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It is shown that within the framework of the Mandelstam representation, the scattering
amplitudes, if they exist, are uniquely determined by the absorptive parts over the elastic
region of one channel. It is illustrated in detail with pion-pion and pion-nucleon scattering.

I. INTRODUCTION

In a nonrelativistic theory it is, in general, nec-
essary to have the potential fully given in order to
determine the scattering amplitude completely.
Similarly, in a relativistic theory the knowledge of
absorptive parts and double-density functions
which play the role here as potentials will deter-
mine the scattering amplitude. On the other hand,
a relativistic scattering amplitude is also severely
restricted by analyticity, crossing symmetry, and
unitarity conditions. One expects that partial in-
formation on the absorptive parts or the double-
density functions may already be sufficient to de-
termine uniquely the scattering amplitude. This
expectation has been borne out by detailed analysis.
An example is the following, in the framework of
the Mandelstam representation': If the absorptive
parts in one channel are given over their elastic
region, then the amplitude is uniquely determined
if it exists. This result is. related to another ex-
cellent example given by Martin' who showed that
for a neutral spinless particle, the amplitude is
uniquely determined if the double-density functions

p„(s,t) and p, „(s,u) are given over the elastic re-
gion in the s channel, and if there is an elastic re-
gion in either the u or the t channel.

Probably the most remarkable fact about these
results is the way elastic-unitarity conditions can
fix the scattering amplitude when it is used jointly
with analyticity. The full unitarity condition is not
necessary. Even crossing symmetry is not much
used although the necessary input information can
often be lessened if crossing symmetry is fully
utilized. Thus, for a neutral scalar particle satis-
fying the Mandelstam representation, there is only
one independent double-density function if crossing
symmetry is taken into account. Accordingly,
knowing this one double-density function over the
elastic region in one- channel will uniquely deter-
mine the scattering amplitude.

We may also remark that a result of this kind is
not an existence proof of a solution for an ampli-
tude satisfying the Mandelstam representation but
rather a uniqueness theorem. WhetI er there does
exist a solution to the Mandelstam representation
consistent with unitarity and crossing conditions is
not indicated. But if such a solution does exist,
then it is unique under the given premise.

The analysis we will consider is connected with
the pioneer work of Martin' in the following sense.
Assuming that the scattering amplitude satisfies
the Mandelstam representation, the absorptive part
A, (s, t) is determined up to subtraction terms by
the double-density functions p„(s, t) and p,„(s,u).
To a large extent, the subtraction terms are not
free parameters of the theory, but rather severely
constrained by analyticity, unitarity, and crossing
conditions. First of all, the Froissart-Martin
bound limits the number of subtraction terms to
two. If there are two sets of amplitudes having in
common either the same absorptive part A, (s, t) or
the same double-density functions p„(s, t) and

p, „(s,u) in the elastic region of the s channel,
then, as will be shown in the following, the two
amplitudes can differ at most by the real part of
their s wave. However, the real part of the s wave
is determined up to a sign by its imaginary part in
the elastic region. If the wrong sign is chosen, the
s wave will have no left-hand cut and admit no in-
elastic contribution in the crossed channel and
hence must be rejected. In the end we see that the
subtraction terms are entirely fixed so that given
the s-channel absorptive part A, (s, t), the double-
density functions p„(s, t) and p, „(s,u) will be de-
termined, and vice versa.

Martin's analysis was done for a neutral scalar
particle. But he remarked that difficulties associ-
ated with charge-exchange scattering may be over-
come in some cases, and he showed that in pion-
pion scattering, the Bose statistics can be utilized
to make the argument work for the I= 2 scattering
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amplitude. However, because of his reliance on
Bose statistics, Martin's argument cannot be re-
peated with other isotopic-spin amplitudes of the
pj.on-pion scattering. We miO show that eompliea-
tions coming from the isotopic spin ean be system-
atically handled. For illustration, we will consider
pion-pion scattering in great detail but the method
presented is directly generalizable to scalar parti-
cles with arbitrary isotopic spin.

Difficulties arising from the presence of spin are
much more serious. This is due mainly to the vast
lncl'8RS8 of possible RlternRtlves fox' the x'8Rl pRrt
of the scattering amplitudes when the s -channel
elastic imaginary part is given. For spinless par-
ticles there are four alternatives, for pion-nucleon
scattering there are 16, and for nucleon-nucleon
scattering the number of possibilities increases to
2". For this reason, it appears unlikely that one
can treat the general case of arbitrary spin. How-
ever, for the important case of pion-nucleon scat-
tering, there is a relationship between the spin-up
Rnd spin-down pRx'tlR1-wRve amplitudes which rules
out 12 otherwise possible alternatives for the real
parts of the helicity amplitudes and thereby enables
us- to carry through the analysis.

Martin' has given yet another variation of the
theorem, namely, for spinless particles, if the in-
elastic contributions to the absorptive part are
given, the amplitude is again uniquely determined.
This is so because within the elastic t region, the
double-density function p„(s,t) has no contributions
from the elastic absorptive part in 8 channel and
is determined completely by the inelastic part of
A, (s, t); p„,(u, t) in the t -channel elastic region
will either be given by s -u crossing symmetry
when there is one, or by assuming that the inelastic
contributions to the u-channel absoxptive part are
given. These premises will then be equivalent to
knowing p„(s,t) and p„,(u, t) over the elastic region
in the t -channel from which it follows that the am-
plitude is uniquely determined. However, this is
not appbcable to scattering amplitudes when there
is no elastic region in the t channel such as in
pion-nucleon or kaon-kaon scattering.

II. UNIQUENESS OF PION-PION SCATTERING
AMPLITUDES WHEN THE ABSORPTIVE PART

IS GIVEN OVER THE ELASTIC REGION
IN THE s CHANNEL

It is not difficult to see that the scattering ampli-
tude for a spinless particle satisfying the Mandel-
stam representation is uniquely determined if the
absorptive part is given over the elastic region in
one channel. Under the given condition, the imag-
inary part for each partial wave is fully determined
and through the elastic unitarity condition, the real
part Ref, will be determined up to a sign. A priori,

this sign ean be different for different l'. lf this
mere the case, no useful result would follow. How-
ever, from the fact that the amplitude satisfies an
N-subtracted Mandelst'am representation, all the
even partial maves as mell as all the odd ones ean
be analytically continued ' into the complex E plane
for 1&N and one finds that the choice of sign must
be the same for all even / &N and likewise for a3.1
odd E)¹As R consequence~ up to R polynonllRl
in cos8 the real part of the full amplitude is lim-
ited 'to only four alternatives. The main task is to
be able to pick just the right choice and eliminate
all the other possibilities. The net result is that
the amplitude itself is now determined up to a poly-
nomial of order N in cos8. In particular, all the
double-density functions are now determined
everywhere. In order to restrict further the sub-
traction terms, one must perform a crossing to
another channel, and here complications from
charge-exchange scattering threaten the simplic-
ity of the ensuing end result that the scattering
amplitude is, in fact, uniquely determined, On the
other hand, we notice that when the scattering
particles Rx'8 splnless the cx'osslng IQRtrlces Rre
momentum-independent numerical matric es. This
means that me can proceed to analyze each scat-
tex'lng amplitude with R fixed lsotoplc spin. When
me perform a crossing to another channel, it is
true that an amplitude with a given isotopic spin
mill become a mixture of amplitudes of all isotopic
spins. However, it is clear that if every ampli-
tude of fixed isotopic spin has a common property,
then each amplitude in the crossed channel like-
wise has the same property. Thus the Froissart-
Martin bound in the crossed channel mill limit the
number of subtraction terms to tmo. Further re-
strictions from the unitarity condition and analy-
ticity require in the end that the amplitudes are in
'fact uniquely determined. %8 see that in this way
the ease of two spinless particles having axbitrary
isotopic spin can be systematically treated. In the
following, me shall illustrate in detail the general
method with pion-pion scattering.

The T matrix for the pion-pion scattering may be
decomposed j.nto the fo].lowing;

(qg (r)oP) =A'(s, t,ug„,g,,+A'(s, t, u)O„,O~

+ A' {s,t, u)5„g5s~, (I)
where n, P, y, 5 are charge indices for the pion
and take on the values 1, 2, 3. The invariant am-
plitudes A'(s, t, u) have the following simple cross-
ing symmetries:

A'(s, t, u) =A'(s, u, t),

A'(s, t,u) = A.'(s, u, t),

A'(s, t,u) =A'(u, t,s),
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and (2) into scattering amplitudes of fixed isotopic spin,
A'(s, t,u) =A'(u, t,s),

A'(s, t,u) =A'(t, s,u),

A'(s, t, u) =A'(t, s,u),

where we have underlined a variable whenever it
is held fixed. From these relations it is clear that
there is, in fact, only one independent pion-pion
scattering amplitude because given any one of the
A' s, the other two can be obtained simply from the
above crossing relations.

In order to make use of the unitarity condition in
a simple way, we must decompose the T matrix

I

(I,y5iTiI, nP) =B'(s, t, u)5„+B'(s,t, u)5, ,
+B (s, t,u)5„. (3)

Let us denote B' (s, t,u) as the invariant scattering
amplitude with total isotopic spin I in the i channel
with i =s, t, u; B~', the absorptive part of the i-
channel amplitude in crossing the j -channel physi-
cal cut; and B'„' with xy taking on st, I;u, and us,
the i -channel double-density functions. It is as-
sumed that like the A'(s, t, u), the B"satisfy an
N-subtracted Mandelstam representation,

s t B (s', t')ds'dt' t"u" B;„'~(t', u')dt'du' u~s" B„';I(u', s')du'ds'
v' (s'-s)(t'-t)s'"t'" v' (t'-t)(u' u)t'"-u'~ s' (u'-u)(s'-s)u'"s'"

p=O

N N N

+ P t~s'B" I+ g s~~'B r+ g u~t'B""
Pq Pq Pq

p, q=o P,q=O P,q=O

The A's and the B's as well as the corresponding density functions are related to each other by the follow-
ing:

B"(s, t, u) =Q (n')' A" (s, t, u. ),

and, correspondingly,
3

B,',~(s, t, u) =g (n')qA', ,(s, t, u'),
/=1

where I= 0, 1, 2 and i runs over s, I;, u while xy stands for tu, us, and st. The a' are given explicitly by

e' = 0 1 -1
(1 3 1)

e'= -1 0 1 )
n" = 1 -1 0

1 0

Because of the crossing relations given by Eq. (2), there are only two independent double-density functions
o(s,y) and p(s, y) in terms of which the B'„;, for instance, may be arranged in matrix form:

8 yO B8~0 B8e
tu us

0+ 2p 4p+ 0' 4p+

B8yl B8y B8y B8
Xy tu ..g8

0' ~ P P ~ 0' (8)

8,2 B8,2 B8,
tu us 2p 0'+ p p+ 0'

B„' and B„"„canbe obtained directly from B,'„by cyclic permutation on the columns of the above matrix.
The crossing relations for the B amplitudes may be obtained by first expressing the B's in terms of the

A. 's, performing the necessary crossing on the A amplitudes according to Eq. (2), and then reexpressing the

result in terms of the B s. This will give, for instance, the following s-u crossing relations:

B" '(s, t, u) =B"='(u,t,s) =-',[B"(s,t, u) —SB"(s,t,u)+5B"(s,t, u)],

B"' '(s, t,u) =B'~='(u, t,s) =—'[2B"(s „t,u) —3B"(s)t, u) —5B"(s, t, u)],

B"'='(s, t, u) =B"='(u, t,s) =—'[2B"(s, t, u) + SB"(s, t, u) +B"(s, t, u)]
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Imf', (s) =lmf,"(s) for all /, (10)

and from the elastic-unitarity condition we see that
the real part of each partial wave inside the elas-
tic region is determined up to a sign,

Now suppose the absorptive part is given over the
elastic region in s channel. If there are two sets
of amplitude B and B' having in common these
absorptive parts, then in their partial-wave expan-
sion we have

or

and

or

Ref I, + Ref tl, +

Ref", =-Ref,"' for all even l&N,

Refr, - Ref

Ref', =-Ref,'~ for all odd l&N.

(13)

(14)

or

(Ref ', }'= (Ref,"}'

Ref', = +Ref," for each I.

(Ref",
—Ref ', ")(Ref, '+Ref ', ')=0,

(Ref Ref", )(Ref', + Ref", ) = 0.
(12)

From this it follows that

In principle, this sign can be different for different
/. If this is so, few useful results can be extracted
from such a situation. However, since the ampli-
tudes are assumed to satisfy the Mandelstam re-
presentation, f~~(s) as well as Ref I(s) can be analy-
tically continued into the complex l plane' separate-
ly for / even and l odd provided l&

¹ The analyti-
cally continued partial waves f", (s) and'fr' (s)
will coincide with the physical f, (s) for I even and
l odd, respectively. Then from Carlson's theo-
rem, ' Eq. (11) may be generalized to the following
two equations, valid with l complex and Rel) N:

The reason that these relations now hold for all
l even or all l odd rather than for each l even or
each I odd is that each factor in Eqs. (13) and (14)
is an analytic function of E. The case that both fac-
tors in Eqs. (13}and (14) are zero will mean that

Ref~' =Ref 'I + —= 0

or

Ref' =Ref" -=0

We see that given the absorptive part over the elas-
tic region in s channel, the elastic-unitarity con-
dition and the l-plane analyticity will admit, up to
a polynomial in cos8, only four possibilities for
the real part of the scattering amplitude.

In order to.arrive at the desired result

(a) Ref', =Ref," for all l&N,

we proceed to show that all the other three cases
are physically inadmissible.

(b) Suppose Ref', =-Ref," for all /&X. Then we
have

B"(s,cos0)+B" (s,cos8) =—Q(2l+1)(Refr +Ref,'~)P, (cosg)+2iB (s, t),
q,

Taking the discontinuity across the t cut for both sides of the above equation, we get

(16)

(s'-s)s' & " (u' —u)u'"
(17)

Now for a given t=t„ the right-hand side vanishes
before the first Landau curve is reached, ' i.e., for

4p, '&s&s, (t, ) where (s, —4p, '}(t,—16p') =64'~.

On the other hand, the left-hand side for any fixed
t is an analytic function of s with two nonoverlap-
ping cuts. The fact that it vanishes over a finite
segment 4g'&s&s, (t,) inside its analyticity domain
leads to the result that it vanishes identically, and
hence B,(s, t) vanishes identically. This in turn
will imply that there is no scattering at all. ' The
premise is therefore unacceptable.

(c) Suppose we have

Ref', -=Ref,"
Ref I, + Ref ir, +

If B"(s,t, u) is symmetric with respect to an ex-
change of t and u, then Refr' =0, and it reduces
to case (b). On the other hand, if B*'(s,t, u) is anti-
symmetric with respect to an exchange of I, and u,
then Ref", = 0 and it reduces to case (a). If
B'~(s, t, u) has no symmetry with respect to an ex-
change of I, and u as it is the case for pion-pion
scattering, we can form the following symmetrized
amplitude.

—,'[B"(s, t, u) +B"(s,u, t}I,
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where B"(s, u, t} for a given I will be a linear com-
bination of all B"(s, t, u) with I'=0, 1,2. However,
at this point we are not concerned with reexpres-
sing B"(s,u, t) in terms of B'I(s, t,u) through the
crossing relations. We merely want the B"(s,u, t)
as obtained, for instance, from the partial-wave
expansion of B"(s,f, u} by replacing cos8 with
-cos8 and add the series so obtained to the origi-
nal one. The resultant partial-wave expansion now

contains only terms of even /, but

Ref", = -Ref,"'
by premise, so that the reasoning given in case (b)
can be used here to obtain the relation that

B'„'(s,t)+B;„'(s,u) =0.

This equation implies through the Mandelstam re-
presentation that the absorptive part of the sym-
metrized amplitude can only be a polynomial of
degree N in cos6,

,'(B'I(s, t,-u)+B,"(s,u, t)) =gB I(t'+u~),
p=0

so that for all even l&N,

Imf, '=Imf, ' '—= 0,

md hence, from the elastic-unitarity condition,

Ref ' =Ref "'=-0

This, taken together with Ref', =Ref,", reduces

the situation under consideration to case (a}.
Finally, let us suppose

(d) Ref '= Ref 'I '
Ref ' = Ref i, -

', [B'—(s, t,u)-B' (s, ut)].

In the end, we come to the conclusion that for all
possible cases, we have

Imf' =Imf 'I

Ref', =Ref," for all l&N.

So far the I is just an index and the above result
holds separately for I =0,1,2. Hence, the two sets
of amplitudes with fixed isotopic spin can differ
at most by a polynomial of degree N ip cos8,

B'I(s,t, u) —B"l(s, t, u) =g nl(s)u". (18)

This implies in particular that all the double-den-
sity functions for the primed and unprimed ampli-
tudes must be identically the same and not just
over the elastic region of s-channel because if we
take the discontinuity across the u cut for both
sides of Eq. (18), for example, we get

The reasoning for this case is very similar to case
(c) if we consider the amplitude with a given isoto-
pic spin but antisymmetrized with respect to t and

I

u~

N Bs,l(s i u5 Bis,l(s i u4 N Bs,l f i u) B is, l(t i u) Ã
S t' su & i i su & i id i t I' tu i ' Iu & i i&, +&p(

(S S)SiN 7I J (f i t)f IN - S-P
(19)

and

gs, I g ts, l
P, g P, ff '

(2o)

Similarly, if we consider the discontinuity over the
f cut of Eq. (18), we will obtain

B' '(s, t) =B" '(s, t)

The left-hand side of this equation is an analytic
function of s with two nonoverlapping cuts. Since
it vanishes over a finite segment inside its analyti-
city domain, s, &s &s „where s, is the first inelas-
tic threshold, it vanishes identically, and we find

that throughout the s-t complex domain,

B'„'(s,u) = B"'(s,u),

B' (f u) =B"'(t,u), B"(s, t, u) —B"'(s,t, u) = p', (s)+ up', (s). (22)

Since a11 the double-density functions for the

primed and unprimed amplitudes have been shown

to be the same, the u-channel absorptive part will
also be determined up to a polynomial in cose„and
we can a Posteriori carry out a similar analysis
in the u channel to obtain

Returning to Eq. (18), if we now perform a cross-
ing to the u channel, each B"(u, t,s) and B"'( tu, s)
will be a linear combination of B"(s, t, u) and
B"' (s, t, u), respectively, as given by Eq. (9).
However, since each and every amplitude in the u

channel is bounded by the Froissart-Martin bound

at high u, their linear combinations will again be
bounded by the Froissart-Martin bound. Conse-
quently, N ~ 1, and we have

and (21) B"'(s, t, u) -B'"'(s, t, u) =y', (u) + sy', (u), (28)
Bs,l(f) Bis,l(f)p, t p, t

for all s and t.
where the u-channel unitarity condition further re-
quires that
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yo & const,

y,
' (const/u at large u.

j et us express, for instance, the u-channel I =2
amplitude in terms of s-channel amplitudes. As
given by Eq. (10), we have

B"' '(s, t, u) =-,' [2B'i~(s, t, u) -3B" '(s, t, u)

+ B'2(s, t, u)] .

Hence,

B ' (sq tqu) —B ' (si t) u)

= —,
' (2P,'(s)- 3P,'(s)+ tl,'(s)

+u[2P', (s) —3P',(s) +P', (s)]} (25)

Pp =g +5 Q&

gi =c +d u.
(26)

Then the u-channel unitarity bound given by Eq.
(24) demands that

0 = c =dr =0 for I =0, 1, 2.

Furthermore, a for a given I is a real constant
since B",rand Bt".rare both real for -t&u&4p, .
As a result, only the real part of the s wave can
possibly differ,

Comparing this with Eq. (23), we see that y', and
y', can only be linear functions of u. Quite general-
ly, we may put

We have reached the final conclusion that the scat-
tering amplitudes for the pion-pion scattering, if
they exist, are uniquely determined by the absorp-
tive parts within the elastic region in the s chan-
nel.

From our earlier discussion, it is clear that the
same result follows if we are given instead the
double-density functions B,", and 8,'„' over the s-
channel elastic region. This is a generalization to
Martin's analysis with neutral scalar particles.
Also, from our presentation it is clear that the
method is directly applicable to spinless particles
with arbitrary isotopic spins.

III. COMPLICATIONS FROM UNEQUAL-MASS

KINEMATICS

In considering cases (c) and (d) in the previous
section, we had to symmetrize or antisymmetrize
the scattering amplitude with respect to t and u in
order to eliminate the odd or even partial waves,
as the case may be. Of course, what was really
being symmetrized or antisymmetrized was the
scattering amplitude with respect to the cosine of
the scattering angle. For equal-mass scattering,
this is equivalent to symmetrizing or antisymme-
trizing with respect to an exchange of t and u. This
simple correspondence is no longer true for un-
equal-mass scattering. However, it is quite clear
how such kinematic complications may be handled,
namely, by employing a new set of invariant vari-
ables s, t, u for which the above simple corre-
spondence is restored. Consider, for instance,
two neutral particles of masses p, and M, in the
center-of-mass system in s channel, we have

Imf, =Imf fi, I) 0

Reft=Ref,", l) 1

and

Ref, =+Ref,".
If Ref', = —Ref,", we would have

Ref', =(q, /vs )C', (27)

4q, ' = s —2(M'+ p, ') + (M' —tj, ')'/s,

t = -2q, '(1 —cos8),

u = -2q, (l + cos8) + (M' —p. ')'/s .

For kinematic relations, we see that an exchange
of t and u does not correspond to cos8 —-cos0.
Now if we change variables to

where C is a constant. This is physically inadmis-
sible because it has no left-hand cut, in violation
with crossing symmetry and because by analytic
continuation it gives no inelastic contributions in
crossed channels. We are left with

S S=S-&

t t = t+ (M —p. ) /2s,

u-u =u -(M' —p, ')'/2s,

(31)

Ref 0
=Ref 0",

and hence,

F (s, t, u) =F' (s, t, u). -

(28)

(29)

then an exchange of t and u does correspond to
cos8 —-cos8. Under these changes of variables,
the Mandelstam representation for the scattering
amplitude for two neutral particles may be,re-
written as
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G (s, t, u) = E(s, t, u)

p„(s', t' —(M' —p')'/s)ds'dt'
w' „„s'"t'"(t'—t)(s' —s)

p,„(t' —(M' —p, ')'/s, u'+ (M' —p, ')'/s)du'dt'
7r' u'"t'"(u' —u)(t' —t )

s"u" *
p„,(u'+ (M' —p')'/s, s')ds'du' ~ —,s l "pg, ,(s')ds'

m' .. s'"u'"(u' —u)(s' —s) ~ m „(s'—s)s'

p, „.(u'+ (M' p')-'/s)du' ~,—,„& p&, ~(t' —(M'- u')'/s)«'
P=0 p=0

sp~+ Q s up~+ Q u t ppq ~

(32)

p, q=0 p, q =0 p, q =0

An analysis similar to the one made in Sec. II
may now be made on G(s, t, u) replacing t and u
wherever they appear in the argument by t and u

until we come to the result that the primed and un-
primed G's and hence F's can differ at most by a
polynomial in u or equivalently in u. Similarly,
when we have to go over to the u channel, we can
change s, t variables into s and t in such a way
that an exchange of s- t corresponds to cos8„
—-cos8„. In the end, one will arrive at the same
conclusion as in the equal-mass case. Thus the
unequal-mass kinematics give rise to no new dif-
ficulties other than making the argument more in-
convenient. For this reason, we will continue to
employ equal-mass kinematics, assuming the
scattering particles always have equal masses.

, IV. UNIQUENESS OF MANDELSTAM

AMPLITUDES FOR PION-NUCLEON SCATTERING

When the scattering particles carry spin, there
will be 2s+ 1 possible total angular momenta for
each orbital angular momentum l, due to different
orientation of the total spin s. Since the analysis
must be carried out in partial waves, this will
mean that the number of possible alternatives for
the real part of the scattering amplitudes when the
imaginary part is given over the elastic region of
one channel will greatly increase with the presence
of spin. Thus, for pion-nucleon scattering, which
is the si.mplest possible case as far as spin com-
plications are concerned, there are 16 possibilities
as compared to four for the spinless case, while
for nucleon-nucleon scattering there will be 2'
cases. It is not at all clear how one can eliminate
these extra possibilities, and it appears unlikely
that we can find a general treatment for arbitrary
spin. For pion-nucleon scattering, there is a for-
tunate coincidence that the analytically continued
spin-up and spin-down partial waves have a special
symmetry between them and the argument can be

carried out after this is fully taken into account.
The spin and isotopic-spin dependence in the

T matrix of the pion-nucleon scattering can be
separated out by the following decomposition:

A,', (s, t) =+A„', (u, t),

A,'„(s,u) =+A,'„(u, s),

B,', (s, t) = v B„',(u, t),

B,'„(s, u) =+ B,'„(u, s).

(35)

We note that there is no crossing symmetry in ex-
changing s and t or u and t because the t channel
corresponds to the annihilation process mm- NN,
which is entirely different from the pion-nucleon
scattering. We should also notice that there is no
elastic scattering region in the t channel since the
annihilation process itself corresponds to an in-
elastic scattering.

The invariant amplitudes with fixed total isotopic
spin A and B' a,re related to A' and B' as follows:

A'" =A'+ 2A.

T =5„s[-A"(s, t, u)+ ,'iy (q+q')B'-(s, t, u)]

+ ~[Ts, 7 ][-A (s, t, u)+-,'ty. (q+q')B (s, t, u)],
(33)

where, as usual, o. and P are charge indices of the
pions; q and q' are their incoming and outgoing
momenta. The eovariant scattering amplitudes A'
and B' have the following simple crossing sym-
metry:

A'(s, t, u)=+A'(u, t, s),
(34)

B (s, t, u) = v B ~ (u, t, s) .

If we write down an N-subtracted Mandelstam
representation for A' and B', these relations
will imply the following crossing relations for the
double-density functions:
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and

Bl/2 B+ +2B-

B3/2 B+

(36)

The A.I and B' do not have simple crossing sym-
metry. However, their crossing relations in ex-
changing s and u can be obtained from those for
A' and B ' through Eqs. (34) and (36),

have equal mass.
Now suppose the absorptive parts of the scat-

tering amplitudes are given over the elastic re-
gion in the s channel; then the helicity amplitudes
f '„f,' and f,',f,' will also have equal absorptive
parts inside the elastic region in the s channel.
From the inversion formula for a», it follows
that

A"'(u, t, s) =-,' [-A'"(s, t, u)+4k'"(s, t, u)], Ima'„=Ima„ for all l p (42)

A'"(u, t, s) = —,
' [2A'"(s, t, u)+A'"(s, t, u)],

B (u, t, s) = g[B '~ (s, t, u) —4 B (s, t, u)]~

B'"(u, t, s) = —,[-2B"(s, t, u) —B' '(s, t, u)] .

Since we have to use the partial-wave expansion in
the s channel and analytically continue the partial
waves into the complex l plane, we need to employ
also the helicity amplitudes as defined by the fol-
lowing:

and the s-channel elastic-unitarity condition im-
plies that

(Rear»)'= (Rea, ', )' for all l. (43)

(Rea'„+ Rea,",)(Rea'„—Reaf,') =0,

If we now analytically continue" a), as well as
Rear', for l&N into the complex l plane, then from
Carlson's theorem the above equation can be
generalized to the following set of equations valid
for complex l, with Rel& ¹

f, (W, t)= [2 (W, t)+(W-M)B (W, t)],
(36)

f,'(W, t) = — [A'(W, t) —(W+M)B'(W, t)],

(Rea, ,+Rea', , )(Rea,, -Rea', , ) =0,

(Rea', +Rea,")(Rea', —Rea", ) =0,
(44)

where W=vs, Z is the c.m. energy of the nucleon
in s channel, and M is the nucleon mass. f', a,nd
f', have the following pa.rtial-wave expansions:

f,(s, cos8) = Q [a'„P„,'(cos8)
r=o

—at- Pi-i'(cos8)],

(Rea, +Rea,' )(Rea', —Rea,'-) =0,

where a» and ar, coincide with the physical a» for
l even and l odd, respectively. Since each factor
in the above equation is an analytic function of l,
it follows that

f~~(s, cos8) = Q (a, —a'„)P, '(cos8),

dx [f,(W, x)P, (x) +f2(W, x)P, ,(x)],
(40)

~1
a'„(s) = —,

' dx[ f, (W, x)P, (x)+f,(W, x)P„,(x)] .

a', (s) = —,
'

where a prime on a Legendre function means taking
derivatives with respect to cos6). a„ is the lth
partial wave with total angular momentum l+ 2

and ar is the partial wave with total angular mo-
mentum l- 2. The inversion formulas for these
partial waves are given by

or

or

Rear+ = Rear+,

Rear =-Rear+ for all even l&N;

Rear-=Rear- ~

Rea'r = -Rear" for all even l& N;

Re~;+ = Rea,',-,
Rear+ = -Rea'„ for all odd l & N;

Rear =Rear'

(45)

In the s-channel elastic region, we have

Ima, (s)= ~a, (s)~',

Ima„(s) = )a„(s)(' . (4i)

We assume that A~(s, t, u) and B'(s, t, u) satisfy an
N-subtracted Mandelstam representation. They
are of the form given by Eq. (4) and to save space,
we will not write them down explicitly. For sim-
plicity, we further take the pion and nucleon to

Rear =-Rea,' for all odd l&N.

We immediately see the vast complication coming
from the nucleon spin because we are now faced
with 16 possible alternatives instead of only four
as in the case without spin. Of these 16 cases, the
following four are the same as in the spinless
case:
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(a) Rea'„= Rea,", ,

(b) Resgq = -ReOIq,

(c) Res)~ = -Res)p ~

Rea, ~
= Rea,'~,

(d) Resf, = Rea,", ,

Re@)~ = -Re@)~ .

(46)

Rea'„= Rea",, ,

Rea, --Re@) (49)

Since Rea, ,=Re@'„, l&N by premise, we conclude
that f', —f,"and f', f2-I can, at mo st, be polynomi-
als in eos8, of order N.

Similar considerations may be given to cases
{b) and (d). However such reasoning will be insuf-
ficient to deal with the other 12 cases, such as

Take, for instance, case (c). If we symmetrize
the helicity-nonf lip amplitudes,

-',[y', (s, t, u) +y', {s,u, t)],
',[f',I(s,-t, u) +f,"(s,s, t)j,

and antisymmetrize the spin-Qip amplitudes„

,'[f1(s, t,—u)-f1(s,u, t)j,
,'[f,"(s,t,-u) —f,"(s,u, t) j,

then from the inversion formula for a», we see
that only a» and a» with I even will appear in the
Legendre expansion of these expansions. Now

from the Mandelstam representation for A.' and 8'
we can write down those for ff and f,' and following
the previous line of argument, we ean obtain

f', „(s,t)+f', (s, u) =0

f', „(s,f) —f,' (s, s}=0,

where f', „, for example, is the s-t double-density
function for f, with total isotopic spin I. From
these equations, it follows through the Mandelstam
representation that the s-channel absorptive part
of the amplitudes given by Eqs. (47) and (48) can,
at most, be polynomial in cos8, of order N, so
that for l&N

and from the elastic-unitarity condition,

Rea,', =Rea'„'=0 for all $&Ã.

To be able to treat a case like this by the above
method, we need to find a linear combination of
fI, and fI~and their derivatives in such a way that
its Legendre expansion 3.nvolves only Qg+ or' 6)
However, a careful look at the inversion formula
for a» will reveal that this is not possible. The
closest one can get along this direction is to make
use of the relation

P„,(x) = xP, (x) — P, '(x)

1 I . I g 1 x
&~+=& Pi(&) fi+&f2+— f2$+1

Were it not for the factor 1/(l+ I) in the last term
of the integrand, we would have found a simple
function of fI, and f21and their derivatives, for
which only a„appears. in its Legendre expansion.
.Then by symmetrizing or antisymmetrizing this
expression, we may eventually deduce that the
primed and unprimed amplitudes ean differ at
most by a polynomial in cos8,. Since this is not
possible, we have to look for other means. Fortu-
nately, for pion-nucleon scattering there is a re-
lationship" between a', + and a', , namely,

a;, (W) = a((„) (--W),

s,—,(W) =-a'„„, {-W).
These relations may be obtained directly from the
definition of a„(W),

s„(W) = —.6 (W+M)'- u'] [A (W') +(W -M)B(W')]+ [(W -M)'- V'] [-A „{W')+(W+M)B„,(W')]&,32m+'
(5l)

A, (s) and B,(s}depend only on s =W'. They are
analytic in the whole s plane except for poles and

cuts on the real axis. In the W plane, A, (W) and

B,(W) have cuts along the whole imaginary axis,
along the circle P ~

= (M' —p, ')"' as well as cuts
along the real axis from -~ to -M —p. , from
-(M'+2p')"' to -[(I—p'/M'){M' —p.')]"', from
-M+ p. to M —p, , from [(I—p'/M')(M' —p,')]"' to
(M'+2p, ')"', and from M+ p, to ~. The complica-
tion from these kinematic cuts can be avoided if
we use the reduced partial waves
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b'„(W) =(k ) 'a'„(W),

b', (W)=(k') 'a(„,) (W)

(53)

(54)

so that the corresponding MacDowell reflection
relations for b'„(W) may be viewed upon as rela-
tions obtained by analytic continuation of b'„(W)
from W to -K. One can then show" that the rela-
tions

yI & const,

y~~ & const/u,

5O & const for large u.

(6.Q)

If we perform a crossing on Eq. (59) back to the
s channel and compare the result with Eq. (56),
we find that y„y» and 6,' can depend on u only
linearly:

a'„(W) =a,',"(W),

a, (W) =-a, (W)
(55)

y', =a'+b'u,

y =c +du,

are incompatible with the nature of the singularities
of partial waves in the variable l and s, namely,
with the existence of moving singularities. As a
result, the case given by Eq. (49) must be ruled
out because it is not consistent with the MacDowell
reflection symmetry of a„ in Eq. (50). All the
other cases not yet considered are of this type and
hence can be ruled out by the same symmetry argu-
ment. We finally arrive at the result that f' and.
f,'I for t = 1, 2 can differ at most by a polynomial
of order N in cos0„

(56)

(57)

where all higher terms have been put equal to
zero in accordance with the Froissart-Martin
bound in the u channel. As can be seen from Eq.
(37), an amplitude with a given I will become a
linear combination of both I = 2 and ~ amplitudes
when it is crossed over to the u channel. However,
since each amplitude satisfies the Froissart-Mar-
tin bound, so will be their linear combination,

. giving us Eqs. (56) and (57). The coefficients no~,

a[, and P,
~ are further restricted by the partial-

wave unitarity bound in the s channel,

and

50=P +q up

where a, b, c', d, P, and q' are just constants.
From the unitarity bound in the s channel Eq. (57),
we must have

Once again we come to conclude that the primed
and unprimed amplitudes for pion-nucleon scat-
tering can differ at most by a constant, which must
be real since both sets of amplitudes are real be-
low the elastic threshold.

Now from the partial-wave expansions for f',
and y',

f', =(v s/q, )[a,', +3af, cose+ ~ -a,' — ~ ~ ],
f~n =(Ws/q, )[(a~» —a„)+3(a,'0 —a,',) cose, + J,

where all terms not explicitly written must be the
same for primed and unprimed amplitudes. If
a~ & a,'~, then fr —f2' will not just be a real con-
stant. Also, if a', 0 a,'I, then ff —f,"will not just
be a real constant. Ne see that all the partial
waves in the s channel must be the same for the
primed and unprimed amplitudes except possibly
for the real part of g,. In particular, we have

. z', & const,

a~& const/s,

and

poi& const for large s.

(56)

f', =f2~ for I=-,', -', .
As for Reao„since Ima,', =Ima,"„we are limited
to only two final possibilities due to the s-channel
elastic-unitarity condition,

Just as in pion-pion scattering, Eqs. (56) and (57)
imply in particular that all double-density func-
tions must be identically the same everywhere for
the primed and unprimed amplitudes, so that the
u-channel absorptive parts are also determined
up to a polynomial in cos8„. If we now make a
similar analysis in the u channel we obtain

f ', (u, t, s) —f,"(u, t, s) =y,'(u) + sy, (u),

f,'(u, t, s) f', (u, t, s) =—6,(u),

where from the u-channel unitarity condition,

Reaoi, = +Rea,'~ . (62)

Rea, +
= -Rea'+

we get

Rea,', =(q,/v s)k', (63)

where A.
' is a constant. But such an s wave has no

left-hand cut in the s plane; it allows no inelastic
contributions in the u channel and leads to the re-
sult of no scattering. 9 Hence, it must be discarded
and we arrive at the final conclusion that
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f', (s, t, u) =f", (s, t, u) for I= ,' or--', , (64)

which, together with Eq. (61), says that the scat-
tering amplitudes for pion-nucleon scattering are
uniquely determined by the absorptive parts over
the elastic region in the s channel.

V. CONCLUSION

Quite generally, an amplitude satisying the
Mandelstam representation is so severely re-
stricted by the elastic-unitarity condition that it
is uniquely determined if its absorptive part is
given over the elastic region in one channel. Under
the given premise, the real part of each partial
wave will be determined up to sign. A priori, this
sign may be different for different parti@ waves.
For the argument to go through, it is crucial that
partial waves can be analytically continued into
the complex / plane. Since so far this is known to
be possible only for amplitudes satisfying the
Mandelstam representation, the latter remains a,

necessary assumption in the argument. The result
has been shown to hold in general for scattering
of two spinless particles with arbitrary isotopic

spins. In particular, it holds for pion-pion scat-
tering, which was considered in great detail. We
have also seen that vast complications occur when
spins are present. However, at least for pion-
nucleon scattering, there is the MacDowell reflec-
tion symmetry relating the spin-up and spin-down
partial waves and the analysis can be carried out
when this is fully taken into account. If enough
similar symmetry relations can be found for scat-
tering of particles with higher spins, it may be
possible that the analysis can be extended to the
general case of arbitrary spin.

We have seen how the elastic-unitarity condition
and analyticity can uniquely determine the scat-
tering amplitude. The full unitarity condition is
not required and crossing symmetry is only spar-
ingly used. It is not known that an amplitude so
determined can always be made consistent with the
full unitarity condition and all the crossing sym-
metries. In other words, it may be possible that
the Mandelstam analyticity, unitarity, .and crossing
conditions are so restrictive that no solution sat-
isfying them exists. What has been shown is that
if such a solution exists, it is also unique under
the given premise.
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