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We assume that the Pomeranchukon poles lie on Schwarz trajectories: G.~(t) =1++ +g(t).
We develop a functional self-consistency equation for g(t) based on t-channel unitarity, and
find that near t =0, g(t) has the behavior (const) t (-lnt)I . Finally, we obtain an expres-
sion for the t-channel partial wave and determine the high-energy limit of the scattering
amplitude in the s channel.

I. INTRODUCTION

This paper is the second in a series devoted to
self-consistency conditions on Pomeranchukon
Regge singularities. The consistency conditions
are derived from unitarity in the channel of the
singularities, which we take to be the t channel.
This origin of the conditions determines which
properties of the Pomeranchukon can be chosen
arbitrarily, and which are determined self-consis-
tently. The Froissart condition, ' n(0) ( I, follows
from s-channel unitarity, not t -channel unitarity,
so in these papers a(0) is a free parameter. We
will choose the experimental value u(0) = 1 in the
present paper On th. e other hand, once n(0) and

some other properties of the Pomeranchukon
singularities are specified, t-channel unitarity
determines the t-channel partial-wave amplitude
in terms of a few parameters. Most important,
the strengths of the Regge cuts generated from the
Pomeranchukon are determined.

In Paper I of this series, ' we constructed t-chan-
nel partial-wave amplitudes under the assumption
that the leading Pomeranchukon singularity for t
)0 is a pole, and that the two-Pomeranchukon cut
contributes negatively to total cross sections in
the 8 channel. In order to achieve the negative
sign, which is required by Mandelstam' and the
absorption model, ' we had to assume the presence
of moving poles, similar to Castillejo-Dalitz-
Dyson poles, in certain meromorphic functions.
At the same time, this assumption led to a three-
Pomeranchukon coupling which vanishes when the
Pomeranchukons have j=1 and t=0, a property
that Gribov and Migdal termed "quasistability" of
the Pomeranchukon. '

The results of Paper I depended upon the behav-
ior of multi-Pomeranchukon phase space near the

I

o.„(t)=no. (t/n')- n+1. (1.2)

This property opens the possibility that the sing-
ularity bootstraps itself. 7 In addition, a„(t)= o.(t)
means there are only two cuts in the angular mo-
mentum plane condensing on j= 1 at t =0, instead
of the infinite number present in Paper I. As we

pointed out there, the full infinite series must be
retained in the diffraction region I, &0, since the
cuts with larger n lead those with smaller n.

964

tip of a multi-Pomeranchukon cut in the angular
momentum plane. Because the phase-space vol-
ume grows more slowly when more Pomeranchu-
kons are present, we could argue that the multi-
Pomeranchukon cuts do not enter in the self-con-
sistent determination of a(t) near t=0; nor do they
contribute importantly to asymptotic expressions
in the crossed channel when -tins is less than
some constant.

In the present paper we construct self-consistent
amplitudes beginning with a somewhat different
assumption, namely, that there is a pair of Pome-
ranchukon singularities on Schwarz trajectories'.

o', (t) = I ~~t'"+g(t), g(0) =0

Both Schwarz trajectories must be present to avoid
a spurious singularity at t=0. We pointed out in
Paper I that the behavior of multi-Pomeranchukon
phase space changes for the particular case of
Schwarz singularities, so the separate discussion
given here is required for the sake of complete-
ness. However, a special status for Schwarz sing-
ularities is suggested by their presence in several
investigations. Among these are the following.

(i) Schwarz' pointed out that the "exact" Schwarz
trajectory with g(t) —=0 satisfies the functional
equation n(t) = n„(t), where n„(t) is the n-Pome-
ranchukon trajectory
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Therefore, Schwarz trajectories simplify the
Regge description of diffraction scattering.

(ii) Schwarz trajectories occur in discussions
of violations of Pomeranehuk's theorem. '

(iii) Schwarz trajectories appear in the eikonal
model. ' Eikonalization renders an amplitude con-
sistent with s-channel unitarity and the Froissart
bound, When the full amplitude corresponding to
a linear Regge-pole trajectory 5+ cg, b &1, is ei-
konalized, one obtains a t-channel partial-wave
amplitude corresponding to a pair of Schmarz cuts:
f(t, j)=a[(j- 1)' —y't] 't'. At t=O the cuts col-
lapse to a third-order pole, which just saturates
the Froissart bound in the crossed channel.

In Sec. II me review the constraints imposed by
a very crude form of t-channel unitarity, elastic
umtarity. This does not lead to self-consistency
conditions, nor does it involve the cuts t at ac-
company the Pomeranchukon, but it does restrict
the general form of the amplitude. In Sec. III me
use multi-particle g-channel unitarity to obtain an
expression for the contribution of the tmo-Pome-
ranchukon cuts. Here our work resembles that of
Gribov, Pomeranehuk, and Ter-Martirosyan,
whose results mere used in Paper I.' The expres-
sion that we find is different from that of Gribov,
et aI. because, as me have stressed, tmo-Pome-
ranchukon phase space is radically different for
ordinary Regge trajectories and Schwarz trajec-
tories. In Sec. IV me obtain a self-consistent I;-
channel partial-wave amplitude in which the Pome-
ranchukons are Schwarz poles. The amplitude has
the Mandelstam sign for the contribution of the
two-Pomeranchukon cuts, and it leads to constant
total cross sections at high energy in the s chan-
nel. As in Paper I, moving poles are required in
certain meromorphic functions to produce these
desirable properties, and they lead to quasistabil-
ity of the Pomeranchukon poles.

f(t, j)= a ([j- 1 —g(t)] ' - y 't) ' . (2.1)

The Froissart bound requires p~-.2 if a is non-
vanishing at j=1.

For 0 &p ~ --,', p w-l, me have Schmarz cuts mith
discontinuities that are infinite at threshold. This
behavior is inconsistent mith elastic t-channe1
unitarity, and there must be either fixed or moving
cuts in the angular momentum plane that collide
with the Schwarz cuts at t=4p', j=o., (4p,'), where
p, is the mass of the external particles. These ad-
ditional cuts are presumably as important for dif-
fraction scattering as the Schwarz cuts. We mill
not attempt to construct amplitudes of this sort
because of the large number of cuts involved.

For p=-I the Regge singularities are a pair of
Schmarz poles. Here elastic unitarity requires
only that g(t) have a cut starting at t= 4 p,'.

For p&0 there are difficulties not related to
elastic unitarity. The diffraction pattern in the 8
channel is nom anomalous in that the secondary,
tertiary, and subsequent diffraction maxima grow
in amplitude. " The scattering is not forward-
peaked. This possibility arises because Rem, (t)
=1 for I; &0, which is a consequence of the Schmarz
trajectory.

The only amplitude in our family that is attrac-
tive for further study is the amplitude mith p=-1,
corresponding to Schwarz poles. Since g(t') must
have a branch cut, it cannot vanish identically, the
Schwarz trajectories are not "exact,"and the
multi-Pomeranchukon cuts are degenerate with the
poles only near t=0. %'e mish to have a total cross
section in the crossed channel which approaches a
constant at high energy, so in Eq. (2.1) we make
the factor g vanish linearly at j=1. In Sec. III we
compute the Regge cuts generated by the resulting
amplitude

II. ELASTIC t-CHANNEL UNITARITY

The constraints imposed on Regge cuts by elas-
tic t-channel unitarity have been discussed gen-
erally, "and for Schwarz cuts specifically. "'"
The results of these papers ean be stated in terms
of the family of elastic t-channel partial-wave

(2.2)

This mill lead to a corrected representation for
f(t, j) which incorporates Pomeranchukon cuts as
well as poles. Note that Eq. (2.2) leads to finite
pole residues at &=0.

III. THE TWO-POMERANCHUKON CUTS

The mork of Gribov et al."on the two-Pomeranchukon cuts leads to the representation

where A(t, j) and B(t,j) have no branch point at the two-Pomeranchukon branch points, and S(t, j) has the
same discontinuity across the tmo-Pomeranchukon cuts as the integrals
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(3.2)
21 2i 2t' p(t; t„t )[j+1—12,(t,) —12,(t,}]

'

Here u, and o.2 are one of the Schwarz trajectories u„2t'/2p(t; t„t, ) is [t- (t, '/'+ t, '/')']'/'
&&[t-(t,' ' —t, '/')']'/', and the contours C, and C, are depicted in Fig. 1 as they appear for t &16t12. The
two-Pomeranchukon cuts that are on the physical sheet in the diffraction region t &0 are generated by

pinches on the upper arcs of the contours l.t is convenient to write Eq. (3.2) in terms of the variables

We find

&/2+
g

j I2 t j I2 t j l2
1 (3.3)

(3.5)

t 1/2 2 2
1/2 x

2,„(t-x')'" (t- y')'" j+1—u,(l(x+y)')- u,(-,'(x-y)'} '

The contour in the y plane is the double loop indicated in Fig. 2; the points ~(x-4t1) are the elastic-unitar-
ity thresholds of a, „and the four arcs correspond to the four arcs of Cy and C2.

It can be shown that in the diffraction region only Regge cuts generated by I„and I remain on the

physical sheet. ' " We call these I, and I, and substitute from Eq. (1.1):
1 1/2 2 2

2 J.„(t-x')'" (t- y')'" j -1+xx-g(-'(x+y}')- g(-'(x- y}')

2g'(at)(&, —y'),
(3.6}

= 2[j—1 —2g (—'t}+yx ——'(x —t)g'( —'t)] Ig'(0t) ~

The singularities of these integrals are generated
by pinches at y =0, and end-point singularities at
x = t' ', so it is appropriate to expand g about the
argument —,'t. We retain the first two terms in the

expansion; the second term in the denominator of
Eq. (3.5) becomes

x=+
g'(-,'t)

+ e,„+,„,[j- 1 —2g(0t)+ 2tg'( ,'t)]-
(3 9)

Here the signs w are to be used for I0(A. ,), and e

takes on the two values +1 for the two branch
points of Io. A, is positive between the two roots.

The remaining integration over x,
11/2

g'(t) must be positive in the diffraction region in
order to satisfy the condition Rea, (t) «1 there

The integral over y in Eq. (3.5) has the form"

2 ~ dy(x —y )
0 ( 1t) J (t, 2)1 2(X 2)

(3.V)

The contour is pinched at ~=0 by two poles which

approach opposite sides of the contour at y =0.
The resulting cut in the A. plane is dressed to the

right, with discontinuity

I (X+ te) —I (/1 —ie) =- . . ./, . (3.8)
4iv(x' - x)

g' .'t [x t —~ ' ' '—
In writing this equation we have used the fact that
the lower arc in Fig. 2 is relevant in our case. In
the x plane, I0(A.+) has two branch points, which

are the solutions of 0=~,. These are

produces functions that are singular when the
branch points of I, collide with the end points of
the integration. The collisions that produce the
two-Pomeranchukon cuts occur in I, (I ) when the
roots in Eq. (3.9) with e =+1 (-1) take on the value

The branch points occur at the solutions of

y
g'(-'t)

,(, } +,(, }[j-1—2g(~t)+ 2tg (4t)]

(3.11)

which are j= 1 ayt'/2+2@(-,'t) =2n, (—,'t) —1. This is

C (1
I/2

t I/2)
I 2 C2 (t, —2P)

~
I

~

( I/2„,( &r
-x+4' x-4p,

FIG. 1. Contours for the integral I~2(t,j). FIG. 2. Contour in the y plane for Eq. (3.3).
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the expected result. It will be convenient to re-
gard the two-Pomeranchukon cuts as two cuts that
move with j in the complex E = t ' ' plane, rather
than as cuts that move with t in the angular mo-
mentum plane. The integrals I, have cuts start-
ing at E=+E(j), where E(j) satisfies the functional
equation

8
A

E(j)

E plane

8:

C:

X-+

E
)

rE(j) =j- 1 —2g(-'E'( j)) (3.12) x plane

The asymmetry in these cuts confirms that I,
should be regarded as functions of E rather than t.

In order to compute the discontinuity across the
cut of I„we must study the motion of x, as E
passes above and below E(j). This is shown in
Fig. 3, together with the distortion of the integral
over x in Eq. (3.10). The discontinuity is

I, (E+ ie, j) —I,(E ie,-j)

FIG. 3. Distortion of the integration contour in Eq.
(3.10) near the branch point at E =E(j ). The discontinu-
ity d6es not change if the branch line of Io(A.,) is dressed
under the integration contour.

tion is achieved by dropping the term proportional
to x' —t in Eq. (3.6). We can also drop x' and t
relative to A., in Eq. (3.13). The final result is

S(t+ ie, j) —S(t-ie,j)

g (-,'t) „, [(t- x')(t- ~,)(-~,)]'"
(3.13)

The integral I is most easily handled by continu-
ing Eq. (3.5) from E to -E. We find

i, (-E, t) = I, (E,f)+ I,(E',f), (3.14)

where I, has no cuts that need be considered. The
sum I,(E,j)+I (Ej) is an eve'n function of E, so
this linear combination has no branch point at t = 0.
The only cut of I, + I in the t plane begins at t, (j)
=E'(j }, with discontinuity given by Eq. (3.13).
Thus, in the sum, both two-Pomeranchukon cuts
in the angular momentum plane are represented
by a single moving cut in the t plane. The unitar-
ity study of Gribov et al. does not determine the
relative weight to be given to the two integrals I,
andI inthe function Sof Eq. (3.1). The correct
combination, the sum, is dictated by the require-
ment that f(t, j) be analytic at i =0.

The integral in Eq. (3.13) cannot be evaluated in
terms of elementary functions. However, a sim-
ple expression emerges if we regard t'I'g'( ,'t) as-
a small parameter, and evaluate the integral to
lowest order in the parameter. It is natural to
look for self-consistent solutions for values of t
where the parameter is small, because the condi-
tion lt'~'g'( ,'t) l «c can be integrated -to read
lg(t) I«clt' 'l. The parameter is small where

the Schwarz trajectories are nearly exact. To
proceed with this program, we note that to lowest
order in the parameter, x, is independent of t.
This means that in Eq. (3.13) it is sufficient to
make an approximation to A,, that is uniformly ac-
curate to lowest order in the parameter for x in
the interval -t ' ' (x & t'~'

~ Such an approxima-

(3.15}

We can simplify Eq. (3.15) still further by eval-
uating g'(-,'t) at t=t, (j), and by expanding the argu-
ment of the inverse sine about t,(j). Both of these
approximations are consistent with the paper of
Gribov et al. , where only leading terms at the
Regge-cut threshold are retained. We write the
inverse to the Schwarz-pole trajectories as

t(j)= ' . [I+(j-I)~(j)]',y'

where t(j) satisfies the functional equation

r't(j) = [j-1-g(t(j))]'.

(3.16)

(3.17)

g'(4t ( j))=- ~'[&(2( j+1))+4(j- I)&'(2(j+ I))],
(3.18)

r't [j 1 2g(-'t)l'-=~-'[t -t(j}]. -
Using these approximations, the function S(t, j)
becomes

S(t+1E j)—S(t ie,j) = t.(j) '"
g'(-. t, (j )

(3.19)

S(t,j)=, , »&t, ' '(j}+[t,(j}-t]'"].

The two-Pomeranchukon branch point in the t
plane is related to the inverse pole trajectory by
t,(j)=4t[-,'( j+1)]. In terms of the inverse trajec-
tory, the small parameter is (j—l)h(j). The fore-
mentioned approximations are
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The discontinuity of S vanishes at t,(j), in con-
trast to the findings of Gribov et al. This is a re-
flection of the modification of two-Pomeranchukon
phase space that occurs for Schwarz trajectories.
An even more dramatic change occurs for the
"exact" case g—=0: S becomes infinite. As might
be expected, this behavior is due to a change in
the character of the discontinuity. For g=—0, we
can easily evaluate the integral in Eq. (3.5), and

I, turns out to have the singularity

IV. THE SELF-CONSISTENT AMPLITUDE AND

CROSSED-CHANNEL SCATTERING

Self-consistency requires that the partial-wave
amplitude given by Eqs. (3.1), (3.18), and (3.19)
have a pole at t= t(j). Equation (2.2) indicates that
the residue should vanish linearly at j= 1. By
elimination of simpler cases, we have found that
the simplest choices for the meromorphic func-
tions A and B in Eq. (3.1) are the rational func-
tions

A(t, j) = (a+ )[c,t+ c2(j—1) + ]

B(t, j) = [y '&- (j—1)'+ ' ' '] (j- 1) '

x[c,t+c,(j-1)'+ ~ ~ ] '.
(4.1)

Here we have ignored multi-Pomeranchukon cuts
and possible fixed j cuts. As we emphasized in

Paper I, the moving pole in A must be second
order, because the amplitude for two particles-
two Pomeranchukons is A'/'(B+ S) ', and we do

not want there to be a kinematic moving cut in this
amplitude. Two changes have been made in taking
over the functions A and B from Paper I: The
linear factors in j- 1 have been omitted from the
moving pole and the numerator of B, and an extra
factor j- 1 has been inserted in the denominator
of B. These changes are made so that the two-

2'
2[( 1)2 2] 1/2 (t 2)1/2

The contour integral is zero, but expression (3.20)
is still very suggestive. There is no longer a
pinch at Y=0; instead, the singularity occurs at
t=t, (j) for all values of y. This accounts for the
change in the character of the discontinuity. There
are two problems with the exact case. The fact
that y is not pinched means that Gribov's Reggeon
production amplitude is a function of y as well as
f, and the derivation of Eq. (3.1) fails. The fact
that o., (t) have no elastic branch points means that
the cut discontinuity of f(t,j) cannot be separated
from that of f@(t,j); f~'~ is the continuation of f
around the four-particle unitarity branch point.
For these reasons, and those discussed in Sec. II,
we must exclude the case g=O.

I

Pomeranchukon cut has the Mandelstam sign, and
so that when we set S= 0 we recover Eq. (2.2).

The elastic scattering amplitude may be written

f(t,j)= —(a+ ' ' ')(j—1)D (t, j),

(4 2)

—[c~t+c2(j 1)-+ ' ' ] (j —1)S(t,j).
The self-consistency equation for the Pomeranchu-
kon poles in the presence of the two-Pomeranchu-
kon cuts is D (t (j),j ) = 0. Using Eqs. (3.16), (3.19),
and (4.2), near j= 1 the self-consistency equation
takes the form

0 = -2(& —1)'h( j)

h( j) = p(j —1)[--ln( j—1)]

p=(»l& r')" lc.lr'+ c, I

(4.4)

We have chosen the negative root so that we satisfy
the requirement Rem, (t) &1 for t ~0. Equation
(3.16) can now be inverted near t= 0, and the lead-
ing behavior of the Schwarz trajectories is

n, (t) =1+ yt'/'+2p(-, 'y't)' '(-int)'/'. (4.5)

Equation (4.5) confirms the smallness of the pa-
rameter t'/'g'(&t); in fact, the parameter vanishes
at t=0, which is the point of greatest interest.

The multi-Pomeranchukon cuts have been omitted
from the self-consistency equation, but they should
not be important near t=O because, as in Gribov's
original unitarity calculation, multi-Pomeranchu-
kon phase space rises more slowly from threshold
when more Pomeranchukon poles are added. This
trend should not be modified because we are deal-
ing with Schwarz trajectories. It is based on the
fact that a three-Pomeranchukon cut can be re-
garded as being composed of a pole and a two-Po-
meranchukon cut. Since the cut is weaker near
threshold than the pole, the three-Pomeranchukon
cut must be weaker than the two-Pomeranchukon
cut. For the same reason, the fixed j cut intro-
duced via h(j) can be ignored.

The denominator function at t=0 is

D(0,j)=(j -1) [1—T(j -1) [-ln(j- 1)] j,
(4.6)v-= 4vc, '/3 y'p.

(4 3)

Here we have omitted terms in the argument of
the logarithm that we believe (and can later verify)
to be unimportant near j= 1. The leading behavior
of h(j) near j= 1 is determined by Eq. (4.3) to be
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The Sommerfeld-Watson integral leads to the
crossed-channel behavior

T

( 2[in(s/s )]'[lnln(s/s, )]'~')'

ReF(s, 0) T7T
(4.7)

ImF(s, 0) s-" 2[in(s/so)] '[ln in(s/so)] '/' '

where F(s, t) is the full amplitude. The two-Po-
meranchukon cut contributes negatively to the tot-
al cross section, as required by Mandelstam and
the absorption model. "The sign is not adjustable
once we have committed g(t) to have the sign indi-
cated in Eq. (4.5).

The diffraction oscillations of F(s, t) will be de-
termined principally by the Pomeranchukon poles
for the range of t over which ~g(t) ~

is smaller than

~
t ~' '. In this range the Pomeranchukon cuts do

not lead the poles as they did in Paper I; rather,
the cuts and poles are coincident, and the greater
strength of the poles is decisive. Since Reo. ,(t) =1

in this range, the fixed j cut also can be neglected.
We are able to give F over a finite range of t at
all energies, and not just in a range -tin(s/s, )
& const, as in Paper I. The simplest approxima-
tion to F(s, t) is obtained by using Eq. (2.2), ignor-
ing g(t); it is

F(s, t)- (const)is(cos[y(-t)'!'Ins]

+ itanh[-, v y(- t)'/'] sin[y(- t)'/'Ins] j .

(4.8)

This amplitude shows no tendency to form a for-
ward peak, but this is only because we have ig-
nored g(t). What Eq. (4.8) shows is that at high
energy there is an increasingly rapid oscillation
of the differential cross section under the diffrac-
tion envelope. This is characteristic of the diffrac-
tion process, and probably would occur under the
assumptions made in Paper I if we could follow
the amplitude over a finite range of t at all ener-
gies.
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