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Effect of wave flmction renormalization in N-fiavor three-dimensional QKD at finite temperature
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A recent study of dynamical chiral symmetry breaking in N flavor three-dimensional QED at finite

temperature is extended to include the effect of fermion wave function renormalization in the
Schwinger-Dyson equations. The simple "zero-frequency" truncation previously used is found to lead to
unphysical results, especially as T~O. A modified set of equations is proposed, whose solutions behave
in a way which is qualitatively similar to the T=0 solutions of Pennington and co-workers who have

made extensive studies of the effect of wave function renormalization in this context, and who concluded
that there was no critical N, (at T=O) above which chiral symmetry was restored. In contrast, we find

that our modified equations predict a critical N, at TWO, and an N-T phase diagram very similar to the
earlier study neglecting wave function renormalization. The reason for the difference is traced to the

different infrared behavior of the vacuum polarization at T =0 and at TAO.

PACS number(s): 11.15.Pg, 11.10.Wx, 11.15.Tk„11.30.Rd

I. INTRODUCTION

In a recent paper with collaborators [1], we studied
dynamical chiral symmetry breaking in N-flavor three-
dimensional QED (QED3) at finite temperature, in the
large N approximation. Using an approximate treatment
of the Schwinger-Dyson equation for the fermion self-

energy, we found that chiral symmetry was restored
above a certain critical temperature, which itself depend-
ed on N. The ratio r of twice the zero-momentum and
zero-temperature fermion mass to the critical tempera-
ture turned out to have a value of about 10 (approximate-
ly independent of N), which is considerably larger than a
typical BCS value, but consistent with previous work [2]
using a momentum-independent self-energy. We found
evidence for a temperature-dependent critical number of
flavors, above which chiral symmetry was restored, and
the N-T phase diagram for spontaneous mass generation
in the theory was presented. A more extensive account of
some of the relevant details, and of the possible relevance
to high T, superconductivity, is contained in [3].

The question of the existence, or not, of a critical N in
analogous calculations at zero temperature is still to some
extent controversial. The original calculations of Appel-
quist and co-workers [4] found chiral symmetry breaking
only for N (N, where N, =32/m, but this work made a
possibly crucial appeal to perturbation theory (in 1/1P to
justify. the neglect of wave function renormalization and
the use of a simple bare vertex. This step has been
strongly criticized by Pennington et al. [5—8], who in a
series of papers, using Schwinger-Dyson equations with
increasingly elaborate nonperturbative vertices satisfying
the Ward and Ward-Takahashi identities, have found no
evidence for any N, —rather, the fermion mass simply

decreases exponentially with N. On the other hand, an
alternative nonperturbative study by Atkinson et al. [9]
suggested that chiral symmetry is restored at large
enough ¹ but this paper is also criticized in recent work
of Curtis et al. [8]. Finally, Kondo and Nakatani [10]
have examined the effect of imposing an infrared cutoff
on the Schwinger-Dyson equations, including wave func-
tion renormalization and various Ansatze for the vertex.
For the Pennington-Webb [5] vertex, which we also shall
use, Kondo and Nakatani [10] obtained a (cutoff-
dependent) N, for the case of a "large" infrared cutoff,
and N, ~~ for the case of a "small" cutoff.

Our previously mentioned calculations at finite temper-
ature [1] made precisely the same perturbative approxi-
mation as Appelquist et al. [4], by neglecting wave func-
tion renormalization and using the bare vertex. The ar-
guments and results of Pennington et al. [5-8] certainly
provide strong motivation to go beyond that approxima-
tion, and investigate whether the conclusions of our
finite-temperature study survive a better treatment of the
vertex. The present paper reports the results of such an
investigation, using a simplified (but not perturbative)
form of the vertex, but otherwise following [1] as closely
as possible. In brief, we find that the conclusions of [1]
are, in fact, essentially unchanged, though the formula-
tion of a simple extension of the formalism of [1] to in-

clude wave function renormalization turns out to be not
completely straightforward. It seems that the crucial in-
gredient in obtaining a finite N, is the softening of the in-

frared behavior at finite temperature. Our calculations
therefore suggest a natural physical interpretation of the
"large" infrared cutoff regime introduced phenomenolog-
ically (at T =0}by Kondo and Nakatani [10].

II. SIMPLE SCHWINGKR-DYSON
EQUATIONS AT TAO

Permanent address. Present address until September 1994:
CERN, CH 1211 Geneva 23, Switzerland.

~Present address: Instituto de Fisica, UNAM, Apartado Postal
20-364, 01000 Mexico, DF, Mexico.

We shall choose a simplified Ansatz for the vertex, and
we begin by introducing that choice within the context of
the zero-teinperature Schwinger-Dyson (SD} equations;
then we shall pass to the finite-temperature case. In Eu-
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clidean space, the SD equation for the fermion propaga-
tor is

S, '(p) =S,"' '(p) —e'I,y~S, (k)A„„(q)r"(k,p)
d k

where the superscript 0 denotes the bare quantity,
Sz '(p) =[1+A (p) jpf+X(p) is the inverse fermion prop-
agator, and q =k —p. We shall not make any change
here in our previous (and common) choice for 6„,—
namely, it is approximated by the sum of massless fer-
mion bubbles. We shall also continue to work in Landau
gauge. Turning then to I", the Ward-Takahashi identity
may be written as

q, r"(k,p}=S (k) —S (p) .

Taking the limit q„—+0 yields the Ward identity

as (p) =r"(p,p)
p

(2)

(3)

which ensures that the full vertex is free of kinematic
singularities. Both (2) and (3) should hold to all orders of
perturbation theory.

Ball and Chiu [11]have given a vertex which satisfies
both these relations, but has an unconstrained transverse
part (which, however, is believed to be unimportant in
the infrared region [11,5 —7]). In fact, a more general ver-
tex including not only the full Ball-Chiu vertex but also a
nontrivial transverse part has recently been studied by
Curtis et al. [8], at zero temperature. This vertex satisfies
(2} and (3) and also correctly reproduces the leading
asymptotic behavior known from perturbation theory.
For our purposes, however, the salient fact is that the re-
sults (as to dynamical mass generation, N„etc.) of this
most recent work are in qualitative agreement with ear-
lier studies [5,6] where a much simpler choice of vertex
was made [albeit one no longer satisfying (2) and (3)]:
namely,

I'"(k,p) =y"[1+A (k)] . (4)

Similar approximations in four dimensions have been
shown to give results which are in fairly good agreement
with those obtained using the full vertex. It seems
reasonable to hope that such agreement will persist in our
finite-temperature case, and we shall therefore now adopt
the Pennington-Webb [5] vertex (4).

Inserting (4) into (1) and separating the scalar and spi-
nor parts we find [see also Eqs. (2.35) and (2.36) of [3]]

~( )
a 1 d3k 1 JM.(k) ()4nN1+ A (p) .

q +II(q) k +JR (k)

and

mass function

1+A (p}
(7)

IIO(Q, P) = QP+ exp QP
7T 16 ln2

(10)

In the same spirit, we shall also ignore the frequency
dependence of the kinematic factors in (6). In this zero-
frequency limit, then, both A and X become independent
of the Matsubara frequency index, and the sums over
these indices in (5) and (6) can be performed explicitly so
as to yield the following simple equations for the
temperature-dependent mass function JK(P,p) and wave
function renormalization A (P,p):Af, 1

gN~2 1+A{Pp)

The explicit appearance of the 1/N factor in (6) is, of
course, the reason for the claim that to leading order in
1/N wave function renormalization can be ignored and
A set to zero. But Pennington and co-workers have con-
vincingly argued [5—8] that, at least at the low momenta
relevant to dynamical mass generation, the integral can
provide a compensating N dependence (as after all hap-
pens for X or At), so that A is by no means of order 1/N
These authors [5] have obtained numerical solutions to
equations equivalent to (5) and (6), which show no sign of
a critical N, . We follow them in retaining (6), and pass
now to the finite-temperature case, following the usual
prescriptions. As in our previous work [1] (see also [3])
we define

p =(Po p), P= lpl po=(2m +1)n/P (P= 1/k~T),

k =(ko, k), K = Ikl ko=(2n +1)m/p,

q=(q„q), Q=lql=lk —pl, q, =2(n —m)~/P.

Integrals over the temporal component of a fermion
loop momentum are replaced by infinite sums over odd
Matsubara frequencies, while bosonic loops are evaluated
by summing over even frequencies. The vacuum polar-
ization and the fermion functions A and X become func-
tions of (the modulus of) the momentum, and of the tem-
perature, and acquire a discrete index n corresponding to
the Matsubara temporal component. Since we are here
concerned with the effect of introducing the nonperturba-
tive vertex (4), we shall follow [1] and [3] in retaining
only the p =v=0 component of the photon propagator
b,„„and ignore all but the zero-frequency (n =0) com-
ponent, so that

6„„(qo,g,p) =5„05~/[Q +110(g,p)],
where, to an excellent approximation [1],

2 I 2)2 ( 2)2

16m Np q [q +II(q)] k +JR (k)

(6)

tanh — K +Sf, (K,P)
X d k

Q'+110(g,p) &K2+At2(K p)

where a=e N is understood to be fixed as N varies, II is
the vacuum polarization, and we have introduced the and
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~(P, )=
16N7r P Q [Q +IIO(Q, P)]

tanh —+K +AI (K,P)
2

&K'+AI'(K, P}
(12}

With regard to Eqs. (11) and (12), we note that the first
(for AI) is the same as that for X in Ref. [1],except for the
coefficient in front of the integral which acquires a factor
[1+A (P,P)] ' in the present case. In [1],of course, A
was set to zero. We also note that A does not appear un-
der the integral in (12},but is given by a simple integral
involving At Thi.s latter feature is a consequence of the
ansatz (4); in general we would have had to deal with two
coupled integral equations for JN, and A.

It would seem that all that now remains is to solve Eqs.
(11) and (12) numerically. However, it turns out that
there is an unsuspected problem (or so we regard it) with
Eq. (12), as we now explain.

III. PROBLEM WITH THE SIGN OF A

IN THE SOLUTION OF (11)AND (12)

It is a standard result in zero-temperature field theory
(see for example [12])that the complete wave function re-
normalization factor Z = 1+A satisfies the relation

O~Z&1,

which implies

—1&2 &0.

(13)

(14)

Indeed, the angular integral in the zero-temperature
expression (6) for A was evaluated analytically in [5] and
found to be negative definite (which clearly implies
A & 0}, and the corresponding numerically evaluated Z
satisfied (13). Unfortunately, the same results do not hold
for our approximation expression (12) for A at finite tem-
perature, as we shall now see.

Consider the angular integral in (12), namely

P2 K22 4

P'g'[g'+11, (Q,P)]
'

where Q =P +K 2PK cosP, and—we have included
the (dimensionless) factor K/a coming from the two-
dimensional phase space d k. As it is not possible to
evaluate I analytically, we have had to resort to numeri-
cal evaluation. Clearly it is difBcult to give a complete
picture of I as a function of all three variables P, K, and
P, but it turns out that for wide ranges of these variables I
is predominantly positive, although it is negative in the re-
gion around K =P. These features are illustrated in Fig.
1, which shows I versus K/a for two values of P (one
"large" compared to the natural scale a, the other small),
and two values of (inverse) temperature P. It is clear
from (15) that I is always negative at the point K =P, and
that the quantity IIo acts as a kind of regulator for the
1/Q singularity associated with the photon propagator.
In particular, from Fig. 1 we see that the width of the re-
gion where I is negative decreases with increasing P (de-
creasing T). These latter details are understandable from
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FIG. 1. Angular integral I(P,K,P) at P =6.85 X 10 ~a,

0.809a and P= 1000/a, 100/a.

the form of IIO, Eq. (10), which has a temperature-
independent linear term (ag/8) and another which de-
pends on temperature as (aC/8P)exp( —Pg/C) where
C =(161n2)/m. .

It is of course diScult to read off from Fig. 1 what the
eventual sign of A in (12) will be, since much might de-
pend on the relative weighting attached to the region
K =P, and to the remainder, in the K integration of (12).
Nevertheless, it does seem likely that, especially at the
low temperatures characteristic of dynamical mass gen-
eration, the relative insignificance of the negative parts of
I in Fig. 1 will imply that A in (12) turns out to be posi-
tive, contradicting (14). This is indeed the case.

We have solved (11)and (12) by an iterative procedure,
as follows. In zeroth order, we took A '=0 and
AI' '=X, the solution of Eq. (8}of our previous paper [1]
[which is the same as (11) with A =0]. Inserting At+'
into the right-hand side of (12) gave the first iterate A'".
This was then substituted into the coefBcient in front of
the integral in (11), and the latter evaluated using AI' ' as
the input function, so as to yield the first iterate Af"',
This was substituted back into (12) to give A' ', and so
on. The procedure was continued until convergence to
within 2% was achieved. Note that, as in [1], we work
with a momentum cutoff at A =a, and scale all momenta,
temperatures and masses by a.

For the sake of illustration we consider the case N = 1.
We have obtained stable and converged solutions to Eqs.
(11) and (12), with properties we now describe. First, the
behavior of JR(P,P) is qualitatively similar to that of
X(P,P) found in [1]—namely, Afis consta. nt for
P/a&10, and falls rapidly to zero for larger P/a.
Further, the zero-momentum value of At starts to fall
rapidly when Pa goes from 2000 to 1000, indicating the
possibility of a finite critical temperature. Indeed a plot
of At1, (O, T)/a versus ks T/a suggests a critical tempera-
ture of order kT, —10 a, quite similar to the T, 's

found in [1]. However, all these results involve an A

which is greater than zero, and hence a Z violating (13}.
Figure 2 shows the corresponding solution of (12) for
X=1 as a function of momentum, for different tempera-
tures. The behavior of the full Z =1+ A is quite
different from that found by Pennington and Webb [5]
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FIG. 2. The wave function renormalization as a function of
scaled momenta, at various (scaled) temperatures, for N=1.
The logarithm is to base e.

from the zero-temperature equation (6), which, as men-
tioned above, always satisfies (14).

We might wonder whether for very low temperatures
our solution to (12) goes negative, but this does not hap-
pen. Instead, as the temperature decreases the value of
A (O,P) rises, approaching a value of approximately 0.6.
This behavior bears no resemblance to the zero-
temperature result of Pennington and Webb [5].

It is certainly possible that the condition (14}, which
relies on unitarity in Minkowski space, may not neces-
sarily hold in the Euclidean space appropriate to TAO.
There may, for example, be "heat-bath" creation process-
es for temperatures above the pair-creation threshold
which would cause a violation of (14}. But we shall take
the view here that the regime relevant to dynamical mass
generation is definitely a low temperature one
(kz T ((a},and that consequently we should hope to find
an A which is negative and qualitatively similar to that of
[5]. After all, the essential aim of the present work is to
examine the effect of a reasonable temperature-dependent
extension of [5] on the existence or otherwise of a critical
N, . We therefore reject the solutions of (11) and (12) de-
scribed above, and seek a modified Eq. (12) which will
give a temperature-dependent A satisfying (14), for the
(low) temperature with which we are concerned.

IV. MODIFICATION OF THE "A"EQUATION
TO SECURE —1 ~ A (0AT T/0

We want to understand why the zero-temperature ex-
pression (6} for A satisfies (14), while our approximate
finite-temperature version of it gives A &0. We believe
the answer lies in our dropping all but the zero frequency
components in H, X, and A. First, it is clear that if all
components are kept, the finite-temperature equations
must correctly reduce to the zero-temperature ones as
T~O. More particularly, by retaining only the zero
component we have efFectively lost a dimension [compare
(12) with (6)], and this is crucial for the following reason.
Suppose we consider the zero-temperature limit of (15},in
which Ila~aQ/8. In this case the integrand of (15) is
dominated by very large positive values associated with
the regions close to /=0 and 2n, whereas for intermedi-

Iq(P, K)= d
0 p2Q2(Q2+Q2)

(16)

and (c) the kernel with IIQ —+b, but retaining the K fac-
tor, i.e., the quantity K XI~. Of these we shall prefer the
one which, on the one hand, best captures the low-
momentum behavior of I(P,K,P} (since this is the
relevant region for dynamical mass generation), and on
the other gives a wave function which most resembles the
qualitative behavior of the T =0 results of Ref. [5].

It turns out that I& can be integrated analytically, with
the result

ate values of P the integrand is negative but very much
smaller. This is why, as noted earlier, I is predominantly
positive. However, if we were simply to multiply the in-

tegrand of (15} by sing, so as to mimic the three-
dimensional phase space at zero temperature, we would
effectively eliminate the unwanted large positive contri-
bution, and enhance the negative ones. In fact, we have
checked that introducing such a factor by hand in (15),
and integrating P from 0 to m, renders I negative for all P
and E, and hence ensures A (0. Hence we believe that a
proper "reconstruction" of the full phase space, at least
near T=O, would succeed in changing the sign of A as
desired.

Unfortunately, it seems a formidable task to attack the
fully coupled equations, including all frequency com-
ponents. Instead, we shall seek here a simple
modification of (15), which behaves qualitatively in as
similar a way as possible to the zero-temperature kernel
in (6) but is temperature dependent. In this way we hope
at least to model the effect which the Pennington-Webb
vertex (4} would have in a more realistic frequency-
dependent calculation.

The modification we propose is motivated in part by
the notion that the approximation of retaining only the
zero-frequency components is best justified at high
temperatures. In this (small P) limit, the quantity II0
in (10) reduces to the (temperature-dependent) value
(2a In2/mP), but of course we are really interested in low
temperatures. However, dynamical mass generation is a
low-momentum phenomenon, and furthermore the in-
tegrands in (5} or (6} are certainly enhanced for q =0, so
that we may hope that it may be reasonable to try a
"small PQ" approximation, rather than simply a "small
P" one. In the small PQ limit, II0 of (10) reduces again to
(2aln2/nP), plus 0(PQ) corrections. These considera-
tions lead us to explore the result of replacing IID in (12)
by a constant, 6 say, which we will take to be an adjust-
able parameter with a value of order a or less. We will
choose it so as to obtain a wave function renormalization
as much like Ref. [5] as possible.

In replacing IIQ in (12) by b, we are of course also al-
tering the Q~O behavior of the kernel, making it less
singular. To compensate" for this we might think of
dropping the E in the phase-space factor, at the same
time as replacing IID by 5 . To explore these possibilities
we shall study (a) the "exact" angular integral (with the K
factor included) of (15), called I (P,K,P), (b) the modified
kernel with II0~5 and no E factor, namely,
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FIG. 3. Angular integral
Iq(P, A. ) for 6 —0.3.

-10

+ [(P —K )+b ][(P —K ) —b, ]
g2[[(P K)2+g2][(P+K)2+g2]]1/2

Figure 3 shows a plot of (17) as a function of P and K
(scaled by a), for the case b,2=a~.
We note that, most importantly, I~ is almost always neg-

ative [in contrast with I of (15)] except for a small region
of large EC and P values, which is not the important re-
gion for dynamical mass generation. In fact, the
behavior of Iz is similar to that of an analogous integral
which arose in an approximate treatment [6] of the
three-dimensional zero-temperature equation (6): name-

ly, a rapid variation with K for K & P, and a much s1ower
variation for K&P, the sign being (in [6]) negative
throughout. These features are true of Iz for a substan-
tial range of 6, and ensure A &0 as we shall see in the
next section.

Figure 4 shows a comparison of I, Iz and E XI& for
P/a=6. 851X10 and b, =a . It is remarkable how
well the low E behavior of I is captured by I&, and how

poorly E XI& performs. The large positive contribution
in I for larger values of K is, as noted above, an undesir-

able feature and the reason for obtaining A &0 in Sec.
III. On the other hand, if too small a value of 6 is
chosen (for example 6 of order O. la ) we find that I~
becomes too large and negative, with the consequence
that the corresponding A begins to approach —1. From
the appearance of the factor (1+A) ' in (11) we expect
that such A's will be associated with too large a value of

contradicting the basic assumption At«a. The
above considerations already strongly suggest that I& will

be the most satisfactory kernel at TAO, and we now
proceed to discuss the results of using this kernel in place
of I in (12); we shall also briefiy describe the results of us-

ing E XI&.

V. RESULTS USING A MODIFIED
"A"EQUATION

We have solved the original Eq. (11), together with one
or the other of the following modified equations for A:

Ag(P, p) =
2 f dKIq(P, K)

16Nm'

tanh —+K +JM, (K,p)
X (18)

+K +At (K,P)

40
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Kxla

Ia

I(P,K,P)
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P
P
h

P

0

-20

FIG. 4. Comparison of I,I&
and E XI~ for P/a =6.851
X10 and 6 =a .

-40

-50
0.0001 0.001

I

O.Of



50 EFFECT OF WAVE FUNCTION RENORMALIZATION IN ¹ . . 1073

-0.01

-0.015
Am(P, P)

-0.02

FIG. 5. Azz(P, l3) versus P/a
for 5 =a and %=1.
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Alra(P, P) =
q J dKKIa(P, K)16'~'

tanh —+K +At (K,P)
X

V'K'+At'(K P)

(19)

with Ia given by Eq. (17). We followed the same iterative
procedure as described in Sec. III, obtaining stable and
converged solutions for A and X. The results using A)ra
can be quickly summarized. Figure 5 shows Aiba(P, P)
versus P/a for 6 =a and N= 1; we note that A)ra is

negative, as required, but very small in magnitude.
Clearly this is a consequence of the very small (and nega-
tive) value of K XI& as seen in Fig. 4. Figure 6 shows the
corresponding At(0, T)/a versus ks T/a, for N = 1. This
figure is very similar to the A =O, N =1 case shown in
Fig. 3 of Ref. [1], as would be expected from the small
value of Ax& shown in Fig. 5. In particular, the ratio
r =2At(0, 0)/kz T, remains close to 10. Qualitatively, the
effect of the small negative I+a is to produce a small up-
ward shift of the At(0, T)/a curve, relative to the A =0
case; this is easily understood as being associated with the
(1+A )

' factor in (11). We have obtained the corre-
sponding phase diagram using Isa, but it differs only
rather slightly, and predictably, from Fig. 7 of Ref. [1].

The results using I& are more interesting. For
5 &O. la, we found that Aa was positive for a small

range of P, near P =a; otherwise, Aa(P) was negative as
required. More seriously, for this value of dP we found
that At(P) was only about one order of magnitude smaller
than a, so that the condition At «a characteristic of
dynamical mass generation in QED3 (and of [5]) was no
longer true (implying that the approximation of II by the
massless bubble would need reexamination). For b =a,
however, we did obtain values for At and Aa which were
in much closer qualitative agreement with the zero-
temperature results, and we now concentrate on the re-
sults for this value of b, .

In Fig. 7 we show JR(P,p) as a function of momentum,
for N =1 and different P's, while Fig. 8 shows the corre-
sponding Aa's, all satisfying (14). These Aa's are all
very reasonable-looking, reminiscent of those at T=O
[5,6]. The rapid decrease of At as P decreases from
P=500/a to 130/a suggests the existence of a critical
temperature near 10 a. In Fig. 9 we show At(0, T) as a
function of temperature, from which it appears that the
critical temperature T, is such that k Ts, =7.8 X10 a.
Figures 7 and 9 can be compared with Figs. 2 and 3 of
[1]; the conclusion is that the effect of including wave
function renormalization in the way described is to in-
crease both the mass At and the critical temperature T,
by roughly a factor of 2; again, this can be qualitatively

0.025

m(T)/a

0.01

FIG. 6. The scaled self-energy
m (T)/a [:—At(0, T)/a) as a
function of scaled temperature
for X=1 and 5 =a using A&z.
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kT/ +
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FIG. 7. The scaled self-energy as a function of scaled
momentum for N = 1 and Pa =10, 2000, 500, and 130. The pa-
rameter 5 is fixed at the value 5'=a . The logarithm is to
base e.

FIG. 9. The scaled self-energy m(T)la [:At—(O, T)la] as a
function of scaled temperature for N = 1 and 6 =a using A z.

understood as a consequence of the (1+A) ' factor in
(11). Indeed, the ratio r [=2At(0, 0)/kaT, ] comes out as
10.27, almost identical to the value for N =1 which we
quoted in [1] without using wave function renormaliza-
tion.

Figure 8 shows that the dependence of A z on p is not
very strong, disappearing altogether at the high-
momentum end. In Fig. 10 we show A& at P =0, as a
function of T [note that (18) actually has nontrivial solu-
tions even for At =0, so that we can investigate the region
T ) T, for A a]. It can be shown easily that
Aa(P=O, T)~0as T~m.

Finally, we come to the main question we originally set
out to answer —the existence of a critical N„or other-
wise. Figure 11 shows At(O, P) versus N, for various fixed
temperatures. As in our previous work [1], we are not
able to obtain reliable results for At /a much below 10
Nonetheless, as before, it seems reasonable to infer that
At does vanish beyond some finite N, which itself de-

pends on T, increasing as T decreases. We can extrapo-
late the At/a curves to find the critical values N, (T) for
the various temperatures, and thus obtain the phase dia-
gram shown in Fig. 12, and which is very similar to the

one we obtained previously with A =0 [1].
Comparing Fig. 11 with Fig. 5 of [1],we notice that for

a given temperature, the critical number of Savors has in-
creased in the case where A %0: for example, at
P=10 /a, N, was just above 1.8 in the A =0 case,
whereas it now has a value slightly above 2.2. Although
probably too much should not be made of such a relative-
ly small difference, it is in fact simple to understand it,
following an argument of Pennington and Webb [5].
Comparing our (11) above with (8) of [1],we can see that
a measure of the efFect of A%0 can be obtained by re-
placing N in the A =0 case by N(1+ ( A ) ) where ( A )
is an average value for A. Hence a solution of the A =0
equations for a given Ng —p will effectively correspond to
a solution of the AAO equations with the identification
NA~p( 1+( A ) ) =NA —p. Since ( A ) & 0, the critical
number of Savors for a given T increases in going to the
A %0 case.

Figure 13 shows A& as a function of P for various
values of N, at fixed T. Although we have not been able
to explore as wide a range of 1V's as Pennington and
Walsh [7], this figure is qualitatively similar to their Fig.
3, for N=2, which encourages us to think that our
modified Aa equation, (18), is physically reasonable.
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FICx. 8. Az(P, p) as a function of scaled momentum for fixed
N = 1 and Pa= 10, 2000, 500, and 130, with b, =a . The loga-
rithm is to base e.

FIG. 10. Az(O, T) as a function of scaled temperature for
N =1and ~2=a2
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FIG. 11. The scaled self-energy m (P)/a [—:Af. (O,P)/a] as a
function of N at various scaled temperatures. FIG. 13. The wave function renormalization A~(P, P) as a

function of scaled momenta, for N =1, 1.5, 2, 2.2 at Pa=10 .
The logarithm is to base e.

However, it is interesting to note that in the zero-
temperature results of [5] and [7], A (P =0) seems to ap-
proach —1 with increasing N, suggesting that the corre-
sponding N, tt=(N„p)/(1+ ( 2 ) ) becomes so large that
any sign of criticality in N (which might have been
present in the A =0 case) disappears. Even for smaller
N's, where ( A ) is considerably different from —1, the
results of [5—8] do not show any indication of a sudden
decrease in the dynamical mass at some critical N, such
as is seen in our Fig. 11.

Nevertheless, it should be stressed that we are not able
to obtain reliable numerical results for temperatures
below —10 a, so that we are not able to say what the
precise zero-temperature limit of our N, (T) might be, if
indeed it exists at all. In addition, we must not forget the
inexact nature of the "6 modification. " In short, it is
quite possible that N, ( T)~ oo as T~0, which would be
in agreement with the conclusion of Pennington et al.
[5—8].

If this suggestion is correct, we need to understand
why our nonzero temperature results still point so clearly
to a critical N, even though we have included a nonzero
A. The answer seems surely to lie in the important al-
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FIG. 12. The phase diagram of QED3, in our approximation,
with nontrivial wave function renormalization. The critical line
separates the region where there is dynamical mass generation
(A,XO) from that in which there is not (A, =0).

teration which the finite-temperature vacuum polariza-
tion IIp makes to the infrared regime of the fermion self-
energy. As we have discussed earlier, the Q~0 limit of
IIp in Eq. (10) is a finite temperature-dependent term
2aln2/mP, a phenomenon called "thermal screening. "
The "5 modification" we used in Eq. (18) for Aa also
captures this softening, for small QP. By contrast, the
zero-temperature II of Pennington et al. [5—8] (inherited
from Pisarski [13])behaves as aQ for small Q and has no
infrared softening. We believe that it is this infrared
screening, associated with the temperature-dependent Hp,
which is crucial for the existence of an N, (T), just as it
was found to be vital to the generation of a large value for
r [1].

VI. CONCLUSIONS

The work of Pennington et al. [5—8] strongly indicated
that the existence [4] of a critical number of fiavors N„
above which chiral symmetry was unbroken in QED3 at
zero temperature, was an artifact of incorrectly ignoring
wave function renormalization (via an unjustified appeal
to perturbation theory in 1/N). We have been interested
in extending the study of chiral symmetry breaking in
QED3 to finite temperature. In [1] we found clear evi-
dence for the existence of an N„dependent on T, but we
made the approximation of ignoring wave function renor-
malization. The present study has been aimed at remov-
ing that approximation, and studying the effect of includ-
ing wave function renormalization on chiral symmetry
breaking in QED3 at TAO.

The simplest generalization of the model of [1] to in-
clude wave function renormalization, in which we adopt-
ed the "zero-frequency" approximation, turned out to
lead to unphysical results, in that they failed to show any
similarity to the zero-temperature results of [5—8] as
T~O. We regarded this as reason for discarding that
model, and adopting instead a modified equation for the
wave function renormalization at TAO, which gave re-
sults consistent with the T =0 case. We found, using the
modified model (namely the kernel Ia of Secs. IV and V),
that although wave function renormalization was now in-
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eluded in a way qualitatively very similar to that of
[5—8], nevertheless at finite temperature we still found
clear evidence for an X„ in contrast to the results of
[5—8]. The essential reason for the difference seemed to
be the characteristically different infrared behavior of the
vacuum polarization, at zero and at finite temperature.
Indeed, the inclusion of wave function renormalization,
in the manner described in Sec. IV above, gave results
very little different, overall, from those of [1]. In particu-
lar, a value of about 10 for the ratio r seems to be remark-
ably robust, while the values of A, (0,0) and T, depend
more on the model for A.

The conclusion that it is the infrared behavior which is
crucial in obtaining a finite X, is supported by the calcu-
lations of Kondo and Nakatani [10]. Using (among other
vertices) the Pennington-Webb vertex of Eq. (4), these au-
thors found that with an infrared cutoff e of order 10 a,
a fermion mass was generated for N (N„where N, de-

pended logarithmically on e' Very. roughly, we might in-

terpret e as corresponding, in our calculation, to the
"thermal mass" (IIO)'~, which is of order T'~ . We then
have a physical interpretation of the perhaps somewhat
artificial cutoff introduced by Kondo and Nakatani [10].

These authors [10] also found that the behavior of the
dynamically generated mass for N near N„using the ver
tex of Eq. (4), was consistent with mean field theory: that
is, JN=(N, , N) ~ . By con—trast, in our previous paper
[1] we presented evidence (see Fig. 6 of [1]) which sug-
gested a behavior of the form JK =exp[ —C j(N, N)'~ ]. —
However, we have reexamined those calculations and are
now less confident that a firm conclusion can be drawn
regarding the behavior near N„where the mass is very
small and numerical accuracy increasingly dificult to
control. In fact, a more conservative interpretation of
both our present and previous data is that they are quite
consistent with mean field theory, at least in the regime

(for N not too close to N, ) where the calculations are
most reliable.

The present calculation can, of course, be criticized for
invoking the somewhat ad hoc "5 modification" for the
A equation (though we stress again that this modification
does the job required of it, namely to produce sensible-
looking solutions at low 'P. It would clearly be much
more satisfactory to attack the equations for the coupled
n %0 components of X, using the full n %0 components of
the photon propagator as given in [3]. In this way the
true effects of the n%0 components, especially at low T,
could be identified. No doubt a start on this problem
could be made by going back to the simplifying approxi-
mation X(P,P)=X(O,P), which is likely to be quite reli-
able [see Eq. (2.54) of [3]]. We hope to return to this
problem elsewhere.
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