion density, we shall eventually reach the
quark-gluon plasma phase where the chiral symmetry is
recovered and (gf) vanishes. Although results from lat-
tice gauge theory support the above picture [2], we still
lack an analytic and accurate confirmation of the idea
directly from the QCD4 Lagrangian. In this Brief Re-
port, we shall examine (pl(t) in the exactly solvable
( I + I)-dimensional Schwinger model [3], a favorite
theoretical laboratory for testing ideas in QCD4. Because
of instantons (vortices}, (gP) is nonvanishing [4] in the
(one-fiavor) Schwinger model and the chiral condensate
disappears only at infinite temperature [5,6]. (It would be
more interesting if we could find a finite critical tempera-
ture such as what we expect to happen in QCD4. ) We
want to point out in this Brief Report that in the
Schwinger model, when the chemical potential p of the
fermions is not zero, there exists an inhomogeneous
chiral condensate (Pf(x }) [x =(xc,x, ), x, is the spatial
coordinate] whose p dependence shows up in an oscillato-
ry factor cos(2@x, ). There has been no mention of this
oscillatory behavior of (gg) in the literature, although
the work by Fischler, Kogut, and Susskind [7] on the
nonuniform charge density in the massive Schwinger
model may have anticipated what we have found. It is
not completely clear yet that this peculiar behavior of
(fP) is not just due to the low dimensionality of the
model, but we are somewhat surprised to find that Der-
yagin, Grigoriev, and Rubakov [8] had already argued for
the existence of an inhomogeneous and anisotropic chiral
condensate in QCD4. Our calculation indicates that the
proposal of Deryagin, Grigoriev, and Rubakov merits
further study. If they are right, our view of the dense ha-
dronic matter may have to be modified.

The Schwinger model at finite fermion density is
defined by the following Lagrangian density in (1+1)-

dimensional spacetime:

where p is the chemical potential and the Dirac matrices
y„are 2 X2 matrices obeying I y„,y„J =2g„„with
goo= —g»=1. We have put in a uniform background
charge density pb for the purpose of canceling the infinite
electromagnetic energy carried by the fermions, as the
Schwinger model itself exhibits the quark confinement
phenomenon. Using the well-known bosonization rules

(2)

(3)

:erg:= crnN cos(—2v sr'), (4)

where c =e"/2', y is Euler's constant, and N denotes
normal ordering with respect to mass m, we know that
the Schwinger model in the Coulomb gauge is equivalent
to a bosonic theory defined by the Hamiltonian

2
a=-,'(a,(())'+-,'(a,y)'+ '

(7(, (6)

if we choose pb to be p/m. . We now have a free massive
theory in terms of the (() field, and it is easy to calculate
the correlation functions.

Calculating (ff(x)) is straightforward with m equal
to e/&7r:

The effect of the background charge is represented by Pb
defined as pt, =(l/&tr)a, pt, For a c.onstant pt„pt, is
i/mpbxi and the model is no longer translationally in-
variant. As explained by Fischler, Kogut, and Susskind
[7], a uniform background charge can be regarded as the
infinite limit of a finite line of charge, and the center of
the background charge is the source of the noninvariance
under translation. To handle the chemical potential
term, it is convenient to use a new field variable P defined
by P =P (pl&tt)x i so—that the bosonic Hamiltonian %
becomes (up to a constant)
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(1Tif(x) ) = ( —cmN cos[&4rrg(x)] )

cm (N (eiV4~$(x)+e —iv 4~$(x)) )

i&4~yix)+ 2'i' i i«—~pixy))

2
(e '+e ')=cos(2@x, )(gg)„

At finite temperature T=1/P, it is easy to see that
(ftti(x) ) is still equal to cos(2@x, )(ttig)„o, except that
( PP)„o, instead of being —cm, is now equal to [5,6]

without using bosonization. The result is that

ix

+ oo dk—em exp —ao Qkz+ 2( PV k +k —1)
(8) hm ( gf(x}fg(y })„= cos[2p(x, —y, }] .

~xl —
yl ~~~

The demonstration of the occurrence of the oscillatory
factor cos(2lttxi) in (gl(i(x)), though very simple, may
still be surprising to some. But, as explained above, we
understand the reason for the lack of translational invari-
ance in the model. One may suspect that an inhomogene-
ous chiral condensate exists only in the Schwinger model.
However, by solving the Schwinger-Dyson equation, Der-
yagin, Grigoriev, and Rubakov [8] found that the chiral
condensate in QCD4 at zero temperature and finite chetn-
ical potential in the limit 1V,~ oo and fixed g N, (&1 is
of the form

(1(ig(x) ) =cos(2p x)F(g, p, N, ),
where the vector p has no specified direction and ~p~

=p, .
It remains to be seen if their claim receives more
confirmation in further studies of QCD4. Three final re-

marks: (1} We have also computed lim~„

(gl(i(x)pg(y)) following the procedure of Refs. [4,6]

Such an oscillatory behavior in (Pg(x)tTif(y)) has al-
ready been observed by Wiegmann [10] in the low tem-
perature phase of certain one-dimensional Fermi systems.
But there, unlike the case in the Schwinger model,
(Pg(x)tlirt(y)) decays to zero as ~x, —y, ~~ae. Hence
Wiegm ann found no oscillatory condensate. (2)

(ti( g(x)) is still a constant, displaying no coordinate
dependence. Therefore, we do not have a Wigner crystal
as found by Schulz [11] in the one-dimensional electron
gas with long-range Coulomb interaction and by Fischler,
Kogut, and Susskind [7] in the massive Schwinger model.
(3) The oscillatory behavior in Eqs. (7) and (9) is reminis-
cent of the Friedel oscillator [12] arising from the sharp
Fermi surface in many-body systems. This hints that the
oscillatory behavior may be robust.
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