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Relativistic plasma in a homogeneous cosmological background
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The linearized theory of a relativistic plasma in a radiation background, proposed recently by Hol-
comb and Tajima, is extended for a more general background with the metric components being an arbi-

trary power function of time ( -t"). It is noted that the electric field falls off faster and the redshift of
the electromagnetic radiation frequency is also greater in a more rapidly expanding background
universe. The dispersion relation for the transverse vibration of the electromagnetic field, however, ap-
pears to be independent of the parameter n. The wave equation for the electric field is solved for a de
Sitter background also.
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The 3+1 formalism adopted in expressing the general
relativistic Maxwell equations enables one to write them
in terms of electric and magnetic fields completely analo-
gous to their flat space presentation. Recent works on
black hole electrodynamics (Thorne and Macdonald [l])
and relativistic magnetohydrodynamics (Evans and Haw-
ley [2], Sloan and Smarr [3], Zhang [4]) are based on the
3+1 formalism. In this formalism, the spacetime is
decomposed into time slices, each of which is labeled by a
coordinate time t. The space coordinates x' are defined
on the slice.

The three-metric of the spacelike slice is

pv gpv+ 1lp8v

and the spatial coordinates x' are propagated along

t"=an "+P' . (2)

Here n" is the unit timelike vector normal to the slice
and a and P" are the lapse function and shift vector re-
spectively. The usual four-metric can be written as

ds = ca dt +y; —(dx'+13'dt)(dxt+P~dt) . (3)

In this discussion, greek indices run from 0 to 3 and lat-
tice indices from 1 to 3.

Recently Holcomb and Tajima [5] have developed the
linear theory of cosmological plasma including elec-
tromagnetic waves in the background of radiation-
dominated Friedmann-Robertson-Walker (FRW) space-
time where self-gravity of matter is ignored. Some of the
interesting conclusions arrived at are related to the time-
dependent redshift of photons in the background of the
expanding Universe, the dispersion relation in the plasma
and also the decay of the frequency of the plasma oscilla-
tions. It is natural to ask what happens if the back-
ground is no longer a purely radiation universe but is
characterized by a different scale factor. In particular,
interesting physical situations where the background is a
mixture of radiation and matter with some equation of

state may be very important in the discussion of relativis-
tic plasma in the early Universe. It may also be
worthwhile to investigate the situation when the back-
ground happens to be a Zeldovich fluid (stiff fluid, p =p).
%"ith the aim of studying, in general, the electromagnetic
waves propagating in a plasma with different background
metrics, this Brief Report generalizes the work of Hol-
comb and Tajima on free photons as well as photons in
plasma. Here the FR% scale factor R is assumed to be
an arbitrary power function time in the form R -t". The
expressions obtained by Holcomb and Tajima will follow
as special cases from our general equations where the pa-
rameter n appears explicitly. The results obtained in this
Brief Report clearly indicate that the electric field decays
faster in a more rapidly expanding universe and the red-
shift of the electromagnetic wave is also higher. It is in-
teresting to note that the dielectric constant, however,
remains independent of time in all cases and does not
seem to vary with the choice of the scale factor. The
same calculations are also carried out for a de Sitter-type
background where the scale factor is an exponential func-
tion of time.

%e take the line element in the form

ds = cdt + A (t)—(dx +dy +dz ),
for which a = l, P'=0, and the three-metric

y,, =diag( A, A, A ) .

(4)

where 8 is the expansion scalar. With the metric (4)
Maxwell equations look like

V E=4~p, ,

V B=O,
BE =EE+cA V XB—4~J,—1

at
(9)

The trace of the extrinsic curvature tensor E„, is given
by

E=—8= —3A /A
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where E,B,J are three-vectors representing the electric
field, magnetic field, and current density, respectively, p,
is the electric charge density, and V is the usual Hat space
three-dimensional gradient operator. The equation for
charge conservation and the particle equation of motion
will become

~Pe
=Kp, —V J,

Bt

This substitution gives the equation

Q dQ
z +z +(z —

—,')u =0
dz

for u (z), which is easily recognized as the Bessel equation
of order —,'. The solution can be written in form of Hank-
el functions, u (z) =H', z'2(z), so that the complete solution
for the electric field is

dp 2=—Kp+q E+ A —XBV

dt 3 c
(12) E=E et"-'"'"8"'oe 1/2

1 —n

ikt. r
t " e (21)

respectively (see Holcomb and Tajima [5] and references
therein). The momentum three-vector, the velocity
three-vector, and the charge on the particle are represent-
ed by p, v, and q, respectively. The wave equation for the
electric field vector can be deduced from Eqs. (9) and (10)
in the form

2
HPj~p ( z) = i

7rz
e EZ

where e is the unit polarization vector, Eo is a constant
giving the amplitude, and Hankel function of order —, is

given by
1/2

—[A B,E+A(A 2AE)B—,E+(E A —AAE —A E)E]

3A
A =t" and E=— 3n

(14)

Eq. (13) for free photons (i.e., J=O and V E=O) will be-
come

1
[t "8 E+7nt " 'B, E+3 n(4 n—l)t " E]=V E.

C

(15)

This equation can be solved by the usual separation of
variables technique. We write E(r, t ) as a product,

E(r, t)=P(r)g(t),

which leads to the equation

[t "B,f+7nt " 'B,g+3n(4n —1)t " 1(]

V2k~ = —k, (17)

where k,. is the separation constant. It is easily seen that
the space dependence remains exactly the same as that in
the Newtonian case. As the background metric in this
case is spatially homogeneous and isotropic, this result is
quite expected. For the time part, we substitute

(1 7~)/2
( )

where

= —VXVXE— (8, —K)AJ . (13)
4+A

c2

Now, we choose the metric components

f]) j 22 f33= A =t ". If n =
—,', we get the FRW solu-

tion for a radiation (p =
—,'p} universe and n =—', gives the

solution for a dust (p =0}universe. With

It may be mentioned that the magnetic field in this case
(i.e., p, =0 and J=O) will have an exactly similar solu-
tion. If one combines all the factors of time in this solu-
tion, then

fE[-t (23)

where ~E~ represents the amplitude of the electric field,
which has a periodic time-dependent part
exp[ i [k;c—l(1 n)]t ' "—].

The expansion of the background universe affects the
magnitude of the electric field which decreases with time
at a faster rate if n is larger. If we set co; =k, c in the usu-

al way, where the subscript refers to the initial time, the
redshift of a photon in the FRW background is

m=m;t (24)

1 2at 2e '[B,E+7aB,E+12a E]=V E .
c

As usual, after separation of variables, the spatial part
remains the same as the Newtonian solution and some
suitable transformation of variables again leads the time
part to form Bessel equation of order —,'. But the argu-

ment of the Hankel function solution now contains an ex-
ponential of t instead of a simple power function of t.
The complete solution for E looks like

The photon frequency drops down with the expansion of
the Universe and this occurs obviously at a different rate
for different values of n. In the radiation background,
n =

—,
' and all our equations, such as (21), (23), and (24),

coincide with results obtained by Holcomb and Tajima
[5] for n =

—,'.
The wave equation (13) can also be solved in other

types of background. For example, for a de Sitter back-
ground, the metric components will be y»=y22=y»
=e ' and E=—3a. The wave equation for a free elec-
tromagnetic wave in this case will be [from Eq. (13)]

k,-c
1 —n ik-r —{7/2}at~{2} C —atE=Eoee e Hi/2 e

CL'
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The redshift will be given by

—(pt~")=qt "E . (25}

With the help of Eq. (21), Eq. (25) can be integrated as:

pt "=qf t "Edt

=qE ee '
J~ g(—q pee 1/2

k;c
t 1-n dt

Now we shall consider the propagation of small ampli-
tude electromagnetic waves in a plasma with the back-
ground metric = diag( —l, t ",t ",t "). If we linearize
Eq. (12) and ignore v XB terms, the equation of motion
for a particle becomes

vibration of the plasma distribution. We note from Eq.
(11) that the background number density of particles di-
minishes like t " and also from Eqs. (23) and (26) we
find that the amplitude of the momentum three-vector
~p~

—t " S.o the demand that Eq. (9) be true for all time
leads us to the conclusion that v-t "and I —t ". Thus
we see that m~z. -t " and hence e(a&) does not depend on
time. The same result was previously obtained by Hol-
comb and Tajima [5] in a more restricted case. An im-
portant observation at this point is that in the general
case, although the temporal behavior of the electromag-
netic fields, Lorentz boost, momentum etc. are modified
with the parameter n, the dielectric constant of the plas-
ma distribution remains independent of time. The back-
ground spacetime does not in anyway affect the constan-
cy of e.

In order to find the dispersion relation, we take curl on
both sides of Eq. (10) and replace V XB by Eq. (30}to get
the relation

Thus,

q E ee t g(1 —5n)/2~(2)

I

k;c
1—n a——E

Br

l CO; —1 2e(ro)E = —cA V E

[with V.E=0],
p=

ki c coi

and from the relation

p=pI v,
the three-velocity vector

(27)

or

or

k2c2
p=)-

CO CO

which, in view of Eq. (16), yields

2
2 co;

k; c —e(co) E=O,
c

where p and I are the rest mass of the particle and
Lorentz boost factor respectively. The current density
vector is i.e.,

k2c2=m2 —m2
p

p qlf pJ=Xp,v=g p=g p .
pI pI

(28}

Inserting this in Maxwell equation (9) and assuming
e+e plasma, we obtain

n

(B,E —EE )+
8~n pe

pT =(VXB}r,
pI

(29)

where the subscript T stands for transverse waves. Now
using equation (21) and (26) in (29), one can deduce, after
some straightforward calculation, the relation

l COi

e(co)ET=( V XB)T,c

where the dielectric constant e(co) is given by
2

COpZ-

e(co)=1-
CO

with
87771pe

2

Tp

(30)

(31)

which is nothing but the natural frequency of transverse

2 —2+I 2 2
p

This is the dispersion relation for the transverse elec-
tromagnetic waves in a plasma and expresses the relation
between co and the wave number k. It should be men-
tioned that the dielectric constant, calculated in the de
Sitter background, is also independent of time.

To sum up, we have extended the work of Holcomb
and Tajima for a more general background to see if the
nature of the background is responsible for any qualita-
tive change in plasma dynamics. We got the interesting
result that the electric field decays more rapidly if the
rate of expansion of the Universe is faster. This is quite
an expected result as the frictionlike term [i.e.,
7nt " 'B,g in Eq. (17)] is greater for higher values of n

The fact that the dielectric constant e is independent of
time even in a curved background whatever the choice of
the metric is the most important result of this work.
However, its full implications have to be worked out in
more detail before any definite conclusion can be made in
this regard.
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