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A general prescription to solve the Dirac equation in the presence of a CP-violating electroweak bub-

ble wall is presented. The profile of the bubble wall is not specified except that the wall height is mo and

zero deep in the broken- and the symmetric-phase regions, respectively, where mo is a fermion mass

given by the Higgs vacuum, expectation value and the Yukawa coupling. The CP-violating effects are
evaluated by regarding the CP-violating part of the bubble wall as a perturbation to CP-conserving solu-

tions. The basic quantity R& L
—R& L, which would contribute to the cosmological baryon asym-

metry, is estimated for some profiles of the wall, where R& L (Rz L ) is the reflection coeScient of the
right-handed chiral fermion (antifermion).

PACS number(s): 12.15.Ji, 11.30.Fs

I. INTRODUCTION

One of the most challenging problems in particle phys-
ics and cosmology is to explain the baryon asymmetry of
the Universe. In order to generate baryon asymmetry,
the basic theory should at least satisfy the famous three
conditions [1]: (i) Baryon-number violation, (ii) CP non-
conservation, and (iii) out-of-equilibrium processes must
all exist. It has been recognized that the baryon number
is violated in the standard model through a change of
gauge-field configurations due to the axial anomaly [2].
At very high temperatures, the baryon number is badly
broken, while the transition rate becomes negligible at
low temperatures. Thus there is a potential possibility in
the standard model to produce baryon asymmetry if the
electroweak phase transition at a temperature T-100
GeV is of first order, which guarantees condition (iii)
above, and if CP-nonconserving interactions are effective.
It is known that the phase transition in the standard
model may be weakly of first order for a light Higgs bo-
son. However, the experimental lower bound on the
Higgs-boson mass (-60 GeV) seems to contradict the re-
quirement to forbid anomalous processes induced by the
sphaleron after the electroweak phase transition [3],
though this issue remains still open as a result of nonper-
turbative effects which would ameliorate naive estimates
[4]. Furthermore, it seems that the CP violation in the
Kobayashi-Maskawa scheme [5] is too feeble to generate
the observed baryon asymmetry.

A simple generalization of the standard model would
be to introduce another Higgs doublet [6]. In two-
Higgs-doublet models, including the supersymmetric ex-
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tension of the standard model, there could appear a new
CP-violating phase in the Higgs sector. It is expected
that the new CP violation could make baryon asymmetry
large enough to be comparable with the observed value.
Moreover, it is argued that the constraint on the mass of
the lightest Higgs boson to avoid washing out of the
baryon asymmetry after the electroweak phase transition
is not so stringent that the Higgs boson could be as heavy
as about 100 GeV [6]. It is quite possible that the phase
transition may be of first order because of the many de-
grees of freedom in the Higgs sector [6]. In a previous
paper, three of the authors (K.F., A.K., and K.T.} have
shown that the electroweak phase transition is clearly of
first order in a two-Higgs-doublet model with a con-
straint that the Higgs potential contains no quadratic
terms in the symmetric phase [7].

In this paper we study fermion propagation in a CP-
violating bubble-wall background, which would play an
important role in generating the cosmological baryon
asymmetry [8]. We give a general prescription to solve
the Dirac equation in the presence of a CP-violating bub-
ble wall [9]. For simplicity, we take a single species of
fermion, e.g., the top quark. If the electroweak phase
transition is actually of first order, supercooling will
occur and bubbles of the broken phase will be generated
in a false vacuum. The bubbles will expand with some
velocity and the space will be filled with the true vacuum.
Since the bubble scale is macroscopic, the profile function
of the bubble wall may be assumed to depend on a single
spatial coordinate in the rest frame of the bubble wall.
Far from the wall, deep in the broken-phase region, the
Higgs field develops a constant vacuum expectation
value. %e assign a complex mass to the fermion as a
function of z, m (z) =mtt (z)+imI(z), where z is the coor-
dinate perpendicular to the wall. The real part mz(z)
asymptotically behaves such that ma(z}-+0 as z~ —Du

(symmetric phase) and ma(z)~mo as zan+au (broken
phase), where mu is the fermion mass. The imaginary
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part mt(z) gives rise to CP violation if mt(z)/ms(z) is
not a constant.

We do not specify any explicit form of the profile func-
tion m (z) and obtain general expressions for the
reflection and the transmission coefFicients. The CP-
violating effects are evaluated by regarding the CP-
violating term as a perturbation to CP-conserving solu-
tions. Namely, we first solve the CP-conserving Dirac
equation. Subsequently, we solve the full equation to the
first order of the CP-violating term by means of the
Green's function [11]. Our method corresponds to the
distorted-wave Born approximation (DWBA). The
reflection coefficient R and the transmission coefficient T
for the fermion incident from the symmetric phase region
to the wall satisfy the unitary R + T= I to the first order
of perturbation theory. The basic quantity,
AR:—Rz L

—R& L, which would be important to ex-
plain the cosmological baryon asymmetry [8], is given as
a simple integral form in the case where analytic solu-
tions to the CP-conserving Dirac equation are known
[10],where R„L (Rit t ) is the reflection coefficient for
a right-handed chiral fermion (antifermion}. Thus, once
the imaginary part of the bubble-wall profile is given, we

can easily evaluate AR. We expect that our prescription
would serve to construct new models to generate cosmo-
logical baryon asymmetry in the electroweak phase tran-
sition of first order.

In the next section, we will present a general prescrip-
tion to solve the Dirac equation in the background of a
CP-violating bubble wall. The reflection and transmis-
sion coefficients are obtained from the solutions. In Sec.
III, the results in Sec. II are applied to the special case
where the real part of the bubble-wall profile is of the

II. DWBA TO CP-VIOLATING DIRAC EQUATION

A. Dirac equation and ansatx

Here we solve the Dirac equation in the bubble-wall
background with CP violation. For simplicity, we con-
sider one-flavor model described by the Lagrangian

z=yLitt)~, +qtti8y„+(f q, ytty+H. c. ) .

In the vacuum, near the first-order phase transition point,
( P ) may be an x-dependent field, and so we put

m(x)= —f (P)(x),
where m(x} is in general complex valued and we neglect
the time dependence. If the phase of m (x) has no spatial
dependence, it is removed by a constant biunitary trans-
formation. We are interested in x-dependent phase
which cannot be transformed away. The Dirac equation
to be solved is

i Bg(t, x) m(x)P—R g(t, x)—m '(x)Pt f(t, x)=0, (2.3)

where Ptt =(1+y5)/2 and PL =(1—y5)/2. In the
bubble-wall background whose radius is sufficiently large,
m(x) can be regarded as a function of only one spatial
coordinate, so that we put m (x) = m (z ).

To solve (2.3), we take the ansatz

kink type [10]. In this case we estimate b,R numerically
by assuming simple forms for the imaginary part of the
bubble-wall profile. The final section is devoted to con-
clusions. Details of calculations will be given in the Ap-
pendix.

P(t, x) = [i&+m *(z)Pit+ m(z )PL ]e gz(pr, z )

=e [o(y E yrpr)+—iy 'd, +m (z)PR+m(z)Pt )px(pr, z) I, (2.4)

where o =+ (
—

) for positive- (negative-) energy solu-
tions, pr =(p p ) xz'=(x x ) pz' ~pz'~ and
yzpz=y'p'+y p . If we put E=E*coshg and

pr =E sinhi) with E =QE pr, the Lorentz tran—sfor-
= -ny'yT'2

mation of the spinor, represented by g'=e
eliminates pr from (2.4) and from the Dirac equation.
Suppose that we do this Lorentz rotation for a fixed pz.
Then the Dirac equation is rewritten, in second-order
form, as

[E* +8, —~m(z)~ +im~(z)y —mt(z)y5y']tjrs(z)=0,

ming(z)=mof(az) =mof(x),

mt(z) =mog(az) =mog(x),

x =az, r=at, e=E /a, g—:mo/a,

(2.6)

g(r, x)=e ' " o'ey +iy +gf{x)O

dX

i'(x )y,—g,(x)

where mo is the fermion mass is the broken phase. Then
the ansatz (2.4) and the second-order Eq. (2.5) are ex-
pressed as

and

where m(z) =m~(z)+imt(z), with both z(mz) and mt(z)
being real valued. Now let us introduce a set of dimen-
sionless variables, using a parameter a, which has a di-
mension of mass and whose inverse characterizes the
thickness of the wall. Define

ze + g[f(x) +g(x) ]-
dX

+iaaf'(x)y' —gg'(x)y, y' 1(,(x)=0, (2.8)



50 FERMION SCAI IERING OFF A CP-VIOLATING ELECTROWEAK. . . 1107

respectively.
Our aim is to solve (2.8) and put it back into the ansatz

(2.7) to obtain the Dirac spinor and to compute various
currents from which the re6ection and transmission
coefficients are defined. As for f(x) and g (x), we do not
specify their functional forms, but only assume that

1 as X~+ Do,
f(x)~ '

0 as x~ —Do, (2.9)

and that ~g(x}~ &&1, which means that the CP-violation
is small. Equation {2.9} means that the system is in the
broken phase at x —+ Do while in the symmetric phase at

y u + =+iu ~ (s =1,2),
((}+(x)must satisfy

(2.16)

C. Solution to the unperturbed equation

In the following any explicit forms of f(x) and g(x}
are not necessary, except for the condition (2.9}. We shall
present general results on the wave function and currents
below. The details of the calculation are given in the Ap-
pendix.

If we expand g( '(x) in terms of the eigenspinsors of y
as g( '(x)-P+(x)u+, with

g f(x—) Tgf'(x) ((}+(x)=0. (2.17)

y,(x)=y(0)(x)+ y")(x), (2.10)

where f( '(x) is a solution to the unperturbed equation

B. Outline of the DWBA to the Dirac equation

Let us explain our strategy to construct the spinor
solution. Since ~g(x)~ is very small, we regard it as a per-
turbation and keep only quantities of O(g '}. First, put

Because of (2.9), the asymptotic forms of ((}+(x)should be

e,e (x~+ a() },
egx e

—Px (x ~ )
(x)—+ '

where a=i (s e g—and P=ie Here . we consider the
case where the scattering states exist at x =+ N), e) g.
We denote the independent solutions to (2.17) as ((}~+ '(x)
and P(+ '(x) = [P(++ '(x )]', which satisfy

2 g f(x ) +—i gf '(x )y f( '(x)=0, (2.11)

with an appropriate boundary condition. Then g")(x)
can be solved as

y(+a)(X ) e ax

'(x )~e
(2.18)

at x —++ 00. Their asymptotic forms at x ~—00 are

g"'(x)= J dx' G( x,
x') V( x')P' '(x'),

where

(2.12) 0'*"'(x}-y*{ap}e'"+y*{a p)e '"—
)(x )-y~( a,p)—e~"+y~( —a, p)e—

(2.19)

+ d
g f(x ) +igf—'(x )y3 G i((x,x')

ay

V(x }= —gg'(x )y sy

and G(x,x') is the Green's function satisfying

(2.13) because of the symmetry of (2.17) under p~ —p. Need-
less to say, y+(a, p)'=y+( —a, —p) and y+(a, —p)'
=y+( —a,p}. With these solutions the general solution
to (2.11)can be constructed as

y(0)(x) y y [( A s )(
—a)y( —a)(x)

= —5 P(x —x'), (2.14)

with the same boundary condition as f( '(x). Thus, to
this order, the spinor solution to the Dirac equation is
given by

s=1,2 2

+(As )(+a)y(+a)(x)]us

Multiplied by the operator oey +iy dIdx+gf(x), it
becomes the general solution to the unperturbed (CP-
conserving} Dirac equation:

g(x)=e ' " crey +iy +gf(x)0 . 3

dx crey +iy gf(x) $0(x }=0—.0 ~ 3

dx
(2.20)

X [1{(0)(x)+y("(x ) ]—gg(x)y, l{(0)(x)

(2.15}
I

As shown in the Appendix, the coefficients (A' )' ' are
not needed to construct the general go(x). Eventually,
the general solution to (2.20) is given by

$0(x)= trey +iy +gf(x } g( '(x)0 - 3

dX

=g {A,' '[ere/'+ '(x }u' +(/+a)P': '{x)u+ ]+A,'+'[ere/'+ '(x)u' +(g—a)P'+ '(x }u'+ ]], (2.21)

where
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y(0)(x) —y [ g ( —
)y(

—a)(x )+ g (+ )y(+n)(x ) ]u s

This hatt( '(x) is the starting point of the DWBA. Any boundary condition can be implemented by choosing A,( ' and

A,'+ ' appropriately.
Now we impose a boundary condition to specify the scattering state. %'e consider a state in which the incident wave

coming from x = —cc (symmetric phase) is reflected in part at the bubble wall, while at x =+ n() only the transmitted
wave exists [12]. This situation is achieved by setting A,' '=0 for o =+ and A,'+'=0 for o = —,respectively, in (2.21}
and (2.22). The Green s function (2.14) which matches this boundary condition can be explicitly constructed from the
functions P++ '(x) and (()'+ '(x ), as shown in the Appendix. Thus we are ready to compute the currents in the asymp-
totic regions.

D. Wave function and currents in the asymptotic regions

According to (2.15), the perturbed wave can be obtained once the unperturbed wave functions and the Green's func-
tion are known. %e present only the results, while the derivations are given in the Appendix. The asymptotic forms of
the wave function are

[q(x )
]trans —e

—(sr+ax y g (+) (g ) 1+( )s~ ~ I + ( } s~+a 1

S

+e 1+(—}' I, —g(+ tc )+—g( —no ) u', c /+a 1

2' 2

r (
—a»-)

[1((x ) +]'"'=e '"+~"y+(a,P) g A,'+' —P 1+(—)' I2+ —g( —ct) ) u+
e 2a y+(a P) 2

(2.23)

p r ( ap-)—
+e 1+(—)'~ I2 ——g( —cc ) u'

e 2a y+(aP) 2

p y (
—a, —p)

[g( x). ]""=e '" ~"y (a, —P)g A,(+) P 1+(—)'~ — I,+ g( — )—
e 2a y+(a, —P) 2

p y (
—a, —p)

+e 1+(—)'~ — I2 ——g( —co ) u'
e 2a y+(a, —P) 2

and

[y(X ) ]asym —[y(X) ]asym~

t

(2.24)

where

I, = J dx g'(x )P': '(x)P'++ '(x),

I,= J dxg'(x)P(+'(x)(})(+ '(x) .
(2.25)

(j„' )'"'=2e'~y+(a, P) ~'

)s+1~ g(a)~2[1 ( )s+lginc]

3
)

fl — 2&2~r ( p)~2

From these, the asymptotic forms of the vector and
axial-vector currents de6ned by

JP=@r"0 J~ =tty"rsvp

are (see the Appendix)

2

( )t =2E+E2 g2 g g (n)

2

(
~ 3 )trans 2&2 ~ ( }s+1 g (n)

Jw, ~ s

g(~) [1+a( )s+lgrefl]

(J~,.)""=2e'I y+(a. P)I'—
2

)s+1 g(rr) [1+ ( )s+lgrefl]
S

where the corrections by the CP violation are

y ( —ap)
I2+ c.c.r, (a,

2(j3.)'"'=2e2ly+(a, p)12' &,") [1—a( —) +)S'" ],
(2.26}

grefl y ( —a, —p)
I2+c.c.

2V'e' —g2 y+(a, —P)

(2.27)
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The chiral currents defined by The transmission and reflection coeScients for the
chiral fermion are defined as

are

Ji= (J—P JA } 8= (—JP+JA)
TL( L(R) (JL(R ),

1

(J 3 )trans &(+&2 g2 &}I
A ( tr )

I

2

+e( V e —g' +e ) I
A (2

R~L(R) (JL(R), tr ) I ~ a 0J(JR,tr )
2

(O) ~ 3 refl ~ 3 inc
L(R)~R(L) (JR(L), c) ~(JL(R),tr }

(2.32)

(J3 )trans &(+&2 g2+&) I A (n) I2

+e(+e2 —g' —e)l A(2 'I2,

If we denote R (T)=R'+'(T'+') and R(T)=R' '(T' '),
we have

(j )'"'=2e ly+(a, P)l IA2 'I (I+(r5t"')

(j )'nc=2e ly~(a, p)l I
A()~) I2(1 o5inc)

(j )" = —2e Iy (a, —P}l IA( )I (1+o5" )

(J.', }""=-2"Iy+«, —p}l'I A" I'(I-a5""}.

(2.28)

With these currents one can compute the transmission
and reflection coeScients T' ' and R' ', respectively.
From the vector currents, we have

(
.3 )trans

(j3 }lac

TR L TL R

R R L L

inc

2e y+(a, P) 2

e' —e' —e
( 1 +51nc)

2el y+(a, P) I'

2 e2++e (1+5inc}
2el y+(a, P) I'

y+(a, —p)

y+ a,

+e inc
TL L =TR R,

I

(1—5'"'),
2e y+(a, P)

(2.33)

y ( )s+1 A(n)

=T"' 1+ '
2

A (tr)

(
3 )refl

R (O) JVsO

(j3 )inc

inc

(2.29)

y +(a, —p)
'y+ a~

Among these, the following unitarity relations hold:

TL, -L+TL, R+RL

I+TR R+RR L=& .
(2.34)

2

y ( )s+1 A (e)

=R"' 1+ '
A( )

&(5inc+5refl)

The difference between a particle and its antiparticle in
the coeScients is, for example,

hR =RR L
—RR

—2R (0)(5inc+ 5refl) 2T(0)5inc (2.35)

where

(o) a 1

p ly.(,p}l'
'

(2.30}

T' '+R' '=T' +R' '=1 . (2.31)

The differences in these coeScients between the particle
and the antiparticle would vanish, even in the presence of
CP-violation, upon being averaged over the initial mixed
states such as the thermal equilibrium. This is because
the difference has a factor g, ( —)'+'I A,' 'I /g, I A,'

in which A,' ' is representation dependent and can take
any value in a mixed state. Therefore it is expected that
there would be no net (vectorlike) particle current
through the bubble wall.

y+(a, —p)
y+(a, p)

are those in the absence of the perturbation. As shown in
the Appendix, the unitarity holds:

where we used 5'"'+R' '5""=0 (see the Appendix}. 5'"'
is defined in (2.27) and T' ' in (2.30). This suggests that
we would have nonzero chiral-fermion current through
the bubble wall even for the initial state in the equilibri-
um, if there is a nontrivial CP violation [By "non.trivial, "
we mean that g(x) is not proportional to f (x}, since in
that case the CP angle can be removed by a constant bi-
unitary transformation of the fermions or, explicitly,
5'"'=5""=0,as shown in the Appendix. ] Equation (2.35)
shows that we can calculate numerically the important
quantity b,R as a simple integral [Eq. (2.25)] if analytic
solutions to the CP-conserving Dirac equation are
known. The formula (2.35) is given in the first-order ap-
proximation with respect to g(x). The next-order correc-
tion would be, however, O(g ).

III. APPLICATION
TO THE KINK-TYPE BUBBLEWALL

The prescription developed in the previous section is
applicable to the situation where the bubble formed in
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the first-order phase transition is moving with a constant
velocity. The profile and motion of such a bubble would
be determined by analyzing the detail of dynamics of the
phase transition. Far from the wall, deep in the sym-
metric and/or broken phase, the Higgs field is expected
to have the vanishing and/or nonvanishing vacuum ex-
pectation value in the uniform vacuum. [This corre-
sponds to the condition (2.9).] The simplest situation may
be that the profile has the shape of the kink. This case,
without CP violation, was studied in Ref. [10]. Now we

apply our procedure to that case and evaluate the
transmission and reflection coeScients.

Following [10],we suppose that the bubble-wall profile
is given by

1+tanhx
2

Then the solutions to the Klein-Gordon-type Eq. (2.17)
are expressed in terms of the hypergeometric functions

y(+a)(y) y a/2( 1 y )P/2P
—a+p+ g

—a+pkg+ 1, , ct+ 1~/

(3.2)

y(
—a)( ) a/2(1 )P/ZF a P 0 + 1

a P 4 a+1. [y(+a)( ]e

where we have changed the variable as y =(1—tanhx )/2
[13]. These have the desired asymptotic behaviors as
(2.18) and (2.19). Now y+(a, p) are explicitly given by

r( —a+1)r(-P)
y~(a, p) =

r(( —a —Pkg)/2)l (( —a —P+ g)/2+ 1)

(3.3)

The transmission and reflection coeScients without the
CP violation are

y[0)— sin( m a )sin( n p)
sin[(n. /2)(a+P+ g) )sin[(m. /2)(a+P —g) ]

sin[(m /2)(a —P+g) ]sin[( m /2)( a —P—g) ]
sin[(m /2)(a+P+g)]sin[(m/2)(a+P —g)]

(3 4)

The effects of the CP violation can be evaluated once
the functional form of g(x) is given. One of the quanti-
ties of concern may be the difference in the reflection

and/or transmission coefficients between the particle and
antiparticle. As mentioned above, the vectorlike one
would vanish after averaging over the initial mixed state.
However, the chiral one, which is given by (2.35), would
survive even for the initial state in the equilibrium.

We have performed numerical calculations for various

g (x). Here we present the results for two cases in which
g'(x) has different behaviors around the wall surface: i.e.,
g(x)=48f(x) and g(x)=68(dldx)f(x), where 68
characterizes the magnitude of CP violation. %'e carried
out the numerical calculation of hA at several energies.
The a dependence of b,R /b, 8 for g(x) =68f(x ) is sum-
marized in Table I. The E' dependence of i)),R/b, 8 is
plotted in Figs. 1 and 2 for the two choices of g(x) for
several a. From these, we find the following.

(1) The sign of b,R varies not only with a, but also with
the functional form of g (x).

In particular, we note that the global form of the curve
in Figs. 1 and 2 suddenly changes as a function of the in-
verse thickness a.

(2) The absolute value of hR rapidly decreases as the

TABLE I. Values of hR /40 for various energies of the incident particle and thickness of the bubble
wall. We have chosen g(x)=b8f(x)'. The numerical values of E and a are given in the unit of mo,
the height of the wall.

1.001 1.5 2.0 5.0

0.1

0.2
0.4
0.6
0.8
1.0
2.0
4.0

10.0
20.0
40.0

0.152
0.387
0.277

—1.14
—0.640
—0.474
—0.244
—0.189
—0.174
—0.172
—0.172

2.32X 10
9.12X 10
5.98 x 10-'
8.71 X 10

—1.00X 10
—3.12x 10-'
—1.61x 10-'
—2.44x10-'
—2.69X 10
—2.73 x10-'
—2.74x10-'

—2.42 X 10
4.96 X 10
1.07 X 10

—2.06 X 10
—6.50x 10-'
—3. 19X 10
—4.28 X 10
—1.00 X 10
—1.29 X 10
—1.33 X 10
—1 ~ 34X 10

—2.42X10 ~o

4.69X 10
—6.23 X 10
—1.15x10 "
—1 ~ 37X10
—6.94x 10-'
—1.14x 10-'
—3.02 x 10-'
—1.32x 10-'
—1.74x 10-'
—1.87x 10-'
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IV. CONCLUSIONS

0.6

0.4

0.2
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~ rererer rrrr ~ e ~ ~
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~e
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e

e

-04 -:

1.02 1.04 1.06 1.0&

FIG. 1. hR /L8 as a function of E for various a in the case
where g(x)=58f(x) . The numerical values of E and a are
given in the unit of mo, the height of the wall.

energy of the incident particle increases, as expected.
This is obvious from physical consideration and from the
expression for 5'"' in (2.27).

(3) We also confirm the expectation [14] that the degree
of the decrease of ~hR

~
is weakened as a increases; i.e.,

the bubble wall becomes thinner.
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FIG. 2. hR /68 as a function of E for various a in the case
where g(x)=58(dldx)f(x). The numerical values of E and
a are given in the unit of mo, the height of the wall.

We have developed a general prescription to solve the
Dirac equation in a bubble-wall background with CP
violation to the first order of CP violation. The transmis-
sion and reflection coefficients are obtained to this order
in terms of the functions of the energy, the mass in the
broken phase, and the wall thickness, which are extracted
from the continuation of the solution to the second-order
Klein-Gordon-like equation. It is found, irrespective of
the detailed form of the bubble-wall profile, that for the
vectorlike current the effect of CP violation will be can-
celed when averaged over an initial mixed state such as
thermal equilibrium and that the net chiral current
through the bubble wall would remain. Since the relation
between the chemical potentials of the left- and right-
handed quarks in the symmetric phase is different from
that in the broken phase [15], this would leave a net
baryon number after the phase transition.

We have applied our prescription to the simple exam-
ple in which the profile of the bubble wall is of the kink
type. This situation may be realized when the phase tran-
sition proceeds slowly with degenerate minima of the free
energy. Some numerical results are obtained in the case
where the CP-violating angle has a nontrivial spatial
dependence. hR, which measures the difference in the
refection probabilities between the chiral fermion and an-
tifermion, is evaluated for various energies and wall
thickness, assuming some simple forms of g (x).

In order to determine whether and how much the net
baryon number is left after the electroweak phase transi-
tion, we must know the detailed dynamics of the phase
transition and particle distribution within both phases di-
vided by the bubble wall. The baryon number left in the
broken phase may be calculated by taking the average of
the net fermion current through the bubble wall from the
symmetric to the broken phase and vice versa. Since the
distribution function of the chiral fermions in the broken
phase is different from that in the symmetric phase, as
shown from the equilibrium analysis in [15], a quantity
such as hR will play an important role in estimating the
baryon asymmetry of the Universe. As far as the cases
we have studied are concerned, hR shows no drastic
enhancement. On the other hand, even the sign of AR
varies with the inverse wall thickness a, as well as with
the functional form of g(x). Thus whether the baryon or
antibaryon is left after the electroweak phase transition
would be a subtle probleme We would like to remark that
~b.8~ does not need to be extremely small insofar as
~g(+00)~ is small enough to satisfy the experimental
bound. In fact, in our second example [g(x ) =b 8f '(x ) ],
g(+~) vanishes irrespective of the value of 68. This
fact might allow us to build a model which produces
sufficient baryon number by taking a suitable form of
g (x).

We are evaluating reflection and transmission
coefficients for the massive fermion incident from the
broken-phase region and the amount of net CP violation
by a moving bubble wall [16]. Our results will be useful
to the scenario of the electroweak baryogenesis, which as-
sumes the first-order phase transition. Although much
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should be revealed about the mechanism of CI' violation
and the dynamics of the phase transition, such as the or-
der of it and the motion of the bubble wall when it is of
first order, the baryon asymmetry of the Universe might
be generated in the electroweak phase transition era if
there is sufficient baryon-number current through the
bubble wall.

APPENDIX

From the behavior of the left-hand side at x —+ ~,
D+P(++ )(x)-((+a)e

it follows that c'+ '=/+a and c'+ '=0. That is,

(+ +gf(x) P'+ '(x)=(/+a)P'+ '(x),d
dx

+ +gf(x) P&+ )(x)=()+a)(t'~ '(x) .6f

(A3)

In this appendix we shall derive some equations used in
the text.

Unperturbed wave function

The second-order unperturbed Eq. (2.17) is written as

In the Dirac representation, the y matrices are represent-
ed as

1 0
0—03 0 ' ~ 0 —1

D~D+ct)+(x)=e P+(x), (Al)
and the eigenspinors of y satisfying

where (()(x) is either P'+ '(x) or (()( '(x) and the opera-
tor D+ is defined by y u + =+iu + (s =1,2)

are expressed as

(A4)

D+ =—+ +gf(x) .
8x

(A2)
0

Multiplying (Al) by D+, we have

( D+D ~ )[D~ (t (++ )(x ) ]=e [Dg ((tg+ '(x ) ] .

Since the independent solutions to this equation are
(t)'++ '(x) and P+ '(x), D+P(++~)(x) should be expressed
as

D y(+a)( )
—(+~)y(+n)( )+ (

—a)y( —a)( )

0 1 1

Qg= — 0
2 =

2 —' 2
(A5)

0 Wl

Then y u+=u'+. The general solution to the unper-
turbed Dirac Eq. (2.20) is obtained by multiplying
the most general t(r( '(x ) by the operator cr e'y

+iy (d ldx )+gf(x):

$0(x)= crey +iy +gf(x) g( '(x)0 ~ 3

=g '(A'+ )' )[ere/(+ '(x)u' +((+a)(t(: '(x)u'+ ]+(A' )' [ )reef :("( )x 'u++(g —a)P(+ '(x)u' ]
S

+(3'+ )(+ '[ere/(++ '(x)u' +((—a)P(+ '(x)u'+ ]

+( ~' )(+'[any(+'(x )u++(g+a)y(++'(x )u' ] (A6)

Here

ere/(+ '(x)u' +(/+a)P': '(x)u+

eral q(0)(x) is

y(0)( ) y [ g (
—a)y( —a)(x )+ g (+&)y(+a)(x)]u& (A7)

crag': '(x)u++(g —a)P(+ '(x)u'

are not independent of each other, since the determinant
of the coefficients of their components vanishes:

crE /+a
g —a ere

=0.

Similarly, the functions in the last two lines of (A6) are
not independent. Hence the most general solution is
given by putting ( A ' )' '= ( A ' )'+ '=0; the most gen-

The wave function satisfying the boundary condition
which we adopted in the text is obtained by putting
W'-"'=0.

S

Green's function

Here we construct the Green's function satisfying

2

e +
z g f(x) +iaaf'(x)y — 6 &(x,x')

8x ay

G p(x, x')= —5 p(x —x'), (AS)
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with the boundary condition discussed in the text. Put

+gf'(x) g—f(x) +e6
coax

and introduce a unitary matrix defined by

U=(u+u' u+u ) .

Then, since 6 is diagonaHzed as

(A9)

the Green's function is given by

G(x,x'}=U

'G+(x, x')

G (x,x')

G+ (x,x')

G (x,x')

where G~(x,x'}satisfies

b, +G+(x,x') = —5(x —x'), (Alo)

6f
W(u~, v+ )=u~(x ) v~(x ) —v~(x ) u +(x)=const.

dx dx

(A12)

with the same boundary condition as G(x,x'). One can
construct the Green's function G+(x,x') following the
standard method [11]. If u+(x) [v+(x)] are solutions to
b+u+(x)=0 [6+v+(x)=0] and satisfy the boundary
condition imposed on G(x,x') at x —+ —oo [x—++ oo],
then the Green's function is expressed as

For the boundary condition in question, there exists only
right-moving waves at x —+ 00, so that we should
choose, for each cr,

v+(x }=/(++ '(x),
while we take the most general choice for u +(x ):

u, (x)=y(;-)(x)+c( )y(,+-)(x)

G+(x,x') =
u+(x)v+(x') (x &x'),

W(u+, v+)
(Al 1)

u+(x')v+(x ) (x' & x ),
W u+, v+

where c+' is some constant. [The overall normalization
is irrelevant, since the product of u and U is divided by
the Wronskian in (Al 1).] By use of the asymptotic forms
of P+(x) at x —+ oo,

W(u~, v~)=2oa .

where W(u, v ) is the Wronskian defined by Thus the Green's function G+(x,x') is

G(+ '(x,x') =
[(I)( '(x )+c' 'y'+ '(x )](t)'+ '(x') (x &x')

a

2a
[(I)' '(x')+c' 'y'+ '(x')]y'+ '(x ) (x' &x )

(A13)

DWBA to the first order

y,(x)=y' '(x}+y'"(x), (A14)

where g( '(x} is a solution to the unperturbed equation
with the boundary condition above, that is,

As explained in Sec. II B, the function g,(x) in the an-
satz (2.7) is given by

g")(x)=fd x'G( x, x) V( x)P ('(x') .

Noting that in the Dirac representation,

0 1

1 0

so that

(A16)

y(0)(x) —y g (a)y(+era)(x )u s

and ()(")(x)is

(A15}
p5p up=( ) uy

and V(x) is
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V(x) = —(g'(x )y~y3,

the integrand of (A16) is written as

G(x,x') V(x')|tt' '(x')
= —(6' '(x,x')g'(x'} g ( —)'A' 't}(t'++ '(x')u'

Therefore P" '(x ) is

1('"'(x)= g ( —)'A' 'u' '
[t)(t' '(x)+c' 'p'+ '(x)]I dx'g'(x')p'+ '(x')p'+ '(x')

a X

+P(+ '(x)I dx'g'(x')[P' '(x')+c' 'P'+ '(x')]P(+ '(x') '

and its asymptotic forms are

[g")(x)]+"= e "(I,+c'+'I2) g (
—)'A'+'u'

a
r

[t)(' '(x)] "= I g ( —)'A,'+'u' [y (
—a,P) +c(+ )y (a,P)]e~"+[y (

—a, —P)+c(+)y (a, P)—]ea

for the positive-energy wave, and

[y(1)(x)]+~ 0 e
—ax(I» + ( )I» ) y ( )sA (

—) s

a

[f"'(x)] "=— I2 g (
—)'A,' 'u' '

[y (a,P)+c( 'y ( a,P)]ep"—+ fy (a, —P)+c( 'y (
—a, P)]e—

for the negative-energy wave, where

I, =I dxg'(x)t)))(: )(x)P(++ '(x), I2= I dxg'(x)tI((" )(x)P(++ '(x) .

With these asymptotic forms and those of 1(t( '(x),

[g( '(x)]+"=e "g A,' 'u'+, [g( '(x)] "=g A,' 'u'+[y (+cr ,a8))e~"+y (+o ,aP)e ~—"],

(A17)

we can compute the asymptotic forms of the perturbed wave function using (2.15):

P(x)=e ' " oey +iy +gf(x) [g( )(x)+g"'(x)] i'(x—)y5$( '(x)o (A18}

For the positive-energy wave, we have

]trans —isr+tsx y A(+) 1+( )sg 0 a c(+)I
a

X ((—a) 1+(—)' I) u'++e 1+(—}' I) —«+")g'+a,',g g+ a S

E 2a 2cx

(+) s~ I y ' (+)[f(x ) +]'"'=e '"+~"y+(a,P) g A,'+' 1+(—)' c'+'I2
S +

g p y (
—aP)

X —p 1+( —)' I2 u'+
e 2a y+(a, P)

y ( —a,P)
+e 1+(—)'~ I, —g( —nn ) u*

e 2a y+(a, P)
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py(a, P—)+
[y(x ) ]refl e

—iver p—x
( p) yA (+) 1 ( )rf P ' (~)I

e 2a y+(a, —P)

, S- p y ( a—, P—)
P 1 —( —)' I, u+

e 2a y+(a, —P)

py( —a, —p)+e 1+(—)' — ' I, g(—
e 2a y+(a, —P)

The negative-energy wave is related to the positive one by

(A19)

[1"(x) ]sspB1—[1 (x ) ]Rsgm

When one of the relations (A3),

d +gf(x) P(+ '(x)=((+a)iN)(++ '(x),

is evaluated at x ——00, it produces

py (a,p)e~"—py (a, —p)e ~"=(/+a)[y+(a, p)e~"+y+(a, —p)e ~"]

py (a,p)=((+a)y+(a, p), py (a, —p)= —(/+a)y+(a, —p) .

These relations lead to

p y (a,p) p y {a,—p)
2a 2a y+(a, P) 2a y+(a, —P)

(A20)

Hence all the factors including c(+'Iz in (A19) are the same, so that they are absorbed in the arbitrary coefficients A,'*'
by redefining them as

A,'+' 1+(—)'~ c'+'I~ 1 —
(
—)'~ —g( —~ ) ~ A,'+',

2cx 6' 2

A,
'-' 1+(—)'& c' 'I,' 1+(—-)'&—'g( —

)
2A 2

where the last factor of the left-hand side is put for later convenience. This gives the result (2.23).

Currents and unitarity

Now it is straightforward to calculate the asymptotic forms of the various currents with the wave function (2.23).
The straightforward calculation yields the same result as (2.26) except for (j( )"'"' and (j„)'""',which are

2

(j~ )'""'= 2iea g —A,' ' 1+(—)'0 ~ —g(+ oo )+g( —oo )+ I, +c.c.
Q

2(j„)'""'=2eg( —)' A,' ' 1+(—)'(r~ —g(+oo)+g( —~)+ I, +c.c.
E a

Here one can show that

I, +c.c.=g(+ ~ ) —g( —~ ),+a
2Q

(A21)

so that the result in (2 26) is obtained. Let us prove this equation. Define g(x) =g(x ) —g( —~ ); then, g'(x ) =g (x) and

g( —oo ) =0. Integrating by parts, I& becomes

I, =I dxg'(x)P(: '(x)P'++ '(x)

=g(x)p(: '(x)p(+ '(x)("„—I dxg(x)[p': '(x)p'+'(x)+4' (»4'++'(x)] .
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From (A3), the first derivatives of P+(x) can be written as

P': '(x)= gf—(x)Q': '(x)+(g —a)(I)'+ '(x), P'++ '(x)=gf(x)rt)'++ '(x) —(g—a)P'+ '(x) .

Hence

I, =g(+cr) )
—(g' —a)I 1 xg( x)[lP'++'(x)l —lP+ '(x)l ],

which leads to

p2 2

I, +c.c. = +c.c. g(+ co ) — +c.c. J dx g(x)[lP'++ '(x)l' —l((}' '(x)l']
2' 20! —oo

=g(+ oo ) .

Next we shall examine the unitarity. %ithout the perturbation the unitarity relation

7 (0)+R (0)— (a, — )

p ly+(a, p)l' r+(a, p}
(A22)

immediately follows from the current conservation, which is derived from the Klein-Gordon-type Eq. (2.17) or, in other
words, from the fact that the Wronskian W())))(+ ), P(++ ') is independent of x. Evaluated at x —+ cc and at x ——c(),

the Wronskian is

~'(y(+ ', y(++') =2a=2P(lr+(a, P)l' ly+—(a, —P)l'),

which is nothing but (A22). In the presence of the CP violation, the sum of the transmission and reflection coefficients,

is, from (2.29),

7 (0')+R (cr) —1+ a(ginc+R (0)grefl)

l

g(e)l2

Now we can show that

gine+ R (0)grefl 0 )

so that the unitarity of the perturbed wave holds. This relations is verified as follows. From the definitions

(A23)

5'"'+R ( )5""=~ P
E' 2'

y (
—a,p), , y (

—a, —p)+Z~ ' I +c c.
y+(a, p) y+(a, —p)

Here the term in parentheses is written as

y ( —a,p) y ( —a, —p)

y+(a, p) y+(a, —p)
y+( —a, —p)y ( —a,p)+y+( —a, p)y (

—a, —p) =0,
ly, (a,p)l'

where we have used (A20) to rewrite y in terms of y+ in the numerator.
The transmission and refection coefficients of the chiral fermions are expressed as

T~ L+ Ti „=T' '(1 —5'"'), Tfl L+ Tfl ~ = T' )(I+5'"'),

R =R(o)(1—5'"'—5"fl} R =R' )(1+5'"'+5"")

from which it follows that

T +T +R =1—(5'"'+R' '5" )=1 7- + 7. +R = 1+ (y'nc+R (o)$«fl) = 1

because of (A23}
When g(x) is a linear function of f(x), it is shown that 5'"'=5""=0. This is verified as follows. By use of the

differential Eq. (Al), the integral in which g'(x) is replaced with f '(x) becomes
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QQ 00I:— dx f'(x)$'+ '(x)P'+ '(x)= y(+a)(x) y(+a)(x) y(+a)( ) y(+a)( )
OO dx' ' + dx'

1 d d
2g dx + + dx

—[y—+(a,p)y (a, p—) y—+(a, p—)y (a,p)] .

Then, with the help of (A20),

y ( —a,p) 2pI2= — y (a, —P)

which is purely imaginary, so that 5'"'=0 from the definition in (2.27) and 5""=0 because of (A23).
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