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We study by nonperturbative techniques a vector and axial-vector theory characterized by a parame-
ter which interpolates between pure vector and chiral Schwinger models. The main results are two

ranges in the space of parameters which exhibit acceptable solutions. In the first range we find a free
massive and a free massless bosonic excitation and interacting left-right fermions endowed with asymp-
totic states, which feel however a long range interaction. In the second range the massless bosonic exci-
tation is a negative norm state which can be consistently expunged from the "physical" Hilbert space;
fermions are confined. An intriguing feature of our model occurs in the first range where we find that
fermionic correlators scale at both short and long distances, but with difFerent critical exponents. The
infrared limit in the fermonic sector is nothing but a dynamically generated massless Thirring model.

PACS number(s): 11.15.Tk, 11.30.Rd

I. INTRODUCTION

Quantum field theories in 1 space and 1 time dimen-
sions have been intensively studied in recent years owing
to their peculiarity of being exactly solvable both by func-
tional and by operatorial techniques. From a practical
point of view they find interesting applications in string
models, while behaving as useful theoretical laboratories
in which many features, present also in higher dimension-
al theories, can be directly tested. In addition two-
dimensional models possess a quite peculiar infrared
structure on their own.

Historically the first two-dimensional model was pro-
posed by Thirring [1], describing a pure fermionic
current-current interaction. The interest suddenly in-
creased 4 years later, when Schwinger [2] was able to ob-
tain an exact solution for two-dimensional electrodynam-
ics with massless spinors. This model is so rich in in-
teresting and surprising features, such as, e.g., dynamical
generation of a mass for the vector field, fermion
confinement, etc., that, after 30 years, it is still the subject
of several investigations.

Chiral generalizations of this model were studied by
Hagen [3] and, more recently by Jackiw and Rajaraman
[4). The latter authors draw very important conclusions
concerning theories with "anomalies, " i.e., the oc-
currence of symmetry breakings by quantum effects.
They were able to show that, taking advantage of the ar-
bitrariness in the {nonperturbative) regularization of the
fermionic determinant, it was possible to recover a uni-
tary theory even in the presence of a gauge anomaly.

The literature on the subject is so huge that it is impos-
sible to refer it adequately; we just quote the book by Ab-
dalla, Abdalla, and Rothe [5] where many references can
be found.

In this paper we study in two-dimensional space with a
trivial topology a family of theories which interpolate be-
tween vector and chiral Schwinger models according to a
parameter r, which tunes the ratio of the axial vector to
vector coupling. Our treatment will therefore depend on
two parameters: r and a, a being the constant involved in
the regularization of the fermionic determinant.

In Sec. II we obtain, by means of a functional ap-
proach, the correlation functions for bosons, fermions,
and fermionic composite operators. We find two allowed
ranges for the parameters r and a. The first range was
also partially studied in a similar context in [6,7]. In this
range the bosonic sector consists of two "physical" quan-
ta, a free massive and a free massless excitation. The fer-
mionic sector is much more interesting: both left and
right spinors exhibit a propagator decreasing at very
large distances, indicating the presence of asymptotic
states which however feel the long-range interaction
mediated by the massless boson.

The solution interpolates between two conformal in-
variant theories at small and large distances, respectively,
with different critical exponents. This very interesting
feature of our model is under investigation and the results
will be reported in a forthcoming paper.

For r =0 one recovers the vector Schwinger model; for
r =+1 one gets the chiral model, where, in particular,
one of the fermions is free.

0556-2821/94/50(2)/1077(15)/$06. 00 50 1077 1994 The American Physical Society



1078 A. BASSETIO, L. GRIGUOLO, AND P. ZANCA 50

The second range is characterized in the bosonic sector
by a "physical" massive excitation and by a massless neg-
ative norm state ("ghost"). Both quanta are free; one can
define a stable Hilbert space of states in which the
"ghost" does not appear. However no asymptotic states
for fermions are available in this case; their correlation
function increases with distance, giving rise to a
confinement phenomenon.

All those features are confirmed and further elucidated
in subsequent sections: in Sec. III the bosonic sector is
investigated by means of operators which are canonically
quantized according to a Dirac brackets formalism [8];
the structure of Hilbert space of states is discussed. Sec-
tion IV deals with the fermionic sector: fermionic opera-
tors are explicitly constructed, quantized, and correlation
functions are examined, also in connection with the
relevant equations of motion. We also discuss their
behavior under symmetries and related charges.

In Sec. V we show that the fermionic correlation func-
tions of our model at long distances exactly become those
of a massless Thirring model, which is the conformal in-
variant infrared limit of our theory. This deep relation is
present in the expression of operator fields and charges.

Section VI contains final conclusions, while some tech-
nical details are deferred to the Appendixes. Obviously
our method works as we eventually deal with infraparti-
cles; for more general theories with a nontrivial S matrix,
one should possibly resort to algebraic techniques.

will be quantized in this section following the path-
integral method. In (2.1) F„„is the usual field tensor, A„
the vector potential, and g a massless spinor. The quan-
tity r is a real parameter interpolating between the vector
(r =0) and the chiral (r =El) Schwinger models. Our
notation is

goo= g&i =1~ & = &oi=1 ~

(2.2)

o; being the usual Pauli matrices.
The classical Lagrangian (2.1}is invariant under the lo-

cal transformations

g'(x)= exp[ie(1+ry )A(x)]g(x),

A„'(x)= A„(x)+B„A .
(2.3)

(2.4)

where JV is a normalization constant and

However, as is well known, it is impossible to make the
fermionic functional measure simultaneously invariant
under vector and axial vector gauge transformations; as a
consequence, for rAO the quantum theory will exhibit
anomalies.

The Green function generating functional is

W[J„,ri, ri]=IVf2)(A„,P, P) exp i f (X+X,}d x

II. THE PATH-INTEGRAL FORMULATION
X, =J„A"+qg+ Qadi, (2.5)

The model, characterized by the classical Lagrangian

,'F„„F&"+P—i g—/+ ethyl'QA „+rely"y QA„(2.1)

J„,g, and g being vector and spinor sources, respective-
ly.

The integration over the fermionic degrees of freedom
can be performed, leading to the expression

W[J„,g, ri]=&f2)(A„,P)exp i fd x J,si A„,P) exp i fd x J„A" exp i f d2x d~—y g( x)S( xy;A„)ri(y)

(2.6)

where

FF""+ A—A "+—8 $8"P1 „ae 1

P 2~ IJ 2

(2.7)

values of the parameters r and a. In this sector the
effective Lagrangian is quadratic in the fields; this means
an essentially free (although nonlocal) theory.

First functionally integrating over P and then over A„,
we easily obtain

P being a scalar field we have introduced in order to have
a local X,tr and a the subtraction parameter reflecting the
mell-known regularization ambiguity of the fermionic
determinant [4].

The quantity S(x,y; A„) in (2.6) is the fermionic prop-
agator in the presence of the potential A„, which will be
computed later on by using standard decoupling tech-
niques.

For the moment we let the sources q and g vanish and
consider the bosonic sector of the model for different

W[J„,O, O]= exp ——f d x J"(K ')„g" (2.g)

where

(2.9)

and, consequently,

2 e 1+rK„„=g„„Q+ (1+a) — 1+ B„B,
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(K ')„„=D—„„

1

2 gPv 2

(a r—)

2

U+ (1+r ) ~~7T p v

0

where in the last equality noncovariant "contact terms"
have been disregarded. They are related to the usual am-
biguity a8'ecting the time-ordered product definition.

In the limit a=~r, r ~~, er =a=fixe, (2.11) be-
comes

m =—er= —c,
2 + 2 2 + 2

'IT 'lT
(2.16)

+," —'(B„a„+a,a„)r2 —ao (2.10)

We have introduced the quantity

e a (1+a r)—
'IT a —

p

(2.11)

which is to be interpreted as a dynamically generated
mass in the theory; D„„has a pole there —(k

m—+ie) ', with causal prescription, as usual. We
note that D„„exhibits also a pole at k =0.

Equations (2.10) and (2.11) generalize the well-known
results of the vector and chiral Schwinger models. As a
matter of fact, setting first r =0 and then a =0 we recov-
er for m the value e /m. of the (gauge invariant version
of the) vector Schwinger model. The kinetic term K&,
becomes a projection operator

K„„(a=O, r =0}=(0+m ) g„„— (2.12}

8 a
m

7T a 1
(2.13)

To avoid tachyons we must require a &1. Gauge in-
variance is definitely lost, and (2.10) becomes

1 1 m 2@+12+0+m a —1 e

which can only be inverted after imposing a gauge fixing.
In other words the limit r =0, a =0 in (2.10) is singular,
as it should, as gauge invariance is indeed recovered.

When r =+1 we obtain the two equivalent formula-
tions of the chiral Schwinger model; (2.11)becomes

a value which resembles the Schwinger's mass. However
the presence of the axial anomaly prevents a trivial
decoupling of the vector interaction and the parameter ~
is related to the arbitrariness in the choice of coboun-
daries. To recover gauge invariance we should choose
~=1, which however can only be done after the limit

—+ ix).

In order to further clarify this point, let us go back to
(2.7) and take the limit r ~ ao, er =a= fixed. If a is kept
finite we get

(2.17}

(1) a)r
( 2 } 0 & a & r 1 or r 1&—a &0, — (2.18)

for the paraineters (a, r). Only the first range has been
considered so far in the literature, to our knowledge.

By taking in (2.10) the residue at the pole k =m, one
gets

which is neither equivalent to the Schwinger model nor is
gauge invariant. We can instead consider the limit in
which ae =~a, is fixed; in this way a mass is radiatively
generated. If a%1, gauge invariance is broken and the
kinetic term in (2.9) can be inverted, leading to (2.16).
When ~= 1 gauge invariance is recovered and the expres-
sion in (2.9) becomes a projection operator. In order to
obtain the Schwinger's propagator a gauge fixing must be
introduced. This is the reason why the limit a~1 in
(2.16) can be performed only after the limit r2~ ao has
been taken.

Going back to the general expression (2.11) we remark
that the condition m & 0, which is necessary to avoid the
presence of tachyons in the theory, allows two ranges:

3„a,+3,a„+
a —1 D

(2.14) ResD„.lk2 — 2 2 ~„(k),1
Ivk =m 2

(2.19)

The limit a~1 is singular in (2.13). Nevertheless a
definite expression can be obtained for the propagator

(2.15)

T„being a positive semidefinite degenerate quadratic
form in k„, involving the parameters (a, r). One eigenval-
ue vanishes, corresponding to a decoupling of the would-
be related excitation, the other is positive and can be in-
terpreted in both ranges as the presence of a vector parti-
cle with a rest mass given by the positive square root of
(2.11) and positive residue at the pole in agreement with
the unitary condition. This state decouples in the limit
a =r . There is also a massless degree of freedom with

ResD„, l„2 = [(1+r )k&k„r(k„k„+k„k )]�lk-~P~ =0 2 (1+ 2) P ~ 8 ~ ~ P k =0' (2.20)
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One can easily realize that again the quadratic form at
the numerator is positive semidefinite for any value of r.
The poles at k =m and k =0 exhaust the singularities
of D„,.

Let us consider the situation in the two ranges of pa-
rameters. The first range does not deserve particular
comments at this stage. No ghost is present at k =0, as
one eigenvalue of the residue matrix vanishes and the
other is positive, corresponding to a "physical" excita-
tion. The second range does entail no news concerning
the state with mass m. The situation is different however
when considering the pole at k =0. We have indeed a
negative residue in this case corresponding to a "ghost"
excitation (particle with a negative probability). The
theory can be accepted only if this excitation can be con-
sistently excluded from a positive norm Hilbert space of
states, which is stable under time evolution. This point
will be reconsidered when we shall solve the model in the
framework of a canonical quantization.

To draw definite conclusions from this path-integral
approach, it is worth considering at this stage the fer-
mionic sector. The bosonic world is rather dull indeed,
consisting only of free excitations.

We go back to the general expression (2.6) in which fer-

mionic sources are on. %e have now to consider the fer-
mionic propagator in the field A „,which obeys the equa-
tion

[irl+e(1 ry—') A ]S(x,y; A„)=5 (x —y), (2.21)

with causal boundary conditions. Let us also introduce
the free propagator SD,

iso(x) =5 (x),
with the solution

(2.22)

d k k';k„ 1 'Ypx"

(2m) k +ie 2n x2 ie' (2.23)

the following change of variables in (2.4),

f= exp[ie(a+@ P+rP+ray~)]y,

(2.24)

(2.25)

realizes the decoupling of the fermions, leading to the ex-
pression for the "left" propagator (see Appendix A):

If we remember that any vector in two dimensions can
be written as a sum of a gradient and a curl part,

S~(x —y) = fQ( Q, p)S~(x,y; A „)exp i f d z X,s( A &, p)

2

D(x —y, m)9+1—r
a+1—r

lK r-
a (a r')—

=So(x —y)ZL exP —— z»[m [ (x y) +i&](
1 (1 r)—
4 a(a+1 —r )

(2.26)

e
—ikxd k

D, „(x,m)= —(A. )'
(2m) k —m +ie

1 co
X'V' —x'

2m

2l

(4m )" K, (m+ —x +ie),

where m =mer /2, D is the scalar Feynman propagator: D:Do, with—

(2.27)

y being the Euler-Mascheroni constant. For further de-
velopments it is useful to consider 2' dimensions and to
introduce a mass parameter A, to balance dimensions. Zl
is a (dimensionally regularized) ultraviolet renormaliza-
tion constant for the fermion wave function

. m(r —1)
ZI = exp i D& (O, m)

a —r
(2.28)

The "right" propagator can be obtained from (2.26)
simply by replacing SD with SD and changing the sign of
the parameter r.

The Fourier transform in the momentum space of Eq.
(2.26) cannot be obtained in closed form; however it ex-
hibits the singularities related to the thresholds at p =0
and p =(nm), n =1,2, 3, . . . .

First of all, we notice that for r =1 the "left" fermion
is free. The same happens to the "right" fermion when

with

1 (1 r)—
4 a —r 2

(2.30)

and CD a suitable constant. %e remark that the ultra-
violet behavior of the left fermion propagator can be
directly obtained from the ultraviolet renormalization
constant

I

r = —1. Moreover we notice from (2.26) that the long-
range interaction completely decouples for r =1. As a
consequence the interacting fermion (for instance, the
"right" one for r =1) asymptotically behaves like a free
particle.

In general, at small values of x, the propagator S has
the behavior

S —C x+( x+ie)—0
x ~0
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1 8 (1—r)
y~

= lim —iL lnZL
i 2 M, 4(a —rz)

(2.31)

S — C„x+( x—+i e)
~—oo2

where

(2.32)

1 (1 r)—B=—
4 a(a+1 r}— (2.33)

and C another constant.
We shall see in Sec. V that (2.32) exactly coincides with

the fermionic propagator of the massless Thirring model.
In the first range (a )r ), both A and B are positive.

The propagator decreases at infinity indicating the possi-
ble existence of asymptotic states for fermions, which
however feel the long-range interaction mediated by the
massless excitation which is present in the bosonic spec-
trum. The situation in the second range is much more in-

triguing. Here both A and B are negative. Moreover

(2a +1 r)—
0

4a(a+1 r)— (2.34)

and, of course, it coincides with the one of the explicit
solution (2.26). It can be obtained from the renormaliza-
tion group equation in the ultraviolet limit in which the
mass-dependent term is disregarded.

For large values of x we get instead

S (x)=N [g(x)f(x)], (2.35)

where N means the finite part, after divergences have
been (dimensionally) regularized and renormalized. By
repeating standard techniques, it is not difficult to get the
expression

Z-i
(OiT[S(x)S(0)]i0)= —

2 i R(x), (2.36)
2'ir (x lc)

where

leading to a propagator which increases when x ~—~.
We interpret this phenomenon as a sign of confinement.
We recall indeed that gauge invariance is broken and
therefore the fermion propagator is endowed of a direct
physical meaning. The unphysical massless bosonic exci-
tation, which occurs in this region of parameters, pro-
duces an antiscreening effect of a long-range type. Never-
theless no asymptotic freedom is expected ( A %0}.

All this analysis will be confirmed and reinterpreted in
a deeper way when following a canonical procedure.

Propagators are not suitable to discuss the limiting
case a =r =0 (vector Schwinger model) in which gauge
invariance is restored. There is however another interest-
ing quantity which can be easily discussed in a path-
integral approach. Let us introduce the scalar fermion
composite operator

1 —T%'(x)= exp 4i m
— [D (x, m) —D, „(0,m) ]+ [D, „(0,0)—D, „(x,0) ] (2.37)

(a r)(a r—+ 1) — a r+1—
and

f 2
Z= exp 4im D, „(O,m)

0
(2.38)

Dimensional regularization is understood.
Let us now discuss the quantity Z 'R, which represents the deviation from the free theory result

1 rZ R= exp Ko(m'}l x+i E)—+ ln[m ( x+i E)]-
(a —r )(a r+1)— Q T +1

(2.39)

For small values of x we get

(2.41)

z 4' —c,( x'+ie) ""—' (2.40)
x ~0

whereas, for large negative x,
z-%' — c ( 'x +i~)"—"""' "'+-"-

2
oo

X ~00

Co, C„being suitable constant quantities. Again the ul-
traviolet behavior can be recovered from the anomalous
dimension related to Z.

In the first range (a ) r ) we have a singular behavior
at short distances [negative exponent in (2.40)] and, since—1+(1 r)l(a r+1)(0—, a d—ecreasing behavior of
the correlation function at infinity. %'e interpret this
phenomenon as the existence of a long-range interaction
mediated by the massless bosonic excitation. If r =1 we

see from (2.36) and (2.41) that the correlation function of
the composite operator decreases at infinity as in the free
theory. We know indeed that, in this case, one of the fer-
mions with a definite chirality is free and the other one
has only a short-range interaction, as the long range
massless excitation decouples in this case.

In the second range, both exponents —1 —r l(a r)—
and —1+(1—r }l(a r+1) are positiv—e. The correla-
tion decreases at short distances and increases when
x ~—00. This is again a sign of confinement. In the
correlation function for the S operator we can take first
the limit r ~0 and then a —+0, thereby recovering the re-
sult we expect in the gauge invariant Schwinger model.
We obtain a correlation function which goes to a con-
stant at infinity, as expected, since fermions are confined
in that model. We defer the discussion concerning
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currents and the related charges to the canonical treat-
ment in the sequel.

We end this section by remarking about the nontrivial
behavior of this model under a scale transformation. We
notice that conformal invariance is recovered both in the
ultraviolet and in the infrared limit, with di8'erent scale
coefficients.

III. OPKRATORIAI. APPROACH:
THK BOSONIC SECTOR

In this section we canonically implement the quantum
dynamics of the model described by the effective La-
grangian (2.7) using a Dirac-brackets formalism [8]. Ac-
tually, this procedure only concerns the bosonic sector of
the theory (2.1); nevertheless the scalar degrees of free-
dom will appear as the "building blocks" in the explicit
construction of a fermionic operator solving the equa-
tions of motion derived from (2.1). The possibility of
constructing fermionic operators in terms of bosonic ones

(bosonization) is a well-known property of the two-

dimensional world [9] and it turns out to be essential in

our solution and interpretation of the model.
From the Lagrangian (2.7) we obtain the momenta

canonically conjugate to the coordinates A, A
' and P

(we call e /m. =e ):

0) ——Hp=0,

II& =Fp

IIy=aof PrAo eA i

(3.2!

where 0, is the primary constraint. The usual total

Hamiltonian is

H =Hp+ x ] x nj x (3.4)

with the introduction of the Lagrange multiplier g, and

the expression

A.2

Hp x 2~&+ ~~p ~~+ —,'~y+ —,
'

~
+ Ap r —a + —,'e a+1 3, —~r

e(a&0) Ao+&&AoiIy+eA i 11y+e rAo A i ] (3.5)

derived from (2.7) by a Legendre transformation. Requiring that the primary constraint persists in time, we find the

secondary constraint

Q2(x ') =—aiIIi —e (r —a) Ao+eaiP erII& erA i
—=0 . — (3.6)

No new constraint arises for aWr: the Poisson brackets

{Q,(x'), Q2(y')] =e (r —a)5(x' —y') (3.7)

do not vanish and hence the condition Q2(x ') =0 only determines the Lagrange multiplier gi(x '): we are in presence of

a system with second class constraints. The discussion of the limiting case a =r is deferred to Appendix B.
Following the standard procedure we introduce the Dirac brackets, derived from (3.7),

{Q(x'),P(y')]D = {Q(x'), P(y')] — Jdz'[ —{Q(x'),Qi(z')] {Qi(z'),P(y')]1

e (r a)—
+ {Q(x'),Q2(z')} {Qi(z'),P(y')] ], (3.8)

leading to the canonical structure (we report only the nonzero brackets)

{ A, (x'), II,(y')]D=5(x' —y'), {Ao(x'), A, (y')]D= — a &5(x' —y'),1

e (r —a)
1

{p(x '), 11~(y '
) ] D

=5(x ' —y ' ), {A o(x ' ), II&(y '
) ] D

= a,5(x ' —y
' ),

~2( 2 a) x

{Ao(x'), II,(y')]D = — 5(x' —y'), {Ao(x'), P(y') ]D = — 5(x' —y'),
r —a e(r a)—

In the Dirac-Bargmann formalism, the equations of motion can be written as

{g~Hred ]D ~n =0 ~

(3.9)

g being any function of canonical variables. H„z is obtained from Hp, by expressing Ap as the solution of the con-

straint 02=0:
2 2 2

1~2+ 1 a ~2+ 1(a ~)2a+1 —r + 1 za(a+1 —r ) A2 ~a+1 r-
red J x 1 2 a —r 2 a —r2 2 a r

a r2 ~ 2 ~/2 a r2 e(a —r )

1 r r r
xa,ya, lI, +—,a, l1,11,—,A, a, 11,—, , a,yn,

a —r a r a r
(3.1 1)
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d„I'""= ea—A "+er B"P e3"P-,
Og=reB„A"—e3~A" .

The most general solution of these equations is

(3.12a)

(3.12b)

A"=— r
, a — , 3~o(a r)—

ea (1+a r) — ea (1+a r)—

with

+ (ra" 3")h—,1

ea

1 o+h,
(1+a —r }

(3.13a)

(3.13b)

(0+m )o =0,
Clh =0,

(3.14)

(3.15)

The quantization is now performed by taking the con-
straints as operatorial equations, identifying Dirac brack-
ets with equal time (ET) commutators and using a
symmetrical ordering in the product of operators.

We remark that the breaking of gauge invariance ap-
pears in the canonical treatment. of the effective theory
(2.7) as a change of the constraint structure: they belong
to a second-class system rejecting the absence of a local
symmetry.

Using (3.10), the Heisenberg equations are easily ob-
tained and they are completely equivalent to the
Lagrange equations derived from (2.7), which was not to
be "apriori" expected:

h+(x) 4 q„,) =0, (3.20)

which however possesses a nonlocal character with
respect to A„. This condition is stable under time evolu-

tion, because of the free character of h. Obviously (3.20)
selects the physical operators of the theory: in other
words it imposes a restriction on the operators represent-
ing the fermionic sector, as we will see in the next section.

Now we try to discuss some limiting situations on the
parameters a and r, but the case a =r that involves a
doubling of the constraints and is deferred to Appendix
B.

The commutation relations (3.19) are singular in the
limit a =r 1; neverth—eless, if we come back to equa-
tions of motion (3.12) and we put a =r —1, we can solve
for A„and P without the occurrence of any singularity.
The solution is

In the first one (a) r ) the commutation relations

(3.16b) and (3.19) are physical, so that o and h generate a
Fock space with a positive defined metric. We remark
that, from a rigorous point of view, the positivity of the
massless sector is achieved only after a Krein extension of
the original Fock topology derived from (3.13b) [10]; the
realization of such nontrivial extension is also essential in

order to prove the existence of the operators that, in the
next section, we will construct to describe the fermionic
degrees of freedom of the theory.

In the other range (0&a & r 1 or r—2 1&a —&0) h is

a "ghost, " having the negative sign in its commutation
relations. We can define a physical Hilbert space impos-
ing the subsidiary condition

[o(x), o (y) ]ET=0,
m[o(x),o(y)]ET=i 2

5(x' —y'),

(3.16a)

(3.16b)

and m given by (2.11); o and h describe the bosonic de-

grees of freedom of the theory. In order to show the
equivalence with the path-integral results, we are left
with computing their equal-time commutation relations,
which in turn will exhibit their effective independence
and will provide us with the unitarity conditions.

From the identification cr =e II& we get

1 1
A =e—(3 —rB )o — 3 oP ~( 2 1) P

+ —3„h+ B„h,
e " e(r2 —1)

P=e (1 r) —o+h—,
1

0
where

Oo =Oh =0

(3.21)

(3.22)

(3.23)

where we have used the Heisenberg equation for II,:

II&= —e aA, +erB&$—eBOP . (3.17)

Equation (3.13b) gives the remaining commutation re-
lations:

[h (x),o (y) ]ET=0,

[h (x),o (y) ]ET=0,

[h (x},h (y)]ET=0,

[h(x), h(y)]ET=i 5(x' —y') .
1+a —r

(3.18a)

(3.18b)

(3.19a)

(3.19b)

In particular Eqs. (3.18) show the independence of
massive and massless degrees of freedom. The request of
the absence of tachyons from the spectrum forces the pa-
rameters a and r to range in the two regions (2.18).

Oo =0,
Oh~=0, (ra„—3„)h;=0,

while

(3.24)

0/=0 . (3.25)

and 1/0 is the inverse of the d'Alembert operator.
Clearly the relation among A„, P, and o is not local (due
to the presence of an integral operator) and the theory
seems to lose its local character. The other limiting case
is a =0 (rWO): this limit corresponds to a "would-be"
gauge invariant regularization of the theory, and it can be
performed starting from the second interval of parame-
ters. The mass vanishes and we recognize a situation
similar to the one in the case a =r —1:

1 1—A"=e—8"o —e—8"o+h"0 0 1
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Again the properties of the theory are not transparent,
due to the nonlocal relation with the basic degrees of
freedom. The situation is reminiscent of the chiral
Schwinger model for a =0 studied in [11]. We observe
that it is possible to put r =0: it would correspond to
having a Schwinger model regularized in a gauge depen-
dent way.

For a )0 we have two positive metric field: 0. with
mass e (1+a) and h massless; for —1 &a &0, h becomes
a "ghost. " These theories are not equivalent to the origi-
nal Schwinger model: the introduction of the gauge-
breaking counterterm

(3.26)

cannot be interpreted as a gauge fixing and the model
rather resembles to the Stuckelberg electrodynamics in
two dimensions.

In conclusion we have recovered in an operatorial for-
malism, the results of the path-integral approach, con-
cerning the bosonic sector. In particular the propagator

do not introduce any gauge fixing which would be neces-
sary to build a free propagator to start with.

IV. OPERATORIAL APPROACH:
THE FKRMIONIC SECTOR

8 F"'=—eJ"
p,

i8$+eA(a+ry )/=0,
with the "classical" current J"defined as

(4.2)

In order to establish a definitive link with the path-
integral formalism we have to construct the fermionic
operator that solves the equations derived from (2.1). Ac-
tually we will go further, finding a conserved charge that
allows us to identify a fermionic sector on the Hilbert
space of the model: in this way the difFerence between
the two ranges of parameters (2.18) will be fully en-
lightened, confirming the analysis of the path-integral
formulation.

Let us come back to the original Lagrangian (2.1) and
obtain the Maxwell and Dirac equations

J"=Py"(1+ry )f . (4.3)

'(0l T( Aq(x) A, (y) i0)

can be computed and coincides with (2.10), apart from ir-
relevant noncovariant contact terms. Moreover the
structure of the Hilbert space of states has been clarified
in the various cases.

A last remark concerns the singularity of the solutions
when e ~0: our results are truly nonperturbative as we

l

In solving these equations we need a regularization
procedure to give a meaning to the composite operators
A f(x }and J"(x): we seek consistency with the results of
the bosonic sector. In so doing we are able to express g
as a well-defined functional of the bosonic degrees of free-
dom a and h.

Taking the expression (3.13a) of A„ into account, it is
easy to verify that a classical solution of (4.2) is

i v'7r
P(x) = exp

a 2 y o(x)+(r —1)y h (x) $0(x),)+a —r
(4 4)

where go(x) obeys to the free Dirac equation. To obtain an operator solution we define PP(x) by normal ordering
:A f:(x}and introduce the trial solution

1 j2

P (x)=C
2m

:exp— r+ 2y o+(a+1—r )h —ay,' h]:,a+1—r
(4.5)

where i}„h=B„h,p is an infrared regulator associated to h, carrying the correct balance of canonical dimension and C a
normalization constant to be determined later on. We know from (3.12a) that

B„F"=e8'o;
we define the currents J~+ by a point splitting procedure as

J~+(x)= limU+'( )[A( +x)ye"P+ exp iv'ref dz. [A +rA "] g(x) —VEV],
e~O

(4.7)

where e &0, VEV stands for "vacuum expectation value, " and P+ =(1+y')/2; U+(e) are some ultraviolet renornial-
ization constants. A first request is the infrared finiteness of such currents, that will fix the value of the constant C.
Then we introduce a quantum current J„(x),

J~(x)=(1+r)J~+ (x)+(1 r)J" (x)+a——A "(x)+P —A "(x),
~Fr v'7r

(4.8)

which has to be eventually consistent with (4.6): the quantities a and P parametrize the ambiguity related to the regu-
larization procedure.

We remark that we have introduced in the string the "classical*' gauge invariant expression of the currents; would we
have introduced a more general expression, where A" and A appear multiplied by arbitrary weights E& and L2, re-
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(4.9)

Standard Wick's techniques lead to

spectively, this would simply entail a change in a and P, namely, this arbitrariness is already taken into account by the
polynomial subtractions which are, by the way, related to the loss of gauge invariance.

We begin by considering J+..

J+( x)= U+'( e)[g (x+e)P+P(x)+i&m eg (x+e)P+P(x)e"(A„+rA„)+O(e ) —VEV] .

P (x +e)P+ P(x) = C:exp — eI'8„—r + o
2~ a I' a +1—r'

77 a a+1—r +
2

+(a + 1 r—)h —ah: exp r + a
2

D (em)
a a+1—r a —r

+ [(a+1—r ) +a ]D+(e,p) 2a D—+(e)
a+1—r

(4.10)

with

D+(x, m)= Ko(m+ x+i—x 5), D+(e,p)= — ln( pV—+ix 5),
2m- 4m'

D+(e)= [ in(e i 5)—ln(—e+ i5)—], e*=e ke', 5)0 .1

4m

Then we choose

(1/4)(1 —r ) /a(a+1 —r )

(4.11)

(4.12)

in order to obtain a result independent of the infrared regulator:
r

[g (x+e)P+g(x) —VEV]=U+(e) B„r+ o+(a+1—r )h —ah +O(e)
2 ma e " a+1 r— (4.13)

7T aU+(e)= exp r +
a a+1—r

D+ (e m ) — ln( th e +—i e 5 )
a —r 2 4~ a+1—r

(4.14)

One should compare this expression with the fermion wave function renormalization constant in (2.28). Apart from
the different regularization, they manifestly exhibit the same behavior U+ (e)-Za, which is rooted in the fact that the
current J~+ does not undergo renormalization.

In the same way we get

i m eP (x +e)P+Q(x)e"( A„+rA„)—VEV= U+(e) ( A„+rA„)+O(e)
2 tr e

(4.15)

Collecting all terms we end up with

J+ (x)= lim — (8„—3„) cr —h
o

2 n e " " 1+a r— (4.16)

We notice that the limit e~O does not depend on the direction. Then, taking into account that y P+ =y'P+, we get

(4.17a)

J" = —(5"+8") h—1 1
2

CJ
2&m- a+1—r (4.17b)

As we have predicted, these currents are not conserved: by requiring the consistency of the Maxwell equations we
obtain

a=a, P=O,

namely,

(4.18)
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& I'""=~d"a = —~+~J"=—e&~ ~ (1+r)J +(1 r)—J + A" .
P

and our trial solution in (4.5) turns out to be fully con-
sistent. We notice that it is essential that the fermionic
operator does not factorize as a product of a free spinor
times a short-range interacting term.

We can recover the known results for the chiral
Schwinger model putting r =1:

pE =g~(x), QI. (x)=:exp 2i&—~o'QL(x) . (4.20)

In this case the interacting solution factorizes into an
interaction piece, depending on the massive component,
and a free fermion 1( (x); its asymptotic behavior is the
one of a free Dirac theory. We remark that only for
r =21 the free part is factorized.

One can easily check that the Green functions

(01T(q.( )yp'(y)) 10),

& 01 T($1((x)gP(y) )0),
computed using (4.5), coincide with the path-integral
ones (2.26), (2.36), apart from the wave-function renor-
malization constant for the field g (our solution is here
renormalized).

Now we want to discuss the properties of the solution
(4.5). As starting point we remark that gauge invariance
is completely broken; hence P,(x } is not affected, in prin-
ciple, by any gauge ambiguity.

The first investigation concerns the electric charge of
this solution: integrating the zero component of the con-
served current J„(x)(that couples to the Gauss's law), we

get the generator

Q= Jdx'Jp(x') .

A simple calculation gives the commutation rule

[Q,g (x)]=0,

(4.21)

(4.22)

showing that g (x) is electrically neutral; actually, in or-
der to be rigorous, one should smear Q with a test func-
tion of compact support fE and prove that

[h+(x),4 ),„,]=0 .

A short calculation

(4.23)

lim [Q,g (x)]=0
R~co

with Q~ = f dx' Jp( x')fg ( x').
The electric charge of the original fermion is totally

screened: this is true for any value of r and a.
At this point we recall that, in the first range (a ) r )„

|( is a well-defined operator on the Hilbert space of cr and
h with the prescription of taking the limit @~0 on its
correlation functions; moreover f generates a positive
norm Hilbert space, whose properties will be specified in
the next section.

On the other hand, in the second range we have to im-

pose on the physical operators the condition (3.14)
equivalent to

[h+(x), g (y)]= — [h+(x), (a+1—r )h (y) —ayah (y)]P~(y)

1t,(y} a D+(x —y) ——
a 4

2

y D+(x —y, p) %0,a+1—r
(4.24)

shows that g (x) fails to be physical.
This analysis agrees with the path-integral one and is confirmed by the inspection of the (anti) commutation relations.

We study

[f.(x» fp(0) ] ET (4.25)

[g (x), t(' (0)]ET=.exp ' r+ y o(x)+(a+1—r )h(x) —ay ha+1—r

For aAP is straightforward to show (using the standard properties of Green functions in 1+ 1 dimensions), that the re-
sult is zero. For a =P the computation gives

i&~

r+ y o(0) (a+1—r )—h(0)+ay h(0):A (x)8 (x),a+1—r

(4.26)

where

A~ (x)=C exp
a

2 2 2a (a +1 r)a D+( )+ a(1 r) —D+(—
2 V5 2 x, m X,Pa+1—r a —r a+1—r

(4.27a)
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B (x)= exp2m[[D+(xp) —y ~+(x)]+[D+(—x,p) —
y + ( —x)]j . (4.27b)

For x =0 we get B (x)=5(x '), so that

[Q (x),gt(0)]sr= A (0)5(x'),

(r+y' )'
A (0)= exp i Di (0,rn)

a —r

Recalling (2.28) we find

222 —Zl.
—1

(4.28}

(4.29a)

(4.29b)

V. THE RELATION WITH THE MASSLESS
THIRRING MODEL

We have seen that for r =1 the solution (4.20) factor-
izes into an interaction piece depending on the massive
boson a and a free spinor: the asymptotic behavior of
the Green functions is the one of free chiral fermions.

The solution is electrically neutral and carries the fer-
mion number associated with the free conserved current

[11]J~() (x)= Joy"$0(x }:

Q' '= J dx'J' '(x') [Q' ' g,(x)]=/~(x) . (5.1)

Equation (4.28) are anticommutation relations for in-
teracting fermions (see, e.g. , [12]).

In the same way

j f~(x), Pii(0) ]Ex=0 V~

In the next section we shall restrict ourselves to the
case a &r, where we shall succeed in giving a deeper
characterization of the solution in this case.

The conclusion is that a free massless fermion exists as

asymptotic state.
In the general situation r %1, as we have seen, we can-

not draw a similar conclusion, due to the long-range
character of the interaction. Nevertheless a solution of
the Dirac equation exists, carrying the correct anticom-
mutation relation: we try to find what kind of states are
linked to this operator. Because of the independence of cr

and h we can factorize f as

P (x)=C 2'

' 1/2
l 'r

:exp-
a

r+ y~ o::exp— [(a+1—r )h —ay h]: .a, i&Fr

a+1—r
(5.2)

First we look at the "spin" of this operator: we study the transformation property under Lorentz boost of the corre-
lation function

(0ly.(x)y.'(0)10&=~'exp ~rn' —"+,y.'. D+(x, rri)a+1—r

X exp m
a+1—r + D+( px) exp —2ny~ D+(x)

a+1—r
(5.3)

D+(x,p)~D+(x, p), (5.4a)

D+(x)~D+(x)—
277

'

The boost on (5.3) acts as

( P ( )P (0)) ( f ( )g (0)) (y'~),
that suggests the rule

(5.4b)

(5.5)

Calling g the parameter of the Lorentz boost
sinhy=v j(+1—v ), the transformation of the massless
commutators D+( px) and D+(x) are easily found to be

D+(x,p) ~D+(x,p)—
277

'

D+(x)~D+(x),
giving

(5.7a)

(5.7b)

I

The explicit presence of a mass violates scale invariance:
in the limit x —++ ao, when the massive components
decouple from the correlation function, we can recover
an exact scaling. It is not diScult to read the asymptotic
scale dimension of t/i (x) from (5.3), in this limit. Under a
dilatation x„-+kx„,

g(x)~ exp( —,'y y}g(x} . (5.6) f (x)~P (x) exp —A, —(1+g)+1 1

4 1+g
(5.8)

The "spin" is s =
—,
' (independent of r and a}; we re-

mark we are not talking about a true spin, as no rotation
group is present in two dimensions. Hence the "spin" is
rather a label for the representation of the Lorentz group.

Then we turn our attention to scaling properties: the
question is subtler because the existence of the field o..

where

r2
(5.9)

The asymptotic scale dimension (that we identify with



1088 A. BASSEl 10, L GRIGUOLO, AND P. ZANCA

the scale dimension of the asymptotic state) is

d =—(1+g)+1 1

4 1+g
(5.10)

Obviously this result is fully consistent with the analysis
of the anomalous dimension of the propagator for
x 2~ —ao (2.32); using the notation of Sec. II we get

We notice that for g =0 we recover the free spinor of
the chiral Schwinger model: in a precise sense, that we
discuss below, g describes a kind of asymptotic interac-
tion.

The propagator (2.32) in the large x limit is the propa-
gator of the massless Thirring model [13,14], in the spin
—,
' representation. Actually for this model the spin labels

the representation of the conformal group [15]. Our
asymptotic state is a massless Thirring fermion: we can
write

g (x)=:exp E&n ——'+ y o:g,(x),r

a+1—r

with

f~(x) =C:exp( i &m—[(1+g)h —y, ii]):(x),
g /a(1+g)

c= 2'

(5.11)

(5.12)

where we have defined [5]

J = limz(e)[J (x, E}—(O~J (x,e}~0)],
@~0

J'= limZ(e) [J'(x,E) (0~J'(x, e)~0)—],
p —+o 1+g

(5.14)
J~ (x, e) =p (x, e)( 1+y') 1((x),
Z(e) ( m 2~2)g /4(l+g)

and

1 —r
g =Kg =K (5.15)

The coupling constant of this "effective" Thirring
model depends on r and a: for a & r we have a dynami-
cal generation of the Thirring theory. One can also
check directly that (5.12) is a Thirring fermion (spin —,)

looking at the Klaiber manifold [14]: Eq. (5.10) is the
correct dimension for the spin —,

' solution.
We can now define the charge associated to this model

QT = Idx 'Jo(x '),
(5.16)

J„(x)=— —B„h(x) .
2

It is not difBcult to show that, from the operatorial
point of view, f, is a solution of the massless Thirring
model, namely, of the equation

(5.13)

QT is obviously conserved and it results

[QT, P (x)]=/ (x) . (5.17)

In other words the solution g carries the quantum num-
ber of a Thirring fermion.

The selection rules are obtained setting p —+0 in the
correlation function. This thermodynamic limit" is
essential in order to recover the symmetries of the origi-
nal theory, ' for example, the naive definition

(oiq. io) =c
277

' 1/2

%0

suggests the spontaneous breaking of the U(1) rigid sym-
metry generated by QT. The vacuum is not invariant un-

der this transformation: only when p —+0 we recover the
correct invariance. This procedure leads to selection
rules equivalent to Klaiber s ones and ensure the positivi-
ty of the Hilbert space.

At this point we remark that all our constructions are
justified, from a rigorous mathematical point of view, by
the fact that we can make a Krein extension of the origi-
nal massless boson Hilbert space in order to obtain a rep-
resentation of the fermionic algebra solving the massless
Thirring model [16]. Using this technique one can define
the charge operator QT and prove the existence of (5.12)
in a strong operatorial sense.

The invariance of the vacuum, in this formalism, is not
achieved by means of the ad hoc infrared limit p, ~o, but
by a careful construction of the fermionic vacuum in the
Krein topology: uniqueness is obtained modulo zero
norm vectors (that are quotiented out).

The Hilbert space of our system seems to be the tensor
product of the Hilbert space of a boson of mass
m =e (a —r )/[a(a+ I —r )] and of a massless Thir-
ring model; nevertheless the situation is more intriguing
due to the presence of the operator g(x) that interpolates
between two extreme situations. We recall that for
x -0, its behavior is characterized by the anomalous di-
mension (2.31) while the infrared limit is described by the
Thirring theory.

We have two critical points corresponding to confor-
mal field theories in the short- and long-distance limits:
the noncritical theory has both massive and massless de-
grees of freedom.

The emerging theory, in the large x limit, is not chiral:
ehirality is in fact screened by the interaction, as the elec-
tric charge is. The short-distance behavior, on the con-
trary, strongly depends on chirality (as one can see from
propagators). In our case we do not know what the ultra-
violet theory is, if any. One would be tempted to think
that the ultraviolet theory bears some relations to the
axial-vector generalization of the Thirring model [16]: an
easy computation of the critical exponents shows that
this is not the case. In particular one realizes that the
short-distance behavior of the fermion propagator is
different from the result one would expect according to a
naive power counting. While the origin of this
phenomenon can be traced back to our functiona1 in-
tegration, its deep physical meaning is sti11 not complete-
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ly understood. We leave this problem open to future in-
vestigations.

VI. CONCLUDING REMARKS

In conclusion we have thoroughly studied a vector-
axial vector theory in two dimensions characterized by a
parameter which interpolates between pure vector and
chiral Schwinger models. The theory has been complete-
ly solved by means of nonperturbative techniques, both in
a functional approach and in a canonical operatorial
framework.

The main results are the presence of two ranges in the
space of parameters in which acceptable solutions can be
obtained. The first range is characterized by a massive
and a massless free bosonic excitations and by fermions
which are endowed with asymptotic states, which feel
however a long-range interaction, but in the chiral case.
The theory in the second range of parameters has a mas-
sive free boson and a massless ghost; fermions are
confined as their correlators grow with distance. Never-
theless a Hilbert space of states can be consistently sin-

gled out.
The most attractive feature is present in the first re-

gion: in this situation fermionic correlators scale at short
and long distances with different critical exponents. The
infrared limit fully corresponds to a massless Thirring
model times a free massless bosonic sector. Field,

charges, and Hilbert space of states do indeed coincide.
The ultraviolet limit leads to a conformal invariant

theory with a larger number of components (in agreement
with Zamolodchikov's theorem [17]), whose Lagrangian
formulation, if any, is so far unknown. These aspects of
our model and, more generally, its relation to conformal
invariant theories will be deferred to forthcoming work.
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APPENDIX A

In this appendix we show how to derive the left propa-
gator (2.26) in the path-integral formalism; all the other
Green functions can be obtained in the same way. The
first step is to integrate the fermions in (2.4} to give (2.6)
(we put J„=O). The change of variables (2.25) decouples
the spinors from A„but has a nontrivial Jacobian
d'[ A„]:

e , a~a"
8[A„]=exp fd x A„(1+a)g""—(1+r )

a.a"—2re & A
p V (A1)

This result can be obtained, in Euclidean space, using g-function technique for functional determinants [18]

det[D)= exp — g~(s)~, 0, g~(s)= fd2"x Tr[K, (D;x,x)],
s

where K, (D;x,x) is the kernel of D ', D being a pseudoelliptic operator [19]. The knowledge of the relevant Seeley-
DeWitt coefficients of D and a trivial (in two dimensions) integration of the Jacobian of the infinitesimal transformation
[20], lead to the above expression.

The fermionic action is now

fd x [ig gy+riexp(ie [a+y P+rP+ray ])y+gexp(ie [ a+y P rP—+ray ])—ri, (A2)

where g is a free fermion and a,P are linked by (2.24) to A„. The diagonalization of (A2) gives the propagator
S(x,y; A„):

S(x,y;A„)=So(x —y)exp i fd zg„(z;x,y)A "(z) +So(x —y}exp i fd zg„"(z;x,y)A "(z)
(A3)

(z;x,y) =e (r +1)(B„'+3'„)[D(z x) D(z —y) ], — —

where D (x) is the free massless scalar propagator in d = 1+ 1 and SO, SO the free left and right fermion propagators.
To obtain the left propagator (2.26) we derive with respect to gL and 7iL [the left component of the sources (2.5)] and

get

S (x,y)=SO(x —y}f2)A„et[A„]e pxi fd z[ ,'F„F""(z) g+„(z;—x,y—) A(z)) (A4)

Using the explicit form of cP[ A „][(A 1)] we can write the path integral over A „as

f2)A„exp i fd zfg„A "+,'A„K""A„]—
K""being defined in (2.9). The Gaussian integration is trivial and gives

(A5)
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SI(x,y)=So(x —y)exp —,' —fd zd w g„(z;x,y)IK ']""(z,w)g„(w;x, y) (A6)

The explicit computation of the exponential factor gives the renormalization constant ZL and the interaction contri-
bution in (2.26).

APPENDIX B

We want to investigate in the space of parameters a
and r, the limiting situation a =r Th. e Poisson brackets
(3.7) vanish; hence the request Q2=0 implies a third con-
straint:

The variables P and II& have a canonical structure and we
can express all the other variables through the con-
straints to get the Hamiltonian H„d:

Q4= r[e(l+r —)Ai rtJip+II&—+erAo]=0 .

Now, since

(82)

Q3=——rH)=0 .

%e note that for r =0 we have no other constraint in
addition to Q&=0 and 02=0; they are first class and
therefore the theory is gauge invariant.

Obviously a =r =0 corresponds to the vector
Schwinger model. Taking r %0, from Q3 =0 we get

The Heisenberg equations

are equivalent to

0/=0 .

The commutation relations are

(85)

(86)

[Q4(x'), Q, (y')] =er 5(x' —y'), (83) [P(x),P(y)]ET=ir 5(x' —y'),
we have no further constraints. We end up with a system
of four second-class constraints. Introducing Dirac
brackets, we get the nonvanishing relations

1+r
[ A (x'), A, (y')] = t}„'5(x'—y'),

r e

[A &(x'), (((y')]D= —5(x' —y'),1

e

[ Ao(x '), P(y ')]n = ——5(x ' —
y '),

e

[p(x), (t'(y)]ET=0 .

The vector potential is

1—
A =—a ——3P ~ P p P

giving

F„„=O,

(88)

I A, (x'), ll,(y'}],=—a,5(x' —y'),1

Ie

1
[Ao(x'), lip(y')]n= — t} (5(x' —y'),

er

2
I A, (x'},A, (y')]D = — t} &5(x

' —
y '),

I(('i(x '), II&(y')]D =5(x ' —y') .

(84)
which is consistent with 03=0. The only degree of free-

dom is a massless scalar excitation. We can construct the
fermionic operator solving the Dirac equation in the
same way as in Sec. IV; this time the current coupled to
F"" is zero and the fermionic sector again describes a
Thirring model. The absence of a massive component in

the spectrum forces scale invariance for any x: our
model becomes totally equivalent to a massless Thirring
model.
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