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Exact superpotentials in four dimensions
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Supersymmetric gauge theories in four dimensions can display interesting nonperturbative phenome-
na. Although the superpotential dynamically generated by these phenomena can be highly nontrivial, it
can often be exactly determined. We discuss some general techniques for analyzing the Wilsonian super-
potential and demonstrate them with simple but nontrivial examples.
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I. IN+RODUc~rON

There are three motivations to study supersymmetric
field theories. First, theories with dynamical supersym-
metry breaking can be used to solve the hierarchy prob-
lem. Second, they are relevant to topological field
theories. Finally, they are tractable and can thus be used
as testing grounds for various ideas about the dynamics
of four-dimensional quantum field theories.

In four-dimensional quantum field theory, exact re-
sults, aside from those which follow directly from sym-
metries, are very hard to come by. Supersymmetric
theories, however, are difFerent. The combination of the
holomorphy of the Wilsonian superpotential Wdr with
the symmetries and selection rules provides powerful
constraints. These constraints should be viewed as "kine-
matics. " When combined with approximate dynamical
information about the asymptotic behavior of the super-
potential we can sometimes determine it exactly [1].

In this paper we continue this line of reasoning and ap-
ply it to more complicated systems. Unlike the models
analyzed in Ref. [1],where the 8;s turned out to be rath-
er simple functions, here we find highly nontrivial
efFective superpotentials. These refiect interesting new
nonperturbative effects.

%e will always be interested in the %ilsonian effective
action. If supersymmetry is broken we limit ourselves to
scales above the breaking scale, where supersymmetry is
linearly realized. We will integrate out the massive
modes and focus on the dynamics of the light fields. In
this respect we follow the point of view of Refs. [2,3]. An
alternate approach [4,5] uses an efFective Lagrangian
which also depends on some of the massive fields. %e
discuss generally how to integrate these massive fields
into the low energy theory.

In Sec. II we summarize our techniques. The low ener-

gy superpotential is constrained by the symmetries and
holomorphy as in Ref. [1]. The dynamical analysis can
proceed in two different ways: we can analyze the asymp-
totic behavior of the superpotential in various limits, con-
trol it singularities, and thus completely determine it. Al-
ternatively, we can derive differential equations that the
superpotential satisfies as a function of various coupling
constants and thus solve for it.

In Sec. III we give a brief review of the dynamics of su-

persymmetric QCD. Sections IV and V are devoted to
examples demonstrating our techniques.

In Sec. IV we study an SU(2)i XSU(2)2 gauge theory
with matter fields in the representations Q=(2, 2) and
L; =(1,2) for i =1, . . . , 2n. In terms of the gauge singlet
composites X=Q and V,, =L;L, , we find the superpo-
tentials

2
A5/2g A5/2

1 28'„0=
X

A) V)28'„
XV&2 A2

XPfv8'„2=— k2
A2 A2

where A& and A2 are the scales of the SU(2), and SU(2)2
gauge theories, respectively. Note that for n =2 the fields
V are classically constrained by Pf V=O. However,
quantum mechanically, Pf V is a massive field whose ex-
pectation value satisfies ( Pf V) =A, Az/X . The low en-

ergy effective Lagrangian, after Pf Vis integrated out, is

A',
8'„ (1.2)

The 6 signs in Eqs. (1.1) label distinct low energy
ground states, difFering in the expectation value of a mas-
sive field which is not included in the low energy effective
action. The k sign in the superpotential 8'„2 in (1.1)
corresponds to two different branches of the square root;
they are related by a discrete symmetry of the theory and
therefore describe equivalent physics. On the other hand,
the + sign in the superpotential W„&& in (1.1) labels two
inequivalent (unrelated by a symmetry) low energy
ground states. The low energy theory includes then both
continuous fields and discrete labels. A similar
phenomenon was observed in Ref. [6].

In Sec. V we consider an SO(5)XSU(2) gauge theory
with a matter field in the representation E=(4,2) with or
without two fields L, 2=(1,2). In terms of the gauge
singlet fields X=F and F=I.,I.2, we find the superpo-
tentials to be
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2A4,

QX+2A'
'

(1.3)

A5 ASA2
n=1

II. TECHNIQUES

Our general framework is a supersymmetric field

theory based on a gauge group 9 and matter superfields
P' transforming in representations R; of Q. The tree level

superpotential is

W„ee =g g„X'(P'), (2.1)

where X" are gauge invariant polynomials in the funda-
mental fields. Apart from the tree level couplings g„, we
also have gauge couplings: every simple factor 9, in
9'= g, 9, is characterized by a scale A, .

Our analysis proceeds in several steps.
(I) We first set the tree level superpotential to zero, i.e.,

g„=0. At the classical level there are then "fiat direc-
tions" in field space where all the gauge D terms vanish.
The expectation values of the scalar components of P' in
these classical ground states spontaneously break the
gauge symmetry. We refer to the space of classical
ground states as "the classical moduli space. " Instead of
using the fundamental fields P' as coordinates on this
space we can use gauge invariant combinations X'. The
X' are the light superfields in the leading approximation;
the classical low energy superpotential for them vanishes.
It is sometimes the case that the fields X' are constrained
classically [7]. In this situation, we can represent the
constraint with a Lagrange multiplier in the effective su-
perpotential.

(II) Next we turn on the coupling constants g„and A, ;
i.e., consider the full quantum theory. If it is clear that

with g= —,'h(5 —)'i } and v= —,'(h —h s) .

For W„, we were unable to find a closed form expres-
sion from the parametric solution in (1.3). The sign
choice in W„o in (1.3) is, again, a discrete label in the
low energy theory. The ground states differing by this
sign choice are here related by a symmetry and are thus
physically equivalent.

As is clear from Eqs. (1.1) and (1.3), the superpotentials
are quite complicated. They are generated by a variety of
dynamical mechanisms. For example, the large field
behavior of W„, in (1.1) arises from an infinite sum over
instantons whereas the large field behavior of W„o in
(1.3) arises from an interplay between gaugino condensa-
tion in the two groups and an infinite number of instan-
tons. The dynamics leading to the superpotential gen-
erally depends upon the region of field space considered;
the holomorphic superpotential smoothly interpolates be-
tween them.

We conclude in Sec. VI with an outlook and various
speculations.

= Wd„„(A„X")+W„ (2.2)

i.e., it is linear in the g„s ( Wz„„ includes the Lagrange
multiplier terms for the various constraints that the com-
posite fields X' should satisfy). This is the case in all of
our examples. When this is not the case we conjecture
that it is always possible and natural to redefine the fields

X, as a function of the g, to bring the superpotential to
the form (2.2) {for a related discussion see Ref. [9]}.Now
let us integrate out some field, say X . The resulting su-
perpotential W,~ is obtained by solving

aw„' (&X'))=0ax' (2.3}

some of the fields X"are massive we can either keep them
in our description or look for an effective Lagrangian
after they have been integrated out. The full quantum su-

perpotential W,z is constrained by two kinematic con-
straints [1].

(1) Holomorphy: W,s is a holomorphic function of the
fields X' and the coupling constants g, and A, . Holomor-
phy in the coupling constants follows from thinking
about them as background fields. A related discussion of
holomorphy in coupling constants of various expectation
values may be found in Refs. [5,8].

(2) Symmetries: W,tr is invariant under all the sym-

metries in the problem. If a symmetry is explicitly bro-
ken by the coupling constants we can assign transforma-
tion laws to these constants such that W,tr is invariant
under the combined transformation on the fields X" and
the coupling constants. Anomalous symmetries should
be viewed as explicitly broken. However, by assigning
appropriate transformation laws to the scales A, of the

gauge groups, they also lead to selection rules.
(III) The dynamics enters through the analysis of W,z

at various asymptotic values of its arguments. In Ref. [1]
the weak coupling limit of small g„small A„and large
fields X" was powerful enough to completely determine

W,~. In our new examples these constraints do not
uniquely determine W,s and therefore we also need to
study other limits. Among these limits will be strong
coupling and small fields X". The key fact is that W,s, by
holomorphy, is completely determined by its behavior at
various asymptotics and by its singularities.

A special limit that is often useful is when one of the
matter fields is very heavy. Its mass m is one of the cou-
pling constants g„. When it is large the massive field can
be integrated out. We can do this either in the micro-
scopic gauge theory or in the effective low energy theory.
The first of these yields a new microscopic gauge theory
with fewer matter fields and whose coupling constants, g„
and A„depend on m. The low energy effective superpo-
tential of this theory should be the same as the one ob-
tained by integrating out the appropriate fields in the
efFective Lagrangian of the original theory.

It is often the case that the two kinematic conditions
and the dynamics at small g, constrain the efFective su-

perpotential to be of the form

W,tr= W,~(g, =0)+g g„X"
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for &X & as a function of all the other fields X" (r&0)
and all the coupling constants g„and substituting back
into W,&. Clearly 8',& is not linear in go. To see that it
is linear in all the other g, 's, note that

' (&X'&)+ ', (&X'&)
ag, ag„ag„

=X' for rAO .

This suggests the definition of Wdyp&

W,ir= Wdy„+ g g„X",
r40

(2 4)

(2.5)

which depends on the light fields X" (rAO), the scales A,
and go. An equation similar to (2.4) for r =0 is

a W,ii a Wd„„"" =&x'
ago ag o

(2.6)

A slight generalization of the previous discussion in-

volves the gauge coupling constants. Unlike the g„, our
effective Lagrangians do not involve any field which cou-

ples linearly to the gauge coupling constants. The reason
for this is that the corresponding fields S, = —(W ),
[with this sign the lowest component of S, is +(A,A, ), ] are
always massive and thus do not have to be included in a
low energy %ilsonian effective action. However, by re-

peating the previous discussion with go replaced by

lnA, ', where n, is determined by the one loop P function

[e.g., for SU(N, ) gauge theory with Nf quark flavors in

the fundamental and antifundamental representations,
n =3N, —Nf ], we learn that

a W,ir a Wd„„
S, (2.7)

a lnA,
"'

a lnA,
"'

In deriving (2.7) we are assuming that the effective super-

potential with the S, included is linear in ln A, , as with

the other couplings g„ in (2.5}. This is the case in all our

examples and, as with the other g„, we conjecture that it

is always true.
To summarize, we conjecture that at every scale the su-

perpotential has the form

(1) If we know the expectation values &X & or &S, & as
a function of the other fields and coupling constants we
can use Eq. (2.9) to solve for Wz„„. This leads to
differential equations for the superpotential.

(2) If we know the go dependence of Wd„„at some scale
we can find the expectation value of the massive field

& X & and using this information we can find the superpo-
tential before it has been integrated out (we will refer to
this procedure as "integrating in"). As explained in point
2 above, we can use the "integrating in" procedure to
construct an effective Lagrangian similar to that of Ref.
[4] involving the massive fields S,. However, since the
fields S, are always massive and our effective actions are
Wilsonian, the meaning of such an effective action for the
S, is not clear to us. Its only virtue is that it allows one
to determine the & S, & by their equations of motion.

The third equation in (2.9) allows us to derive the Kon-
ishi anomaly [5]

(
i tree

ay'
—g p';&S, &=0 for every i, (2.10}

(2.11)

Using Eqs. (2.8}and (2.9),

8 Wdy„
gq„'X" " +gp', &S, &=0.

T S

(2.12)

ImPosing the equations of motion aW, ir/ax'(&X "& )=0,
this leads to

(2.13)

where p, '; is the index of the representation of the field P'

under the 9, gauge group. To do this, consider the U(1);
transformation P'~e' P' under which the composite field
X' has charge q„'. This symmetry is broken both by the

coupling constants g, and by the anomaly. However, if

we also assign charge —q,
' to g„and charge p'; to A, ', the

invariance of the superpotential states that

aW, it . aW, ir „aW,irg q„'X' —g q„'g„+gp';A, ' =0 .

W,ir= Wd„„+g g„X', (2.8)

where Wd „depends on the fields X"and on the coupling
constants of the fields X and S, which have been in-

tegrated out such that

which is equivalent to (2.10). Note that (2.12) applies
more generally to off-shell X,.

III. REVIEW OF A SIMPLE EXAMPLE:
SUPERSYMMETRIC QCD

=0 for r&0,
8g„

di'll

Bg
(2.9)

In this section we illustrate some of our basic ideas and
conventions in the context of a well studied example: su-

persymmetric SU(N, } gauge theory with Nf flavors of
matter superfields Q,f and Q' in the representations N,
and N„respectively, of SU(N, ).

dyn

8 lnA, '

These equations can be used in two different ways.

A. Kinematics: symmetries and holomoryhy

The exact %ilsonian effective superpotential for super-
symmetric QCD is completely determined by the sym-
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metrics along with holomorphy. The superpotential can
only depend on the combination of fields
b =—detI/. (Q,/Q' ), the unique gauge singlet which is
also a single under the SU(N/)I XSU(N/}x global flavor
symmetry. For each flavor f there are symmetries
U(1)& and U(1)& which count the superfield Q,I or

f
Q,/, respectively, with charge one and all other fields
with charge zero. In addition there is an R symmetry
U(1)z under which squarks have charge zero, the quark
components of the chiral superfields have charge —1, and
the gauginos have charge +1. The charge conjugate
fields, which make up the antichiral superfields, of course
have the opposite charges under all these symmetries.

Quantum mechanically, one linear combination of the
above U(1} currents is anomalous. Rather than finding
linear combinations for which the anomaly cancels, it is
possible to use the anomaly to find selection rules. Fol-
lowing the spirit of [7], we think of Y=Sm /g +i8,
which is the coupling for S, as a background chiral field.
It is seen that the anomaly in each of the U(1) transfor-
mations can be canceled by combining them with a trans-

3N —N 3N —N
formation of A)v'tv /=p ' /e "'"' (the exponent is

given exactly in our %ilsonian treatment by the one loop
){i function [S]). The charge to be assigned to the scale in
order to cancel the anomaly is related to the charge as-
signments of the quarks P,/ and P'/ and the gauginos A,

by

)=g [q(g,/)+q(g, /)]+2N, q{~)c' f

The exact superpotential must have charge zero under
the 2N& symmetries U(1)& and U(l )& and have chargef f
two (for the lowest component) under the R-symmetry
U(l)z. b has charge one under each of the 2N& U(1)
symmetries and it has zero R charge. Using (3.1).

3N —Nf
A)v ')v also has charge one under each of the 2N/ U{1)
symmetries and it has charge 2(N, NI) under th—e R
symmetry. Therefore, the exact superpotentials is

~exact =a

3N —Nf
N Nf

detff (Q fQ'I )

' 1/(N —Nf )

(3.2)

where a is a constant. For a single gauge group, our use
of the additional symmetry which is broken by the anom-
aly {through an expectation value of A) only gave infor-
mation which could have been obtained anyway by using
dimensional analysis, as was done in Ref. [2]. In the ex-
amples considered in this paper, however, it will be cru-
cial for disentangling effects associated with several gauge
groups.

The superpotential (3.2) only makes sense for N& &N,
[3]:for N&=N, the exponent is infinite and for NI & N,
the determinant is (classically) zero since the rank of
Q,&Q' is then only N, . Therefore for NI &N, the clas-
sical vacuum degeneracy is not removed quantum
mechanically.

For N&&N, —1 the gauge group can be completely
broken by the expectation value of the squarks. For

N&&N, —1, there is always an unbroken SU(N, —NI)
subgroup. The superpotential (3.2) picks up a Z~)vc f
phase under shifting the theta angle by 2n T. his phase la-
bels different, though physically equivalent, vacua of the
theory coming from the spontaneous breaking of a
discrete symmetry (by gaugino condensation) in the low
energy SU(N, N/—) theory.

where e~)v )v ) is a Z~)v )v ) phase and where now
y, f c f

det(Q, J Q' ) is taken only over the N/ flavors in the low
energy theory. The scale A)v )v in Eq. (3.4) of the low

energy theory is related to the scale AN N 1 of the highc' c

energy theory by

N —1
Nc Nf 2Nc + 1

IIf=Nf+1
(3.5)

(here we absorb a possible threshold factor into our
definition of A)v ~ ). Note that, as in (2.6}, we can takec' f
8/8m& of (3.4), using (3.5), to recover the expectation
values of the fields which have been integrated out:
BW, „/8m&=(QIQ }. At this point we can forget
about the massive Savors which have been integrated out;
the superpotential (3.4) is the exact efFective low energy
superpotential for SU(N, ) gauge theory with NI light

B. Dynamics: instantons or gaugino condensation

We now review the dynamics [3] leading to the super-
potential (3.2). In the case where NI =N, —1, the gauge
group is completely broken by the Higgs mechanism and
so instanton methods are reliable. The A dependence of
(3.2} indicates that the superpotential for this case is asso-
ciated with a single instanton in the completely Higgs-
like SU(N, ). An explicit instanton calculation leads to
(3.2) with a nonzero coefficient a [3]. It turns out to be
natural to define the scale AN N 1 so that a =1 in thisc' c

case. To relate this A to, say, AMs requires a detailed in-

stanton calculation. Fortunately, such information is un-
necessary for our purposes.

Having defined our normalization convention for the
case of N, —1 flavors, the constant a in (3.2) can be deter-
mined for all N& & N, by adding mass terms for
N, N& 1 of the—flavo—rs and integrating them out. The
symmetries and holomorphy imply that the exact super-
potential for the theory with the mass terms is

2N +1
AN, N, —1

N —1

W,„„,= /, + g mI Q,/Q'/ . (3.3)
detff (Q fQ } f=N~+)

For energy scales below the m& we integrate out the mas-
sive flavors by solving for them using their equations of
motion obtained from (3.3) and find

' 1/(N —Nf )

N, Nf
Wm~ct =6(N N )(N, NI)—

det(QQ )

(3.4)
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flavors.
For NI &X,—1 the gauge group is not completely bro-

ken along the Bat directions and the dynamics leading to
(3.4} is associated with gaugino condensation in the un-
broken SU(N, N—I) gauge group rather than with in-
stantons [3). The low-energy SU(N, —NI) pure Yang-
Mills theory has a scale A(N N ) 0 which is related to the

c f '

scale of the high-energy theory by matching the running
coupling constant at the scale, set by the order parameter
6, where the theory becomes broken by the Higgs mecha-
nism:

into the definition of A(N N ) p. The superpotential (3.4)
c f '

is thus given by

(3.7)

where A(N N ) 0 is to be thought of as a function of 6
and the high-energy scale A~ (v . Using (2.7) in the lowc' f
energy SU(N, NI ) —theory [so n =3(N, NI—)], (3.7)
gives the gaugino condensate

3N, —Nf
N, Nf

- 3(N, —Nf)
(N —Nf ),0

SU N —Nf) ~(N —Nf) (N —N 0 ' (3.8)

at E=(h) (3.6)

As before, we absorb the order one threshold coefficient

Indeed, superpotential (3.4) with A(v ~ held fixed is ex-
c' f

actly equivalent to the low-energy superpotential, ob-
tained by inserting (3.8) into the Wess-Zumino (WZ) term

1/2Nf

Wwz= Jd 8[3(N~ N~) (3N~ N~)]in ~SU(N —N ) ~
c f

& ~sv(w, ( ) =
&nr AN, ,o (3.10)

with a normalization consistent with (3.8). Using the
equations of motion from (3.4) plus the added tree-level
mass terms, we also find

needed in the low energy theory to correct the P function
as in (3.6), with A(z N ( o held fixed. Note that by start-

ing with the instanton-induced superpotential for
NJ =N, —1, which is calculated to be nonvanishing, and
integrating out some of the matter fields, we have derived
gaugino condensation [10].

The ZN z phase in (3.8) and (3.4) labels the physical-
c f

ly equivalent vacua of SU(N, —NI) Yang-Mills theory
associated with the spontaneous breaking of the

Zz(z N ( chiral symmetry left unbroken by instantons
C f

down to Zz by the gaugino condensate. The vacua are
physically equivalent because they are related by a
discrete, nonanomalous, R symmetry. In particular, the
discrete Z2(N N ) R symmetry under which the squarks

c f
are neutral is anomaly free. The terms in (3.4) are invari-
ant under this symmetry but, because the superpotential
has R-charge 2, the superpotential picks up a Z(v

c f
phase under the symmetry. Therefore, vacua difFering by
the phase in (3.4) are physically equivalent.

Finally note that if we add mass terms for all of the
flavors and integrate them out, (2.7), along with the equa-
tions of motion and the matching condition on the scales,
gives

ZN6—BB=A ', Pf V=A for N, =2, (3.12)

where for N, =2 the constraint is in terms of the SU(2)
singlet fields V&s=g,&g, ge", which transforms as a 6
under the SU(4)„ flavor symmetry.

For N&=N, +1, the quantum moduli space of vacua
coincides with the classical space [7]. The singularity at
the origin in this case is resolved by having extra light
fields come down.

C. Continuous moduli spaces of inequivalent vacua for N& ~ N,

%e can describe the theories with E& N, by starting
with the theory with N&=N, —1, "integrating in" very
massive and thus decoupled matter, and then reducing
the mass terms until the extra matter appears in the low

energy theory. The central feature of the theories with

XI +N, is that, even at the nonperturbative level, they
have a moduli space of vacua.

For example, when NI =N, we see from Eq. (3.4) that
no invariant superpotential exists. Thus there is a contin-
uum of inequivalent vacua corresponding to diferent
squark expectation values subject to the D-flatness condi-
tions. As discussed in Ref. [7], this moduli space of va-

cua differs from the classical space of D-flat vacua. Clas-
sically the singlets iI(=det&&(Q,IQ' }, B=detg, I, and
B=detg'~ satisfy the constraint b=BB. However, at
the quantum level this is modified (by instantons) to

nlf(g fg) IE+Ai((o (3.11)
IV. ILLUSTRATIVE EXAMPLES BASED

ON SU{2&&X SU{2&z GAU&E THEORY

The equality in~(g,&g' ) =(S), seen from (3.10) and
(3.11), is also a consequence of the Konishi anomaly; this
provides a nontrivial check on our normalization conven-
tions.

In this section we illustrate some of our basic points
and techniques in the context of a class of very simple ex-
amples based on SU(2), XSU(2)2 gauge theory.
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A',
W=

A4,

XY
(4.1)

Note that for A&~0 the superpotential goes to zero,
which is the proper behavior for the SU(2)z gauge theory
with four doublets, as discussed in the previous section.

In order to determine the function f (u =Az/XY) we
first study the limit u ~0. A term in f proportional to
u" has a A, and Az dependence characteristic of an
SU(2), XSU(2)z effect with instanton charges (l, n). Be-
cause the gauge group is completely broken we only ex-
pect contributions associated with instantons, i.e., only
terms proportional to u" with n integer. For small u, f
thus has the expansion

n=0
a„u" . (4.2)

If we set Az=O, the theory is SU(2) with one flavor (two
doublets) and (3.4) gives ao =1. The term a, u in (4.2) has
the quantum numbers of a (1,1) instanton; it can be un-
derstood as follows. For X» Y the gauge group is bro-
ken to the diagonal subgroup SU(2)D. An instanton in
SU(2)n then gives, according to (3.4), a superpotential
Aiz/Y. Matching the running coupling constant of the
low energy theory, gn =g, +gz, to the high energy
ones at E=X'~, the scales of the low and high energy
theories are related by Aiba=A, Az/X (there is no finite
threshold correction here in our conventions for the
scales) and thus a, = 1 in (4.2).

To further determine the function f we temporarily set
A, =O. Then SU(2)z couples to four doublets and the
model has an SU(4) global symmetry. The massless
modes can be expressed in terms of X=Q, Y=L+L
and two doublets A+ =QL+. Classically, these six fields
are constrained by XY= A+ A . Quantum rnechanical-
ly, this constraint is modified as in (3.12) to

XY—A+ A =A2 . (4.3)

Now we weakly gauge SU(2), . In this limit of Az»A„
the theory is simply SU(2), gauge theory with the two
doublets A + and the two singlets X and Y, satisfying the
constraint (4.3). For nonzero A+ A the SU(2)i gauge
symmetry is thus completely broken and the light fields
are only X and Y. There is an unbroken gauge symmetry
at A+ A =0 which, because of SU(2)z instanton effects
in (4.3), is at XY=Az rather than the classical value of

A. Matter content Q =(2,2) and L g =(1,2)

There are two independent classical D-flat directions,
which can be labeled by X=Q = ,—'Q—&Qrse re and
Y=L +L& e ~. At generic values of Xand Ythe gauge
group is completely broken. At the classical level, for
X=0 SU(2), is unbroken and for Y=O there is an unbro-
ken diagonal SU(2)D.

The symmetries U(1)&, U(1}L, and U(1)x, with

charges assigned as in (3.1) to the scales A, and Az of
SU(2), and SU(2)z, determine the superpotential to be of
the form

zero. Therefore, the superpotential can only be singular
at u =1. In particular, since the gauge symmetry is bro-
ken at XY=O the superpotential cannot be singular
there; the function f (u) in (4.1) must thus satisfy
lim„„f(u) ~ O(1/u).

The singularity of the superpotential at u =1 is given
by (3.4) for SU(2), with the two doublets Az. We thus
have in the limit

A', » A+, A»A2»

A)p A)p

A+A XY—A,
'

(4.4)

(4.5)

where p, is a dimensionful normalization factor, needed
because A + are not canonically normalized doublets but,
rather, composites. Comparing with (4.1), it is seen that

p = Yg (u) for some function g and thus

A, Yg(u}

XY—A4,
(4.6)

By holomorphy, the superpotential must be of the form
(4.6) for any values of the fields X and Y and scales A,
and A2. Finally, we note that the holomorphic function

g (u) cannot have any singularities in the entire complex
u plane (including infinity); therefore, g (u) must be a con-
stant. Comparing with the known first term in (4.2) at
u =0, we find g (u)=1. Therefore, the exact superpoten-
tial for this theory is

A)Y

XY—A2
(4.7)

The superpotential (4.7) exactly sums the multi-instanton
expansion (4.2).

We can rederive the superpotential (4.7) as the solution
of a differential equation by adding mass terms for the
matter fields and integrating them out. Adding mass
terms to the superpotential (4.1), holomorphy and the
symmetries determine the exact superpotential to be

A' A'
W= f +mxX+m„Y (4.8)

4m~A~

A',

A
(Sz ) =ez(mxmrAz)' fz

m~A4,

(S, ) =e, (m A')'"f
(4.9)

[note that as in Eq. (2.5), this is linear in the couplings
mx and m„]. Below the scales set by the masses we can
integrate out the matter fields to obtain pure glue
SU(2},XSU(2)z Yang-Mills theory. The gaugino con-
densates in this low-energy theory can be expressed in
terms of the high-energy couplings by taking account of
the charges of these couplings under the U(1)&, U(1)L
and U(1)ii symmetries and the fact that the condensates
must have charge zero under the U(1) symmetries and
charge two under U(1)n. This gives



1098 K. INTRILIGATOR, R. G. LEIGH, AND N. SEIBERG 50

where ff, &=+1 and f, and f2 are functions. In the lim-
its of large mz or small Az, we can reliably determine
(Si) by using (3.10) in the low-energy SU(2)i Yang-
Mills theory and matching the low-energy scale to our
high-energy scales; this gives a condensate as in (4.9) with

f, =1. Since the argument of f, is independent of m»,
the function f, = 1 identically. Similarly, we can reliably
determine that the condensate ( S2 ) must be independent
of Ai in the limit of large m» and hence f2 must be a
constant. The limit where mz is also large determines
fr=1. Thus

(S, & =ff, (m»A', )'"

A5i
8'=S, ln + 1 +SzlnS2 S2

2

Si+Sq S2
+(S,+Si)ln X Y

+S2ln . (4.13}

B. Matter content Q =(2,2)

The first two terms in (4.13) can be associated purely with
SU(2), and SU(2)2, respectively. The third term is asso-
ciated with the matter field Q =(2,2) and the fourth is as-
sociated with the L~. The expression {4.13} naturally
generalizes, as we will discuss.

and (4.10) If we add a mass term to (4.7),

A', Ai
m»= [f(u)+uf'(u)], m„= usaf'(u),

X A24

a comparison of (4.10) and (4.11) with the superpotential
(4.8) gives difFerential equations for the function f (u }:

f =(f+uf') and f'=(f+uf'),
which uniquely determine f=1/(1 —u) and thus, in

agreement with (4.7},

AiY8'=
XY—A',

This agreement can be used as further evidence for the
assumption (2.7).

We also note that we can take our result (4.7) and "in-
tegrate in" the massive Selds Si and S2. The superpoten-
tial which satisfies (2.9} and which gives {4.7) upon in-

tegrating out Si and S2 is

A 51 A42

8'=Si ln + 1 +S2ln
1

Si+S2
+Si ln +S2ln

i

Si +S2
S2

(4.12)

The first two terms would be expected following the
analysis of [4] for the SU(2}, and SU(2)2 theories. The
second two terms indicate the "interaction" between the
two gauge groups. A suggestive way to write (4.12) is as

(S, & =ff,(m, m„A', )'" .

We can use these equations together with the (assumed)
relations of Eq. (2.9):

1 2

where, as in Sec. II, ( W) means the superpotential (4.8}
with X and Y integrated out, i.e., replaced with the solu-
tions (X) and ( Y) to their equations of motion, ob-
tained from (4.8) as functions of the couplings. By vary-

ing mx and mz we can change the expectation values and
thereby determine the function f for all values of its ar-
gument. In particular, writing the X and Y equations of
motion obtained from (4.8) as

AiY
+m) Y,

XY—A2
(4.14)

we can integrate out Lz to obtain the superpotential for
an SU(2), XSU(2)z theory with matter content Q =(2,2}.
Y is easily integrated out; there are two solutions to its
equation of motion leading to

jef=—[A', k2( A, A, )'~2 +A2 ]

(A'"*A'"Pi 2

X
(4.15)

where the low-energy scale is matched to the high-energy
one by A, =(mrAz)'~ . So the superpotential for the
SU(2},XSU(2)2 theory with matter content Q=(2, 2) is
(4.15); having integrated out L+, we can forget about the
original high-energy theory and thus drop the tilde on Ai.

The terms in (4.15) have a clear interpretation. Along
the fiat direction labeled by X, the SU(2)i XSU(2)2 gauge
symmetry is broken by the Higgs mechanism down to a
diagonally embedded SU(2)D. An instanton in the bro-
ken SU(2), gives, aeeording to (3.4), A5/X. Likewise, an
instanton in the broken SU(2}2 gives Az/X. Finally, gau-

gino condensation in the unbroken SU(2}n gives the su-

perpotential (3.7) [with the factor of N, N& in (3.7) r—e-

placed with 2 because the unbroken gauge group is SU(2}]
which is %2Ai, =+2A', ~2Az~2/X. These are precisely the
terms found in our exact answer (4.15).

The 2 sign in {4.15) is a discrete label which labels two

physically inequivalent ground states of the theory. This
sign comes from the fact that the low energy theory has a

Z4 symmetry which is spontaneously broken down to Z2

by gaugino condensation in the low energy SU(2)D..
(~~)SU(2) +AD +Ai A2 /X. Beeaus«f th«on-

D

tributions of SU(2), and SU(2)z instantons to the super-

potential, the sign choice involved in gaugino condensa-
tion in SU(2)ii label physically inequivalent vacua. For
example, the potential energy as a function of I difFers

for the two sign choices in (4.15}. Just as the SU(N, )

theories with XI~X, have a continuum of physically
inequivalent vacua, this theory has a discrete choice of
physically inequivalent vacua.

To father illuminate these two inequivalent vacua we

add a mass term for the Seld X and consider integrating it
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out. Using the symmetries, the gaugino condensates in
the low-energy SU(2)i XSU(2)z Yang-Mills theory are of
the form

W=S& ln +1 +S ln +1
S~) S2

&S, ) =e,mxi
"A',"f, A~

A)

S)+Sq
+(Si+S2)ln (4.19)

and

(S )=em' A f A)

A2

(4.16) corresponding to terms associated with SU(2}i, SU(2)z,
and the matter field Q.

C. Matter content Q =(2,2) and L; = ( 1,2) for
l 1$ ~ ~ ~ p4

where e, and ez are +1 and f, and f2 are functions. In
the limit of large mx we can reliably compute the con-
densates in (4.16}by using (3.10) in the low energy Yang-
Mills theory and matching the low-energy scale to the
scales of the high-energy theory which includes the mas-
sive field Q; this gives f, =1 andfz= l. Thus, there are
four ground states given by the condensates

&S &=e m'"A'"

The basic gauge singlets are X=Q2 and V; =L,L .
Under the SU(4)F flavor symmetry which rotates the L;,
V," transforms as a 6. Since our superpotential must be
built from SU(4)~ singlets, it can only involve X and Pf
V. Using the U(1)t„U(1)L,and U(1)z symmetries, with

l

the scales A, and A2 assigned charges in accordance with
(3.1), the exact superpotential is determined to be of the
form

and

&S &=e m'"A'"
(4.17)

A, A, A

X PfV
(4.20)

In the pure glue SU(2)i XSU(2)2 theory all four states
would be related by a symmetry. Here, the two states
with e& =@2 are indeed related by the spontaneously bro-
ken Z4 symmetry of SU(2)D. Likewise, the two states
with e&

= —ez are related by this symmetry. On the other
hand, the pair of states with e& =e2 are not related by a
symmetry to the pair of states with e&

= —ez,'they are
physically inequivalent. They difFer because of the in-
teractions with the high energy massive sector. In partic-
ular, the massive field Q has the expectation value
m (X)=e m' A' +e m' A'&)mx ( &p~x

Another way to understand this is the following. In
the low energy theory we can perform independent rota-
tions of the two 8 parameters. The four ground states are
related by 8, —+8;+2m (i.e., A;~e 'A, ). In the full

theory which includes the field Q, the combination 8,+8z
can be rotated away but 8,—82 is physical. Therefore,
the two pairs of states related by simultaneous shifts of
the two theta parameters 8;~8;+2m. (i.e., A;~e 'A;)
are related by a symmetry but if only one of the 8 param-
eters is shifted by 2m inequivalent ground states are inter-
changed.

The low energy space includes both the continuous
field Q and a discrete label Eie2=+1 which determines
the sign in the superpotential.

If we integrate the massive fields S, and Sz into our su-
perpotential (4.15) we obtain

A A
8'=S& 1n + I +$2 ln + l

Pf6U X Pf V+ I V
WsU(2), ,dye

2 I%2
(4.21)

where Pf6 is a Pfaffian over the SU(6} indices, Pf is taken
over the SU(4) indices, I',"—:U; U& e ~, and
I ~ V—:—,

'e' 'I; Vki.
We now gauge SU(2}iC:SU(6)~, labeled by the index

a, keeping A2»A&. Below the scale A2, our spectrum
consists of the 15 fields U with the superpotential (4.21).
The seven composite fields U & and VJ are SU(2),
singlets and the fields U; are four SU(2)i doublets. Thus
this is the situation (3.12) where there is a moduli space
for the scalar components of the U,. with a constraint
which is modified by a single SU(2) i instanton to be

In the limit A2~0 we expect to find a superpotential cor-
responding to f=1, coming from an instanton in SU(2), .
On the other hand, for Ai~0 the theory is SU(2}2 with
six doublets so there is a moduli space of vacua with a
singularity at the origin, corresponding to the fact that
there are extra light fields there [7].

In order to determine the superpotential we begin with
A, =O. The theory is then SU(2}z with the six doublets
(three flavors) Q and L;, where the flavor indices a=1,2
and i=1, . . . , 4. There is a global flavor SU(6)z', the
basic SU(2)z gauge singlet U transforms as the 15 of
SU(6)~. In terms of our original fields, U has the com-
ponents U~=Xe~ii, U~i= VJ, and U;. As in Ref. [7], all
15 fields in U are physical fields in the spectrum. A su-
perpotential is dynamically generated which gives six of
these fields masses along a flat direction:

S)+S2 S)+$2
+S)ln +S2ln

1 2

This, again, can be written in the suggestive form

(4.18)
Pf r=A', A,', (4.22}

where we again define I;~=e~U;U@. The right-hand
side of (4.22) follows from the symmetries up to a func-
tion of u. Inspection of various limits along with holo-
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morphy implies a posteriori that this function must be
unity; for simplicity then we will not retain it in the fol-
lowing. The constraint (4.22) can be implemented by a
superpotential with a I.agrange multiplier field A:

IvsUtg) d &
= 3 (Pf I A]A2) (4.23)

Putting together the SU(2), and SU(2)i contributions
(4.23) and (4.21) to the superpotential we obtain

W= — +A(Pf I' —A, A ) . (4.24)
2

The Pf V equation of motion obtained from (4.25}gives

A', A', A2'
W= and (Pf V) =

X X
(4.26)

Along the fiat direction labeled by an expectation value
for V, the superpotential (4.24) gives masses to the fields

U; which were not in our original list of fields. Thus,
away from V=O, we can integrate the field I out of
(4.24). Upon integrating out A to implement the con-
straint on Pf I, the 1 equation of motion gives

( I' V) =+2 i/ A,Pf V/A2 and (4.24) becomes

A1Pf V
(4.25)

A2 A2

Result (4.26) gives the correct superpotential (3.4) for
SU(2)& with its one ffavor and the correct constraint
(3.12) for PF V in the limit of large X, where the theory is
broken to SU(2)D with AD=A, A2/X . Using holomor-

phy, Eq. (4.24) is thus the exact superpotential for this
theory. The complicated looking dynamics in (4.25)
arises simply from having integrated out the extra fields
inI.

The massive fields S1 and S2 can be integrated in, as in
the previous examples. The result is

8'=S1 ln
A, (X Pf V+I V)

pf r(s, —s, )

A2(si —Si )

Pf V+
(4.27)

&x pfv+r v)= S2 —S1 XPf V,
2 1

S
(pf r)=,x'pf v,

(S, +S2)i

Eq. (4.27}becomes

If we integrate I out of (4.27} using the equations of
motion

A1 A2S2
$V=S1 ln + 1 +S2 ln

1

S1+S2 S1+S2—1 +S1ln +S2ln
1 2

A1 A2=S, ln +1 +S2 ln —1 +(S,+S2}lnS2 S2
S1+S2

X PfV
(4.28)

A1 A1A2f, +mxX+mv V .
X2pf V

(4.29)

Suppose we take V and the mass terms m v to be of the
form

We can rederive the exact superpotential (4.25) by add-
ing mass terms for the 1., and requiring the result to
agree with those of the previous sections upon integrating
out some of the I.;. We thus consider

Below the scale m „we can also integrate out F; the equa-
tion of motion for Fobtained from (4.31) is

' 1/2

X& r) =m, A', a mzA1A2
(4.32)

my

Having integrated out V, this same result must come
from the V equations of motion obtained from (4.29).
The ffavor SU(4)F covariant way to write (4.32) and the
analogous equation for (Z ) is clearly

Yl02 0
zol 0'2

m yl CT2 0

mzl cr2
(4.30)

X( V) =[AiPf mi, +(A,AiPf mv)' ]
1/2 I

mv
(4.33)

1
+m&X+m& Y .

mzA2

XY

(4.31}

with mz & mz. At the scale mz we integrate out Z. %e
should then obtain the superpotential (4.14) in the low en-

ergy theory with only two I.;. Rewriting the scales there
in terms of our high-energy scales here using the match-
ing condition at mz, (4.14) becomes

X( V) =A, uf'(u) 1

mv

We know that (4.33) and (4.34) must agree. Taking the
Pfaffian of (4.33) and (4.34) gives

A2pf mv3
' 1/2

1

(4.34)

On the other hand, the V equation of motion obtained
from (4.29}is
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and physically equivalent branches of the square root
(As/X)' in (5.1). We can thus take the first sign choice
in (5.2) to be positive. The relative sign choice between
the first two terms is a discrete label, associated with mas-
sive fields, which is needed in the low energy theory to
specify the ground state. As we will see, it is related to a
spontaneously broken discrete symmetry.

To further examine the function f, let us turn off As
for the moment and go to the region of strong SU(2) cou-
pling. The basic SU(2) singlet combinations,
V; =F;„F,e, form a 6 of SU(4)z. When SO(5) is
gauged, we decompose this 6 as VJ =E, +—,'X"J,", where

X is as defined above, J is the SO(5) singlet mentioned
above, and E, satisfying TrJE =0, transforms as an SO(5)
vector. The constraint (3.12) yields

'

A,Pf mv3
'

j, /2

+1.
A',

Comparing we get f ' =u ku ~, which gives

f= —u '+2u '~, in agreement with our previous re-
sult (4.25).

Note that the V equation of motion in the theory with
rn„+0 moves V off of the original constraint manifold,
Eq. (4.26), to

A,A2 A2Pf mi5 3 3 '1/2'2

(Pfv =
X' (4.35)

Also, note that if we integrate out X we are left with a
low energy SU(2)x theory with the four doublets L;. The
equation of motion obtained from (4.25) upon integrating
out X gives Pf V=mxA2= A, where A is the scale of the
low energy SU(2)2 theory, in agreement with (3.12).

Pf V=Pf E+—'X =A (5.3)

The vector E breaks SO(5) to an
SO(4)—=SU(2)z XSU(2)a subgroup. This is to be com-
pared with the SU(2)'X SU(2)n, mentioned above, which
is unbroken in the weak coupling regions of field space.
We see from (5.3) that, because of the modified moduli
space associated with SU(2} instantons, SO(5) is unbroken
at the two points X=+2A22rather than at the classical
value of zero. The superpotential (5.1}can thus only be
singular at u =

—,'. In particular, the function f (u) must
satisfy lim„„f(u) ~ O(u '~

) to cancel the singularity
in (5.1) at X=O.

In an SO(5) theory with a single canonically normal-
ized vector v, gaugino condensation in the unbroken
SU(2 }L XSU(2)x leads to a dynamically generated super-
potential

V. EXAMPLES WITH SO{5}XSU{2}SYMMETRY
AND GAUGINO CONDENSATION

A. Matter content F=(4,2)

The gauge singlet combination is X= ,'F,„J'~F—,e"., with

J the SO(5) invariant tensor io& X 1. Along the classical
flat direction labeled by X, the gauge group is broken
down to SU(2)'XSU(2)z where SU(2)'CSO(5) and
SU{2)D is diagonally embedded. Since the gauge group is
not completely broken we expect to find nonperturbative
effects associated with gaugino condensation in the un-
broken gauge groups rather than with instantons.

The discussion of Sec. III generalizes to other gauge
theories very simply: 2N, is replaced in the various for-
mulas with the index of the adjoint representation of the
gauge group and 2Nf is replaced with the sum of the in-
dices of the matter representations. In particular, for
SO(5) with two 4's we replace N, with 3 and Nf with 1.
Using the U(1)+XU(1)z symmetries with (3.1) and its
SO(5) analogue, the superpotential is found to have the
form

W=2(SL ) +2(S„)

2A',
for (S, ) =(S„)

v

0 for (SL ) = —(Sa );
L

(5.4}

the fact that (SL ) and (Sx ) are k —,'As/~v~ is required

by the normalization conventions of Sec. III (the factor —,
'

arises in the matching conditions at v ). Our vector E
difFers from the canonically normalized vector v by some
dimensionful, field-dependent normalization p„; in partic-
ular,

A

X
(5.1)

v = —p Pf E=p ('X A) . — (5.5)

Suppose that near one of the two points of unbroken
SO(5), X=2riAz where sl can be either +1, (SL ) = (Sn ).
Using (5.4) with (5.5}, the superpotential behaves in this
vicinity as

A4,
W(X-2gA2)-

QX —2qA2
(5.6)

Along the flat direction with large X, the low energy
theory is just the unbroken SU(2)'X SU{2)~ Yang-Mills
theory with the field X. As in (3.7) gaugino condensation
in these two Yang-Mills theories gives a superpotential
8'=+2AsU~2~+2AsU~2~ with the signs of the two con-

densates independent and with the scales of the low ener-

gy theories related to the high energy ones by the match-
ing condition, as in (3.6), at the scale X where the theory
becomes broken by the Higgs mechanism:
AsU(2)' As/X' and Asu~z~ -AsA2/X . In the small—

D
u limit, the superpotential is thus given by (5.1) with

f(u)=1212u'~ +O(u} . (5.2)

The overall sign of the superpotential corresponds to two
where we have used the fact that p„-A2 in this regime.
There is a unique holomorphic superpotential with the
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small u and large u asymptotics mentioned above and the
singularity structure of Eq. (5.6):

2A',
W(X, ri) =

QX —2rlA~q

(5.7)

The superpotential (5.7) is thus the exact eff'ective super-
potential for the theory. The phase g appearing in (5.7) is
a discrete label which, comparing with (5.2), is the rela-
tive sign of the SU(2)' and SU(2)n gaugino condensates.

The two choices of ground states labeled by q are phys-
ically equivalent: there is a discrete Zs R symmetry under
which X(8)~—X(e' / 8), which takes
W(X, ri) ~i W( —X,g) = W(X, —t) ). For a given value of

the superpotential (5.7) is singular at the point
X=2gAz of unbroken SO(5) but it is regular at the other
point X=—2riAz of unbroken SO(5). This behavior is

possible because of the two branches in (5.4); if
(SL ) =(Sx ) near X=2riAz, we must have

(SL ) = —(Sx ) near X= —2gAz. The point X=—2riA2
is nevertheless singular, as the normalization p„ofvector
E vanishes at this point.

The exact result presented above can be redrived from
(2.9) by adding a mass term for F. With the mass term,
the exact superpotential is determined by the symmetries
to be

Equations (2.9) give

(S$)=cd(m A )' and (S~)=t)(m A )' (5.10)

with m =1 and g =1. Equations (5.9) and (5.10) must
agree for every mx. Using the equations of motion from
(5.8) to solve for mx, this gives the equations

3
1 f+2—uf', uf'=q[u( ,'f+2u—f') ]'/

(5.11)

which uniquely determine

So indeed

2A4,

(X—2qA,')'" '

5 2

On the other hand, the gaugino condensates in the low-

energy SO(5) XSU(2) pure Yang-Mills theories are given
by (3.10) which, expressed in terms of the original scales
using the matching conditions, are'

X
A4,f u= +mxX .
X

(5.8)

as given in Eq. (5.7).
If we integrate the massive fields S5 and S2 into expres-

sion (5.7) we obtain the superpotential

S5+2S2
+S2ln

5

A4,

z
+(S5+2S2 )ln

S2

S5+2S2

X

A4,
W=S5 ln

2
+2 +S21n z +S51n

S5X X

A,'
=S5 ln

3
+2 +S2ln

S5

(Ss+2Sq)2

S

(5.12)

where in the last expression the first two terms look like
they arise from the SO(5) and SU(2) gauge groups and the
last term from the rnatter field.

B. Matter content E=(4,2) and Ly =(1,2)

A4,—g u=
&x

A45A23

X Y
(5.13)

Consider adding a mass term m~ Y to the superpotential.

Since in the limit A5~0 this becomes SU(2) with six
doublets, this example is similar to that of Sec. IV C. In
particular, we find interesting behavior near the origin,
corresponding to the extra light fields there.

In terms of the gauge singlet combinations of the
superfields X (as above) and Y=L'+L' e„„ the sym-

metries determine the exact superpotential to be of the
form

In the limit of large mass we can integrate out Y to obtain
the model of the previous subsection, a model for which
we know the superpotential. Adding the mass term we
have

A45 A45A238'=,—g +my Y .~'X X'"Y

Actually, the second of these equations has been determined a
posteriori. The symmetries allow the equations in (5.9) to be

multip1ied by holomorphic functions f& and fz of A& /mz 'Az.

The function f, is determined to be one for large mx or for

small Az and is therefore identically one. The function f, is

known to be one for large mz or small A5, i.e., only when its ar-

gument is small. However, the information contained in the

Srst equation is sufBcient for what follows and, indeed, deter-

mines that f2 = 1 identically.
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2 =g+vg
&1—2qv~g'

(5.14)

with g=+1. This equation, along with some regularity
conditions, can be used to determine g(v). We are only
able to provide a parametric solution to (5.14):

Integrating out Y gives

A4,
W= (g+vg'},

X

where u satisfies v g'(v)=mzAz/X . As a function of
Az/X2, with Az=mrAz the scale of the SU(2) theory
below the scale where Y has been integrated out, this su-

perpotential must equal that of the SO(5) XSU(2) theory
with matter field F=(4,2), obtained in Sec. V A. Com-
paring with the result (5.7), g must therefore satisfy

g(u~~)=-,'(-2v) '~' —( —2u) ' '+ (5.17}

Equations for the superpotential equivalent to (5.14)
and (5.15) can be rederived by using (2.9) in the theory
with mass terms added for both X and Y:

A45 A45A23'
g v=,'„' +mxx+m~Y.

X X Y

We require

(5.18)

(5.19)

stanton, which is a (1,1) instanton in the high-energy
theory, gives a superpotential as in (3.4) of AD/Y.
Matching Az to the high energy scales, this gives exactly
the term u in (5.16}. The higher order terms in (5.16) are
associated with more involved dynamics.

We can also expand (5.15}for large u (small h }:

g= —,'h(5 —h ), u= —,'a(h ' h'),— (5.15) 5 2

g=2+u+3v +14u +0(u ) . (5.16}

The first term in (5.16) is exactly what we expect from
gaugino condensation in the SU(2)'CO(5) which remains
unbroken by the Higgs mechanism along the flat direc-
tions. The second term can be understood along the flat
direction with X && Y where the theory is broken down to
an SU(2)D diagonally embedded in SO(5}XSU(2}. The
SU(2}D theory has one light flavor and so an SU(2)n in-

with a'~ =r). The solution g {v) is, then, independent of
the sign choice g.

Consider explaining (5.14) or (5.15) in the region of
small u: g(v)=g„a„u". The nth term has the quantum
numbers to be associated with SO(5)XSU(2) "instan-
tons" with charges [(n+ I)/2, n], where terms with frac-
tional instanton charges are presumably associated with
gaugino condensation. Using (5.14) or (5.15) we find

where the gaugino condensates, expressed in terms of the
scales of the high-energy theory are given by

(S5 ) =co(mxAs)', (S2 ) =e(mxm „Az)' (5.20)

and requiring (5.19} and (5.20) to agree we obtain equa-
tions which may be written as

h —2vg'=h, h =g'(v), (5.21)

where we define 2h =g+Svg'. These equations imply
the parametric solution (5.15).

The massive fields S5 and Sz can be integrated into
this theory yielding

with co =1 and t. =1. Using the equation of motion ob-
tained from (5.18},

A4, X
m = (g+Sug'), m„= v g',2X'"

A,'
O'=S5 ln +2 +Sz

SSX

A,'
=S5 ln +2 +S2

S5

A~S2
ln —1 +Ssln

X Y
+S2ln

S5 S2
r

S5+2S2 S~
+S2ln

A,'
ln

S2
—1 +(S&+2S2)ln

S~+2S2 (S5+2S2)

(5.22)

Integrating S5 and S2 out of (5.22) gives

A4,
W=2(Sq}—(S2) with (S52}= hq2(u), h~=uh5, h5=1+2vh~ . (5.23)

The superpotential {5.23) is seen to be equivalent to
(5.13}, with the parametric equation {5.15) for g with
h5 =h.

VI. CONCLUSIONS

vide powerful tools which can often be used to obtain
highly nontrivial superpotentials exactly.

We have demonstrated the power of these techniques
in a variety of models. Some of our techniques, for exam-

To conclude, some of the nontrivial, nonperturbative
dynamics involved in supersymmetric gauge theories can
be explored by a study of their superpotentials. Sym-
metries, holomorphy, and decoupling of heavy fields pro-

~Again, the second of these equations is determined a pos-
teriori.
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W=g S, ln
G /2

S

+g F,ln
p t

t

Y,(X")
(6.1)

where G, is the index of the adjoint of gauge group 9',
and )u, =g;p';, with p, '; the index of the representation R,'
of the matter field P; in the gauge group 9, . Y,(X") are
polynomials in X which are invariant under all the non-
Abelian global symmetries (e.g., Pf V in the example of
Sec. IV C). F, are linear combinations of the S, satisfying

g,q;(Y, )E, =+,p';S„where q, (Y, ) is the U(1), charge of
Y, and d, =

—,'g;q;( Y, ). The first term in (6.1) can be in-

terpreted as arising from the gauge sector and the second
term is from the matter fields. It is easy to check that
(6.1) is invariant under all the global symmetries, includ-
ing the anomalous ones, and leads to the Konishi anoma-
ly, Eq. (2.10). Clearly, we do not have a proof of Eq.
(6.1). However, given that it was observed to be satisfied
in a variety of examples, we conjecture that it is true un-
der some wide range of circumstances, thus generalizing
the effective Lagrangians of Ref. [4].

It should be noted that Eq. (6.1) is sometimes of limited

pie, adding mass terms to decouple fields, are particular
to theories with matter fields in real representations of
the gauge group. Others are more general.

We have discussed the unusual procedure of "integrat-
ing in"—adding massive fields to the low energy theory.
Usually, such a procedure is ambiguous because there are
many theories with a massive field leading to the same
low energy theory. With the assumption that the theory
with the massive field is linear in its source the ambiguity
is resolved. In all of our examples this assumption was
true.

Using this assumption we could also integrate in the
fields S,. We noticed that in all our examples the result-
ing superpotential is of the form

(3G, —p, )/2

use. In some models it is valid but only if more fields X"
than those which are obvious from the classical flat direc-
tions are included. Also, symmetry considerations might
not be powerful enough to determine the polynomials Y,
and F, . In these cases, Eq. (6.1) is still correct but addi-
tional dynamical information, along the lines presented in
this paper, is necessary to obtain the correct superpoten-
tial.

Several of the phenomena which we have observed and
the tools which we have used are similar to those which
have been encountered in two-dimensional S=2 super-
symmetric field theories. For example, our superpoten-
tials are sometimes given by an infinite sum over instan-
tons similar to the Yukawa couplings in Calabi-Yau
compactifications. One of the techniques which allowed
us to perform the sum is the use of differential equations.
These are somewhat reminiscent of the difFerential equa-
tion of Ref. [11]and the tt ' equations of Ref. [12]. Also,
the fact that we can "integrate in" fields is similar to the
situation in 2D gravity coupling to minimal model matter
where the Korteweg-de Vries (KdV) equation allows one
to "low up" the renormalization group trajectory. Since
all these two-dimensional phenomena are related to an
underlying topological field theory, it is natural to conjec-
ture that our exact results also have topological interpre-
tations.

Although our techniques rely crucially on supersym-
metry we hope that the exact results we obtain will be
useful in gaining general insight concerning the dynamics
of four-dimensional gauge theories. Finally, it is worth
mentioning that exact results about the superpotentials of
supersymmetric gauge theories are also essential for
finding a viable model of dynamical supersymmetry
breaking.
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