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Dirac's magnetic monopoles are generalized to have aspects which are similar to the con-
ventional quarks (electric quarks). Such magnetic monopoles are called magnetic quarks.
This work assumes that a baryon consists of three solid bodies called electromagnetic
quarks, and that an electromagnetic quark and an electromagnetic antiquark form a meson.
Each of these electromagnetic quarks is considered to be composed of one electric quark
and one magnetic antiquark. Such a speculation solves the difficulty in statistics faced by
the paraquark model and allows the existence of anomalous charge conjugation parity C of
mesonic states. New baryon mass relations and magnetic moments have been derived. Fi-
nally, a strong electric dipole moment is predicted to exist in a baryon. state with nonzero
electromagnetic-quark orbital angular momentum, L&0.

I. INTRODUCTION

Even after the invention of the quark model' very
little connection has been made between Dirac's'
magnetic monopoles and the hadron structure. Di-
rac did not answer the question of whether a par-
ticle can carry both electric and magnetic charges.
However, Schwinger suggested the existence of
such dually charged particles, called dyons. '4 He
replaced the quarks by dyons as the fundamental
blocks of hadrons. We find that he had difficulty in
explaining the electric dipole moment (EDM) and
the magnetic dipole moment (MDM) of hadrons.
We adopted Dirac's magnetic monopoles and the
spirit of the quark model rather than Schwinger's
dyons. Work related to this paper has appeared in
the previous reports. ' ' The plan of this paper is
as follows.

Section II introduces the possibility of the exis-
tence of magnetic monopoles inside hadrons, and
generalizes the magnetic monopoles to have as-
pects similar to the conventional quarks (electric
quarks). The generalized magnetic monopoles are
called magnetic quarks. It also describes the
properties of, electric quarks (Q, ) and magnetic
quarks (Q ). The Q,'s (fermions) and the Q 's (bo-
sons) are considered to be the same kind of parti-
cles only when the superstrong interaction is con-
cerned. In Sec. III the electromagnetic quark (Q, )
is constructed from the Q, and Q and its proper-
ties are described. In Sec. IV the baryon wave
functions are expressed in terms of Q, 's. In Sec.
V baryon mass relations are derived from our new
model and compared with those obtained from the
paraquark model. In Sec. VI the EDM's and MDM's
of baryons are predicted and also compared with
the results of the paraquark model. In particular,

we prove that this new model will give the baryon
octet and the decuplet a zero EDM. Finally, in
Sec. VII we briefly discuss the validity of this new
model and some unsolved problems.

II. ELECTRIC QUARKS AND MAGNETIC QUARKS

The quark model of the hadron structure has been
very successful in accounting for many of the prop-
erties of baryons and mesons. However, quarks
(electric) have not yet been positively identified.
Since McCusker and Cairns claimed their discov-
ery of quarks, many questions have been raised. 9

Another difficulty in the paraquark model is the
parastatistics hypothesis. "'" The hadron experi-
mental data favor a symmetric space wave function
in the quark labels. The reason for this is that the
calculated results" indicate that an antisymmetric
space wave function will produce a node for the
body form factor of the baryon, but the measured
form factors show no evidence for a node. " Such
a symmetric space wave function cannot be satis-
fied if quarks are fermions (if there is no other
constituent except the three quarks). The para-
quark model assumes that quarks are not fermions
but parafermions which have spin —,

' and follow the
symmetric requirement of the space wave function.
Such a parastatistics hypothesis is an unattractive
possibility, since it represents a drastic hypothe-
sis which may raise more difficulties than it
solves. A possible way to solve this difficulty is
to assume that a baryon consists of some other
kind of particles besides the three Q,'s. Such
extra constituents can be magnetic monopoles. We
will explore this feature directly.

Since Dirac's work on the magnetic monopole
theory in 1931, several experiments'4 have been
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q q(e)+fq(m)
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a = a~'+ia"

(2.1)

(2.2)

(2.3)

(2 4)

done to search for the monopoles. No positive re-
sults have been reported so far. The reason we
have not observed quarks should have some con-
nection with the reason we have not detected mag-
netic monopoles. To relate the magnetic mono-
poles to the quarks we assume that there also ex-
ist three different kinds of magnetic monopoles,
called 6", Ot', and A.

' magnetic (Iuarks (Q„'s), in
accordance with the conventional O', X, and A. Q,'s.
The three Q 's carry fractional magnetic
charges" -'„-—,', and --,'. As mentioned before,
the corresponding Q, and Q can be treated as the
same particle in different states, i.e., electric and
magnetic states Th. e particle is called Q, when it
is in the electric state and called Q when it is in
the magnetic state. The corresponding pairs, (P

and 6", gt and%', and A. and X', should almost have
equal masses. We should also have a set of quan-
tum numbers, such as magnetic charge, magnetic
isospin, magnetic strangeness, and magnetic bary-
on number, for the Q 's. Here we assign the Q
a zero Spin and the Q, a —,

' spin in accordance with
the fact that baryons have MDM's but do not have
EDM's.

In treating the Q,'s and Q 's we may extend the
quantities such as dipole moment, charge„ isospin,
strangeness, and baryon number from real number
to complex number. We define

1 8 4m-.-VXE ———H= —j m,cat c

V H=4wp

By introducing

p =pg +zpmy

j =jq+ijmy

and

(2.11)

(2.12)

G=E+iH,

the Maxwell e(Iuations [(2.9)-(2.12)I can be simply
rewritten as

and

V G=47p

(
1 8 . - 4p.——+zV&& G=- —jcbt C

(2.13)

(2.14)

TABLE I. Properties of electric quarks
and magnetic quarks and their counterparts.

III. ELECTROMAGNETIC QUARKS

As discussed in Sec. II, we cannot distinguish
Q,'s from Q„'s if we turn off the electromagnetic
interaction. Therefore, in accounting for the bind-
ing energy of a pair of (Iuarks we should classify
the pair as a particle-particle pair, a particle-
antiparticle pair, or an antiparticle-antiparticle
pair, rather than do it by their electromagnetic
properties. The binding energy of a particle-parti-
cle pair should be almost equal to that of an anti-
particle-antiparticle pair, and different from that

(')+ip( (2.5) Symbols Quar ks 4 p

where p, is the MDM and p. ' is the EDM. The
properties of Q,'s and Q 's then can be expressed
as in Table I. Here we have the generalized ¹ish-
ij ima-Gell-Mann relation,

1+
2

1+
2

1
3

I
2 0
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Q =I, + ~(B+S) .
Obviously this equation contains

q(e) 1(e)+ &(II(s)+S(e))
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0+

0+
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Introducing the Q can make MMcweil's e(luations

symmetric. The generalized Maxwell equations
will be of the form

0+

0+

2 ] s

0 --3Z

0

0 -gi

0 -gi
1 8 4g.V~H-- —E= —jc8t c (2.9)

0+ 0

V E=4mp„ (2.10)
'q' and q' are magnetic quarks and magnetic antiquarks,

respectively.
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of a particle-antiparticle pair. This can be ex-
pressed by the equations

and

B(q,q) = B(q', q') = B(q', q') = s (3.1)

JP 1& 3& 5&
2 y 2 y 2 y

~

and qq' can have (for the same l)

(3.3)

B(q,q) = B(q, q') = B(q,q') = B(q', q') = b . (3.2)

Here the clusters qq, q'q', qq, and q'q'all carry
integer spins, whereas qq', qq', and qq' all carry
half-integer spins. From the paraquark model we
know that the binding energy of qq is much great-
er" than that of qq; hence, that of qq' and qq'
should be also much greater than that of qq'. We
call qq' electromagnetic quark (Q, ), and qq' elec-
tromagnetic antiquark (Q, ).

Like conventional mesonic states, both qq' and
qq' form nonets. Many results obtained in the con-
ventional qq quark model of mesons" "can be ap-
plied to the qq' and qq' systems. However, care
must be taken that qq is a boson, and qq' and qq'
are fermions. JP for qq' and qq' ground states are

and —,", respectively. There is no question that
both qq' and qq' can be excited to higher states. In
general, we have the parities P = (-1)' for qq' and
P = -(-1)' for qq'. Therefore, qq' can have

q' as functions of their separation r. There are
two kinds of interactions to be considered, namely,
electromagnetic and superstrong attractive inter-
actions. The superstrong force will be nominated
for small x, and the electromagrietic force for
large r. However, there is no doubt that q and q',
and q and q', can form bound states. Even if we
ignore the superstrong attractive force and take
into account only the electromagnetic interaction,
they still would form bound states." Furthermore,
Dirac' treated the magnetic monopoles as electro-
magnetic interacting particles in his first paper on
this subject, but in his second paper he considered
magnetic monopoles as possible constituents of
protons. So, we think it is reasonable to general-
ize the magnetic monopoles to Q 's.

Now we should discuss the MDM and the EDM of

Q, 's and Q, 's. We know the ground state of qq'
carries electric and magnetic charges and MDM.
The electric charge and the MDM are contributed
by q, and the magnetic charge by q'. The electro-
magnetic interaction between q and q' will result in
an increase or a decrease of the MDM of the Q, .
The total amount of change is mainly dependent on

the strength of the intrinsic MDM of q and the mag-
netic charge of q'. We will take this effect (which
may be called the cooperative effect) into account
in Sec. VI when we discuss the EDM and the MDM

of baryons.
1T 3% 5+
2 s 2 y 2 (3.4)

From this, the mesonic states qq'qq' will have

1)i+s (3.5)

and

P =+(-1)',

C„P= -(-1)'.

(3.6)

(3.7)

Here C„(n for neutral) is the eigenvalue that C will

have if applied to the neutral number of the multi-
plet. It is worthwhile to compare these results
with those obtained from the conventional quark
model, which has the following results".

(3.8)

and

P = -(-1)I,

C„P= -(-1)'

(3.9)

(3.10)

It is apparent that our model can explain the ab-
normal C mesonic states, "which cannot be ex-
plained by the conventional qq quark model.

If we wish to describe the internal dynamic mo-
tions of qq' and qq' qualitatively, we must consider
the interactions between q and q' and between q and

IV. WAVE FUNCTIONS

As mentioned before, the paraquark model has a
serious difficulty in statistics because it ignores
the existence of magnetic monopoles. In our model
we do not have such problems. We assume that a
baryon consists of three magnetic antiquarks (Q 's)
and three Q,'s. These Q,'s are identical to those
assumed in the paraquark model. Therefore, a
baryon and a meson can be expressed as
q,q, q,q,q,'q,' and qq qq', respectively. The physi-
cally observable hadrons lie in the lowest baryon
or meson magnetic state which is a magnetic sin-
glet and neutral. This implies that the observable
baryons are in the form q,q,q,F'X'. Further-
more, as discussed in Sec. III, the binding energy
between q and q' is much greater than that between

q and q or that between q' and q'. Therefore,
q,q,q,P'%'~' will form three clusters: q,F, q, ',
and q, A. '. Such clusters carrying fractional elec-
tric charges and magnetic charges are identified
as Q 's. Each of the three Q 's can be consid-
ered as an entity as long as the kinetic energy of
the Q is very small compared to its excitation
energy. The internal structure of the Q, is then
irrelevant in accounting for the statistical model
of the baryon. Denote the nonet Q, 's as
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6', (P, (P3 (P(P'

Br, = 9t,g'

A. A, A, A 6"

and the nonet Q, 's as

(P~ (P2 (P, 6'6"

N,, x, x, = x6"

X A. A, 6"

(4.1)

(4.2}

The baryon and meson wave functions then can be
expressed by the 18 Q, 's and Q, 's.

There are two possible Q models of baryons.
We call them interchangeable and noninterchange-
able models. The noninterchangeable model says
that the three Q,'s and three Q 's in a stable bary-
on are organized in a particular way to minimize
the total energy of the baryon. In such a way each

Q, is combined in a pair with an appropriate Q
and forms a certain Q, . Therefore, the baryon
consists of three fixed Q, 's, say 6'gag3 An inter-
change of just two Q,'s or just two Q 's will change
two of the three Q, 's to some other kind, say 6'„
(P„9t„which will have higher total baryon energy.
The interchange of two O' Q,'s, in this example,
will not change the total baryon energy if these two
(P Q,'s have the same z component of spin. If the
two O' Q,'s do not have the same z component of
spin, the total baryon energy may change because
of the interaction of the magnetic moment of the 6'

Q, and the magnetic field of the Q . If we inter-
change two Q, 's (equivalent to an interchange of
two Q,'s plus an interchange of two corresponding
Q

' s), then the total baryon energy will not change.
In this case, the three Q,'s can be treated as dis-
tinguishable particles. On the other hand, if we
take a rough approximation treating the three Q,'s
as identical particles, then we call this the inter-
changeable model. In other words, by introducing
quantum numbers, spin, Z-isospin, and M-isospin,
the interchangeable model treats the three Q 's as
identical particles and the three Q,'s as another set
of identical particles; therefore, the nine Q, 's
are also identical particles. The baryon wave func-
tion in this interchangeable model is symmetrized
in the Q, and Q labels as well as in the Q, label.
On the other hand, the noninterchangeable model
only treats the nine Q, 's as identical particles
with different quantum numbers. This noninter-
changeable model also considers the Q as an en-
tity and an unchangeable solid body. Therefore,
the baryon wave functions are only symmetrized in
the Q, label, not in the Q, or Q label.

In the interchangeable Q model of baryons, a
baryon wave function can be written in terms of
Q,'s and Q 's as well as in terms of Q 's. The

Q, wave function must be antisymmetric and the

Q wave function must be symmetric, because
Q, 's are fermions and Q 's are bosons. The anti-
symmetric Q, wave function can be decomposed
into an antisymmetric space wave function and a
symmetric combined wave function of spin and E-
isospin, whereas the symmetric Q wave function
contains an antisymmetric space wave function and
an antisymmetric I-isospin wave function. An in-
terchange of two Q 's is equivalent to an inter-
change of two Q, 's plus an interchange of two Q„'s;
therefore, the baryon wave function must be anti-
symmetric with respect to Q 's. This antisym-
metric Q wave function can be obtained from a
combined antisymmetric wave function of spin, E-
isospin, andM-isospin, and a symmetric Q, space
wave function. The symmetric Q, space wave
function can be decomposed into an antisymmetric
Q, space wave function and an antisymmetric Q
space wave function. This argument can be illus-
trated by the following equations:

and

+..t.„(Q„Q ) =+ ~, (Q.)@.m(Q ),
+,„t„.y (Q,}=+,„„,y (Q„space)

xmas, „(Q„spin, E -isospin),

+ sym(Qm} +antisym(Qms Spaoe)

x4' „,~(Q, M-isospin),

4,y (Q, , space) =4 „,„(Q„space)
X+antisym(Qms SpaCe) s

(4.3)

(4.4)

(4.5)

(4.6)

4',~(Q„spin, E-isospin} = S(Q,)f(Q,),
sl t. „(Q,M-isospin) = A(Q )g(Q ) . (4.9)

The interchangeable Q model of baryons has to
satisfy Eqs. (4.3)-(4.V), and the noninterchange-
able Q, model of baryons has to satisfy Eq. (4.7)

@antisym(Qem) =e tym(Qems Spaoe)

xq antisytn(Qems spin, E -isospin, M-isospin) .

(4 7)

Here the space wave function of Q 's corre-
sponds to the space wave function of conventional
quarks, which is required experimentally" "to be
symmetric. Let S(Q,), A(Q ), and A(Q, ), respec-
tively, be the Q, symmetrizing operator, the Q
antisymmetrizing operator, and the Q, antisym-
metrizing operator. It is understood that these op-
erators also normalize the wave function. Denote
the Q, unsymmetrized combined spin and E-isospin
wave function by f(Q, ) and the Q unantisymme-
trized M-isospin wave function by g(Q ); then from
Eqs. (4.4) and (4.5) we obtain
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only. Therefore, we obtain the wave functions for
interchangeable and noninterchangeable models as

„,„(Q,interchangeable)

(Q. , space)S(Q. )f(Q.)&(Q )g(Q )

(4.10)
and

,„. „(Q, , noninterchangeable)

=q „(Q, , space)

x4 zpppzym(Q, ~, spin, E -isospin, M-isospin)

=q',„(Q. space)&(Q. )[f(Q,}g(Q )]
(4.11)

It is clear that Eq. (4.10) satisfies the symme- and

g(Q. ) =(d" X' -st d")X' (4.13)

trizing requirements of Q,'s, Q 's and Q, 's
whereas Eq. (4.11) only satisfies the symmetrizing
requirement of Q, 's. Note that the paraquark
model or the conventional quark model only uses
the Q, wave function, i.e.,

4,y (paraquark) =4,y (space)S(Q, )f(Q,).
(4.12)

The paraquark wave functions, f(Q, ) and S(Q, )f(Q, ),
of the baryon octet and decuplet are given in the
literature. "'4 The Q wave functions, which are
the same for all the baryon octet and decuplet, are

&(Q )g(Q )=6 '"(O'Ot' X' +s'tX' d'+&'d" st' O'X-'m' -Ot'd" X'-X'Ot'd'). (4.14}

From Eqs. (4.10), (4.12), and (4.14) we obtain

C,„. y (Q, , interchangeable) =@,
y (Paraquark)6 (d"9t' X'+ st'X'd ' yX'd '%' d'X'O-t' -9t'4 'X' -X'9E d"),

(4.15)

= 4»m(paraquark) 6 '"{(dy'Ot' —st' d")X' + [(9l' X' —X' R') d" —(d" X' —X'd")X'])

(4.16)

whereas from Eq. (4.11) and the literature~' "we obtain the proton wave function of J, = —,
' as

f(Q„p(+)l = [d'(+)&(-) -e(-@(+)]tp(+), (4.17)

(Q, , spin, E-isospin, M-isospin, p(+))

= ~(Q,)[R+)st(-) -8-)st(+)]8+)(d"st' -&'d")X'

= &(Q. )[d',(+)&,(-)d'. (+) —d', (-)&.(+)d'. (+) —d'. (+)&,(-)d'. (+) + d'. (-)&,(+)d'. (+)]

= 24 '"[d',(+@.(-)d', (+) —d', (-}st.(+)d'. (+) —d'. (+)&,(-)d's(+) + d'.(-)&,(+)d', (+)

-d', (+)d', (+)&,(-)+ +g(-)+,(+@,(+) + d', (+)d', (+)&,(-) —d'2(-) d', (+@,(+)

+&.(-)d'. (+)d', (+) -&,(+)d', (+)+,(-) -&,(-)d's(+) d'. (+) + &,(+)+,(+)d'.(-)
-&.(-)tP, (+)d'. (+) +3t.(+)d', (-)t,(+) +&,(-)t.(+)d'. (+) -&,(+)d'.(-)d', (+)

+d'3(+) +,(+@,(-) —d'3(+) d', (-}3t,(+) —d', (+)d'2(+)&,(-)+ d', (+)+,(-)&,(+)

-d'. (+}tt.(-)t,(+) + d'. (+}3t.(+)d', (-)+ d', (+)&,(-)d'. (+) —d'.(+, (+)d'. (-)1.
(4.18)

Here we combine the first Q„with the first Q, and the second Q with the second Q„and so on. So, the

Q, and the Q properties and the relevant permutation symmetries will still remain in the Q, after the

combination.
We may rewrite the wave function in such a way that the first and second Q 's are in eigenstates of spin,

electric isospin, and magnetic isospin, as

(Q, spin, E-isospin, M-isospin, p(+))

= 24 '"{-[d', (+)d'g(+) ]&,(-)+ [d',(+)d', (+)]&,(-)+ [d'2(+}d', (+)]&,(-) —[d',(+)d', (+)]&,(-)

——,'[ot, (+)d', (+) + d', (+)&,(+)]d',(-)--,'[m, (+}d', (+) —d', (+)ot,(+)]d,(-)



+-,'[d', (+)&,(+) +&,(+)d', (+)]d',(-)+ 2[d', (+@,(+) -&,(+)d', (+)]d',(-)
+ 2[&,(+)+,(+) + d'g(+)&, (+)]d'2(-) +4[&g(+)+,(+) —d', (+)&g(+)1d', (-.)

-2[d', (+)&,(+3+&,(+)d', (+)]d',(-) - 2[d', (+)&,(+) -&,(+)d', (+)]d',(-)
+-,'[st.(-)d'.(+)+st.(+)d'.(-)+d'.(-4.(+)+ d', (+)&.(-)]d',(+)

+k[stm(-) d', (+) +&~(+)d'~(-) —d', (-@s(+)—d'. (+)&,(-)]d', (+)

+ ~[d',(-)&,(+) —d', (+)&,(-)+&,(-)d', (+) -&,(+)d', (-)]d', (+)

+ 4[d's(-)&2(+) —+.(+@2(-)-&.(-)d'2(+) +&.(+)d'2(-)]d', (+)

--.'[&,(-)d', (+) +R,(+)d', (-)+ d', (-)&,(+) + d', (+)&,(-)]d', (+)

,'[s-t,-(-)d', (+)+x,(+)d', (-) —d', ( )ot-,(+) d'.,—(+)ot,(-)]d',(+)

-~[d', (-)&,(+) —d', (+)&,(-) +&,(-)d', (+) -&,(+)d',(-)]d', (+)

--.'[d', (-)&~,(+) —d', (+)&,(-) -&,(-)d', (+) +~(+)d',(-)]d', (+)

+-,'[st, (-)d', (+) -ot, (+)d',(-) + d', (-)X,(+) —d', (+)x,(-)]d',(+)

+-'[&,(-)d'. (+) -&,(+)d'.(-) —d', (-)&3(+)+ d'2(+@~(-)]d'i(+)

--,'[d's(-)R, (+) + d', (+)K(-)+X,(-)d', (+) +st,(+)d', (-)]d',(+)

-4[+,(-}st,(+) + d'.(+@.(-) -&3(-)+g(+) -&,(+)d'2(-)] d', (+)

--,'[&,(-)d', (+) -&,(+)d', (-)+ d', (-@,(+) —d', (+)&,(-)]d', (+)

=.'[&,(-)d', (+) -&,(+)d'.(-) —d', (-)&,(+) + d'i(+)&~(-)]d'2(+)

+k[d', (-)&,(+) + d'8(+)@,(-)+&,(-)d'i(+) +&(+)d'i(-)]d'2(+)

+-,'[d', (-)&,(+)+ d', (+)&,(-) -&,(-)d', (+) -&~(+)d'~(-)]d'2(+)

+ [d',(+@.(-) —d', (-)&,(+) +&.(+)d', (-) -&,(-)d', (+)

—d'. (+)&,(-) + d', (-)&~(+)-&,(+)d'2(-) +&~(-)d'2(+) ]d'g(+)

+~a[+,(-)d'3(+) + +,(+)d', (-)1&,(+) + -.'[d'3(-) d', (+) —d', (+)d', (-)]&,(+)

-k[d', (-)d', (+) + d', (+)d's(-)]&,(+) —2[d'3(-)d'2(+) —d', (+)d'2(-)]&,(+)

+ l[d', (-)IP,(+) —d', (+)d', (-)]st,(+) ——.'[d',(-)d', (+)+ d', (+)d', (-)]st,(+)

--,'[d'2(-) d', (+) —d', (+)d', (-)]&,(+) + 2[d'3(-) d'2(+) + d', (+)d'2(-)]&g(+)]

(4.19)

The wave functions for the remaining states of the spin--,' octet can be obtained by spin reflection, elec-
tric isospin reflection, or electric u-spin reflection. Z and A states are special; however, their q, wave
functions are well known. "'" They are

f(q„A, Z) =[a(+)X(-)—g-}X(+)]x(+)~[X(+)Z{-)-et(-)x(+)](P(+), (4.20)

where the upper sign gives electric isospin I~'~=1 and the lower sign gives I '~=0. Therefore, me obtain

4 „,. {q,spin, E-isospin, M-isospin, A(+)}

= gq, }[8(+)X(-)—0(-)x(+)]~(+)(d '8t' -%' d ')X'

= A(q. )[d,{+)st,(-)~,(+) —d,(-)x,(+)~,(+) —d,(+)x,{-)x,{+)+ d, (-)x,{+)~,(+)]
= 24-'~'([d, (+)st,(-)x,(+) —d,(-)x,(+)x,(+)]—[d,(+)m,(-)x,(+) —d,(-)st,(+)~,{+)]

-[d',(+)~.(+}st,(-) - d'.(-)~,(+)&.(+)]+[d'.(+)~.(+)&,(-) —d'.(-)~.(+)st,(+)]

+[&,(-)&,(+)d', (+) -&,(+)&,(+)d',(-)]—[&,(-)~,(+)d'.(+) -&,(+)&,(+)d',(-)]
-[&3(-)d', (+)~,(+) -&2(+)d', (-)~.(+)]+[&,(-)d'g(+)~$(+) -&,(+)d'.(-)~g(+)]
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and

+ [&,(+)d', (+)x,(-) —x,(+)d', (-)x,(+)] —[~,(+)d, (+)x,(-) —~,(+)d, (-)x,(+)]

-[&,(+)x,(-)d', (+) —~,(+)x,(+)d', (-)]+ [~,(+)x,(-)d, (+) —~,(+)x,(+)d, (+)]}
24 '"([d',(+)x,(-) —e,(-)x.(+) -x,(-)t,(+) +x.(+)d', (-) —d', (+)x,(-)

+ d'. (-)x,(+) +x,(-)d'. (+) -x,(+)tp.(-)]~,(+) + [&.(+)d', (+)]x.(-)
-[~.(+)d.( )lx,(-) [~.( )x.( )]d,(-) —[~.( )x,( )]d;(-)
-[x.(+)&.(+)]d',(-)+[x,(+)&.(+)]IP.(-) —[d', (+)&,(+)]x,(-)
+ [d', (+)x,(+)]x,(-)+ —,

' [x,(-)x,(+) +x,(+)x,(-)]d', (+)

--,'[x,(-)x,(+) +x,(+)x,(-)]d, (+) + —,'[x,(-)x,(+) -x,(+)x,(-)]d, (+)

--'[x,(-)~.(+) -x,(+)~.(-)ld'. (+) --.'[~.(+)x.(-)+~.(-)x.(+)]d,(+)

+-,'[~,(+)x,(-)+ ~,(-)x,(+)]d, (+) - -,'[~,(+)x,(-) -~,(-)x,(+)]tp, (+)

+ 2[&,(+)x,(-) - ~3(-)x~(+)]d', (+) —a[&,(+)g,(-)'+ ~ ~(-)d'~(+) 1x,(+)

+-'.[~,(+)d;(-)+~.(-)d;(+)]x,(+) --.'[~,(+)t (-) —~.(-)d;(+)]x.(+)

+ -,'[x,(+)d', (-) —A. ,(-)d', (+)]x,(+) + —2[d',(-)x,(+) + (P,(+)X,(-)]x,(+)

--.'[d;(-)~.(+)+ d'. (+)~.(-)lx,(+)+-.'[d', (-)~.(+) —d', (+)~.(-)]x.(+)

--.'[d.(-)~.(+) —d.(+)~,(-)]x,(+)} (4.21)

4,„„,„(Q, , spin, Z -isospin, AI-isospin, Z'(+))

= &2 '"[2d', (+)x,(+)~,(-) —d', (+)x,(-)~,(+) —d', (-)x (+)~ (+)

-2d', (+)x,(-)x,(+) + d', (+)x,(+)x,(-)+ d', (-)x,(+)x,(+)

+2x,(+)x,(-)d', (+) —x,(-)x,(+)d', (+) -x,(+)&,(+)d', (-)
-2x,(+)d;(+)~,(-)+x.(-)d;(+)~.(+)+x,(+)d', (-)~.(+)

+21,(-)d', (+)x,(+) —z, (+)d', (+)x,(-) —x,(+)d', (-)x,(+)

-2A. ,(-)x,(+)d', (+) + x,(+)x,(-)d', (+) + x,(+)x,(+)d',(-)
-2d', (+)x,(+)x,(-) + d', (+)x,(-)x,(+) + d', (-)x,(+)A.,(+)

+ 2N. (+)&.(-)x,(+) —d'. (+)&.(+)x,(-) —t.(-)&,(+)x,(+)

-2x,(+)x,(-)d', (+) +x,(-)x,(+)d', (+) +x,(+)x (+)d', (-)
+2x,(+)d.(+)~.(-) -x,(-)t.(+)~.(+) -x,(+)d'.(-)~.(-)
-2).,(-)d', (+)x,(+) + A. ,(+)d', (+)x,(-)+ x,(+)tP, (-)x,(+)

+2k ~(-)x,(+)d', (+) —A. ,(+)x,(-)d', (+) —. A. ,(+)x~(+)d', (-)]
'l2 '"(2[d',(+)x,(+) —d', (+)x,(+) -x,(+)d', (+) +x,(+)d', (+)]x,(-)

-2[d', (+)&,(-) —&,(-)d', (+) —d',(-)&,(+) + &.(+)tP,(-)lx.(+)

——,'[-d', (+)x,(-) + A s(-)d', (+) + d', (-)x,(+) —A. ,(+)d', (-)]x,(+)

--.'[d', (+)&.(-) —&,(-)d', (+) + d', (-)&,(+) —&.(+)d', (-)]xa(+)

+2[d;(+)~,(-) —~.(-)d.(+) —d.(-)~.(+)+~.(+)tP.(-)lx, (+)

+ ~2[-N2(+) ~ ~(-) + & s(-)d'2(+) + d'. (-)~3(+) —& s(+)d'2(-) ]xi(+)
+ k[d'. (+)~.(-) —~.(-)d'.(+) + d'. (-)&.(+) —&.(+)d'.(-)]xi(+)

-2[x,(+)x,(-) —x,(-)x,(+) -x,(-)x,(+) + x,(+)x,(-)]d', (+)

——,
' [-x,(+)x,(-)+ x,(-)x,(+) -x,(-)x,(+) + x,(+)x,(-)]d', (+)
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(4.22)

-l[&,(+)&,(-) —~.(-)&,(+) -&,(-)~,(+) + ~.(+)&,(-)]d'.(+)

+2[st.(+)~,(-) —~.(-)%(+)-&g(-)~.(+)+~.(+)et/(-)]tP, (+)

+ -,'[-st, (+)x,(-) +x,(-)rt, (+) -m, (-)x,(+) + z,(+)x,(-)]d, (+)

+ —,'[x,(+)A.,(-) —x,(-)%,(+) -st, (-)x,(+) + z,(+)og(-)]d',(+)

+ [-dP,(+)&,(-) —d', (-)&,(+) + |P,(+)&,(-)+ d'.(-)St,(+) +&.(-)d', (+)

+m, (+)d,(-) -et, (-)d, (+) -ot,(+)d,(-)]x,(+)

+ [d', (+)&,(+)]&.(-) —[&,(+)d', (+)]&,(-) —[d'.(+)~,(+)]&,(-)
[~.( )t.( )]5t,(-) -[5t,( )~.( )]d',(-) [~.( )5t.( )]d;(-)

+ [&,(+)&,(+)]d'.(-) —[~ (+)& (+)]d' (-)].

We may extend this work to the baryon decuplet.
The standard Q, wave functions for the 40 baryon
decuplet states are found in the literature, 23'4

from which we can construct the wave functions
in the Q, model of baryons.

V. MASS RELATIONS

In the three-Q, models, the internal contribu-
tion to the baryon mass is mainly the following:
one-q„„effect, pairing effect, and three-g, „ef-
fect. However, since the three-Q, effect is less
important, we will neglect it. There are three
Q, 's in a baryon, and hence for each Q, configu-
ration there are three different pairing interactions
which must be summed. A baryon wave function is
expressed in terms of linear combinations of dis-
tinct Q, configurations, and we must sum over
those as well. Since the baryon wave function is
antisymmetrized with respect to the three constit-
uents, the Q, 's, it is sufficient to calculate the
pairing energy due to the interactions of the first
and the second Q, 's. If we multiply the result by
three, then we obtain the total interaction energy.
Therefore~ assuming the conservation of spin~
isospin, and M-isospin, from Eq. (4.1S) we obtain,
by inspection, the proton mass as

p = 2[m(d', ) + m(atm) + m(d', ) + m(d'2) + m(at~) + m(d's)]

+3x —,',[V(d „d„1, I, —,')+V(d„d„1, I, —,')

+ V(d'„d'„1, 1, —,') + V((P„d'„1, 1, —,')

+ 4V(dan ted& Il Oyt 2) 4V(+3) +l$ t 0& 2)

+-'V((P~, X~, 0, 1, ~)+kV(%~, d'„0, 1, 2)

+ 8 V(d 3/ xgp Opt 1
p g ) Q V(st3$ IPgp 0$ 1f 2)

+-.'V(d'„x„o, 0, —,')+ k V(m„d'„0, 0, —,')

+ —,'V(Ot„d'„0, 0, ~)+kV(d'„X„O, 0, —,')

+4V(d „st„0,
+ 4 V(d'„d's, 1,

0, 0) + 4V(d'„st „0,0, 0)

+-,'V{d'„d'„0, 1, —,')+-,'V(d'„d'„1, 1, —,')], {5.l}

where V(d'„d'„1, 1, 0) represents the pairing ener-
gy between d', and d', Q, 's, and the third, fourth,
and fifth indices refer, respectively, to the spin,
electric isospin, and magnetic isospin of the two-

system.
By the first approximation each Q, mass and

Q. pairing energy of Eg. (5.1) can be decomposed
into three and four terms, respectively. For
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ex RIQp~e3

m(d', ) = m(d', d") = m(d') + m(dN) + V(d'& d") (5.2)

v(d„m, ) = v(d d", mm')

=v(d, m)+v(d', m )+v(d", m)+v(d", m ).
(5.3)

From Egs. (5.2) and (5.3) we obtain

v(d „m, ) = v(m„ d, ) = v(d„m, ) = v(m„ d, ) . (5.4)

+ 2 v(d 1& ~ 81 Ot 21 2) + 2V(dat ~st 0&, 21 2)

+ 2V(+1& ~st 11 21 2) + 2V(+2& ~31 1& 2t 2)

av(dl& ~3& 01 21 2)+ av(da& ~3& Ot 21 2)]

= m'(d')+m'(m)+ m'(~)+-,'V(m, X, 1)+-,'V(x, d', 1)

+v(d, m, o)+-,'v(m, x, 0)+-,'v(~, d, o)+A.

(5.8)

Zs = 2[m(d'1) +'m(ma) + m(& 8) + m(d'2) + m(ml) + m(& 8)]

+ —,', X4[2V(d'„m„1, 1, 0) +2V{(p„m„1,1, 0)

m'(q) = m(q) + V(q, d") + V(q, m&) + V(q, 7') (5.5)

A= m{d ')+ m(m&)+ m(X')+ v(d", m')

+ v(m' ~&)+V(g& d&) (5.6)

and, assuming that the pairing energies are inde-
pendent of electric isospin and magnetic isospin,
'we obtain

p= 2m'(d') + m'(m)

+ -'[2V(d'„d'„1) + 2 V(d'„d'„1)

+2V(d', m, 1)+2V(d„m, 1)

+ V(d's, ma, 1)+V(d'8, ml, 1)+V(d'8&ma& 0)

+ V(d'8, m„O) + 4V(d'1& m„0) + 4V((P2& ml& 0)

+ V(tP1& d'8& 1)+ V(d'„d'8& 1)

+V(d „d„O)+V{d„d„o)]

+ v(d'1& &st » 2& 2)+8V(d'2& ~st 01 2& a)

+ V{62& Xs, 0, „2)+ V(d'2& X„1,„,)
+ V(mlt ~st Ot 21 2) +V(mlt ~st Ot 2& 2)

+ V(ml& A. s& 1, 2, 2) + 8V(ma, Xs& 0, 2, 2)

+ V(m2& 81 Ot 2& 2) + V(mat ~8& 11 2t 2)

+4V(d'1&ma& 1, 1, 0)+4V(d'„ml& 1& 1, 0)

+ v(dpi& ~st 1& at a) + v(~st d'1& 1& 2& 2)

+ V(d'2& X„1,—,', 2) + V(X 3& d'2& 1, —,', 2)

21 81 1 at 2) V(~3&m2t 11 21 2)

1& 81 & 2t 2) V(~st mlt 11 2& 2)]

= m'(d')+ m'(m)+m'(X)+ V{d,m, 1)+-,'V(d, Z, 1)

+-.' v(m, ~, 1)+-,' v(d, x, 0) +-,' v(m, x, 0) + A.

(5.9)

= 2m'(t)+ m'(m) +-,' V(d', d', 1)+-,' V{d', m, 1)

+-'V(d, d', 0) + Z V(d', m, 0) + A. (5.7)

Therefore, for the noninterchangeable Q moliej
we obtain the baryon mass expressions as

By the same procedure, from Egs. (4.21) and

(4.22) we obtain

A = —,'[m(d, )+ m(m, ) + m(~, )+ m(d', }+m(m, )+ m(~, )]

+ 3 x ~4[4V(d'„m„O, 0) + 4 V(d'2& ml& 0& 0, 0)

p=2m'(d')+ m'{m)+-,'V(d, Ip, 1)+-,'V(d, m, 1)

+ 4 V(d'& d'& 0) + g~ V(d', m, 0) + A,

n= m'(d')+2m'(m)+-, 'V(m, m, 1)+-,'V(d, m, 1)

+-.'V{m&m& 0)+ rsV(d, m, 0)+A,

(5.10)

(5.11)

+ v(+1& ~31 1t 2& 2) + v(+2& ~ st » 2& 2)

+ v(ma& 81 1t 2& 2) V(mlt 8& 1 2t 2)

+ V(+1& st t 21 2) V(+2& st lt 2& 2)

+ SV(mst ~si 11 21 2) + 2V(mlt ~81 11 21 2)

+ 2V(ms& ~8& ot 21 2) + av( 11 81 o1 2t 2)

+V(d', m, o)+-,'V(m, g 0)+-,'V(gd, 0)+A, (5.12)

Z'= 2m'{d)+ m'(~)+ V{d', d', 1)+-,'V{~,d', 1)

+-,'V(tP, d, 0)+ )V(jp, » 0)+A, ,
Z'= m'(d)+ m'(m)+ m'(~)+ V(tP, m, 1)+-,'V(m, X, 1)

(5.13)

+—'V(x, d', 1)+-,'V{m, x, 0)+-,'V(g d', 0)+A,

A = m'(d)+ m'(m)+ m'(~)+-,'V(m, ~, 1)+-,'V(~, tp, 1)

+av(ms& &3» a& 2)+av(ml &3» 2 2)

2V( st ~st 1 21 2) 2V(mlt 3& Ot 21 2)

+ 2V(+gt .~3& 11 2t. 3) + 2 V(+2& ~31 11 21 2)

Z =2m'(m)+ m'(~)+-,'V(m, m, 1)+-,'V{m, » 1)

+-,'V(m, m& 0)+ &V(m, x, 0)+A,

(5.14)

(5.15)
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-0= m'(6')+2m'(X)+-, 'V(&, &, 1)+4V(Q6', 1)

+-,'V(~, ~, 0)+ fV(X, 6, 0)+A,
= m'(K)+2m'(A) +-'V(A., A., 1)+-,'V(A.,R, 1)

+-,'V(x, x, 0)+~V(st, x, 0)+A,

(5.16)

(5 17)

V(x, 6', 1)= --,'[m'(&) + m'(6')] ——,
'&*"+—,'Z *' —-', A

= --,'[m'(A) + m'(6')] ——,'A+485. 0,
(5.33)

V(6', 6', 0) = -m'(6')+ ~p —,'n —~—A+ 3Z'+ -', Z

(5.18)a+"= 3m'(6) + 3V(6', 6', 1}+A,

~*'=2m'(6')+ m'(St)+ V(6', 6', 1) +2V(6', &, 1) + A,

4 gg++ g+0+gg++gg 3

= -m'(6') ——,'A+258. 2, (5.34)

(5.19)

6* = m'(6')+2m'(BK)+ V(St, X, I)+2V((P, X, 1)+A,
V(St, st, 0) = -m'(X) —-', p+ ~ion —~OA+-', Z'+-', Z-

Igg++ g+0 gg +gg++ gg

~+-=3m'(X)+3V(X, X, 1)+A,

(5.20)

(5.21)
= -m'(9t) —-', A+255.5, (5.35)

Z *'= 2 m'(6') + m'(A) + V(6', 6', 1) + 2 V(A., 6', 1) + A,

(5.22)

V(&, &, 0) = —m'(&) + ~io p —', s —~0A —T—Z'+—,'Z

+4~0 4gg++ g+0+4gg++gg

Z*' = m'(6') + m'(Bt) + m'(A. ) + V(6', st, 1)

+ V(R, A., 1)+V(A., 6', 1)+A, (5.23)

3~go ] A3

= -m'(~) --,'A+321.7, (5.36)

Z* =2m'(x)+m'(z)+V(x, x, I)+2V(x, x, 1)+A,

(5.24)

:"*0=m'(6')+2m'(A. }+V(X, A, 1}+2V(A., 6', 1)+ A,

(5.25)

= m'(Ot)+2m'(X)+ V(X, X, 1)+2V(st, X, 1)+A,

(5.26}

0 =3m'(A. )+3V(X, A, 1)+A. (5.27)

= -m'(6') --,'A+412.0,

V(st, x, 1) = -m'(x) + -,'a +- - -,'A

= -m'(X) ——,'A+413.5,

V(&, &, 1)=-m'(a)+-,'a*"-Z+'+=+'--,'A
= -m'(A) ——,'A+ 558.0,

(5.28)

(5.29)

(5.30)

V(6', Ot, 1) = --,'[m'(6')+ m'(x)]+-,'a*' —-,'S* --,'A
= --,'[m'(6')+ m'(~)] --,'A+412.2,

(5.31)
V(31, X, 1)= ——,'[m'(Ot)+ m'(A)] —-,'4* +-,'Z* --,'A

Among Eqs. (5.10)-(5.27) there are only 12 inde-
pendent ones, six each from the octet and from the
decuplet. Therefore, the 12 V values can be ob-
tained from Eqs. (5.10)-(5.27) in terms of A, 12
chosen baryon masses, and the three reduced Q,
masses. The 12 baryon masses are chosen as P,
n, A, Z' Z =' s*" 6*' a* Z*', Z*, and
:-*'. The results in terms of MeV are

V(6', 6', 1) = -m'(6') + g
4* ——,'A

g g++ g g - 3(g g+ g go) (5.40)

V(6, 3t, 0}= --';[m'(6')+ m'(X)]+ T'; p+ ~n+ ~A

2g+ 2y +

ling++

1gg0+ lgg-

lyly+

lgg-
3

= --,'[m'(6') + m'(X)] —-', A+ 205.2,

(5.37)

V(ot, &, 0) = --,'[m'(St) + m'(A. )]+ —,', p ——,'n+ —,'A

~2++ + 2g + l g g++ + 1 g gO + 1 g g

——~*"—-'A

= -g[m'(st) + m'(A)] —3A+ 366.6,

(5.38)

V(&, 6', o) = --,'[m'(&}+ m'(6')] ——,
' p+ r';++ —,'A

+ —g+ ~2+ + l g++++ 1 gg0 lg g+
8

-3A

2[m'(&) + m'(6 )j ——,'A+ 361.4 .

(5.39)

These results indicate that the triplet-spin-in-
teraction potentials are larger than the singlet-
spin-interaction potentials for the same pair of

Q, 's. This also means that the singlet binding en-
ergy is higher than that of the triplet for the same
pair of Q, 's. Putting the V values from Eqs.
(5.28)-(5.39) into Eqs. (5.14), (5.17), (5.19), (5.23),
(5.26), and (5.27) yields six relations between the
baryon masses. These relations are

= --,'[m'(st) + m'(X)] ——,'A+ 487.3,

(5.32)

gg+ ++0 g++ gg ~+0+ ~g
y

gg+ +gg 2g+0 ++++++- 2++0

(5.41)

(5.42)
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n- —~*-= 3(=*-—z*-),

p
+ ~ ~ M»

pg =g

p+ n = '.(A —-z') + (z'+ z-) —(z*'+z*-)

(5.43)

(5.44)

V(d', d', 1) —V(tP, d', 0) + V(m, m, 1) —V(m, m, O)

= V(d', &, 1) —V(d', &, 0) + V(m, x, 1) —V(m, x, 0),
(5.51)

+-', (a+"-~+-}+2s+'. (5.45)

V(d', d', 1) —V(d', d', 0) = V(m, m, 1) —V(m, m, 0),

(5.47)

then from Eqs. (5.28}, (5.29), (5.34), and (5.35)
we obtain

p ggo gg+

Again, if we assume

(5.48)

V(m, m, 1) —V(m, m, 0) = V(x, x, 1) —V(x, x, 0),
(5.49)

then from Eqs. (5.29), (5.35), (5.30), and (5.36)
we obtain

The first five relations, (5.40)-(5.44), are
identical to those derived from the paraquark mod-
el" or from the interchangeable Q, model. The
equation corresponding to Eq. (5.45) obtained
from either of these models is

p+ = 3A —(='+ "--) ——,'(=*'+ -„-+-)

+-'.(z"+z'+z- —z*'- z*'-z*-)
+-,'(A +"+ A +'+ A+'+ A+-) +Il-. (5.46)

Substitution of the values for the baryon masses"
into Eqs. (5.45) and (5.46) shows that the left- and
right-hand sides of these expressions are:

Left of (5.45) and (5.46) =1878 MeV,

Right of (5.45) = 1896 MeV,

Right of (5.46) =1932 MeV.

Here the mass of 6*' is taken as the average of
b *"and 6*' without significant error, because
the difference between 6*"and 6*' is very small,
viz. , 0.45+0.85 MeV. Clearly, our expression in
the interchangeable Q, model shows closer
agreement to experimental results than the other.
In the paraquark-model derivations the strong and
the electromagnetic symmetry-breaking interac-
tions have been taken into account. Thus the dis-
crepancy of about 54 MeV is difficult to explain.

Note that from either the paraquark model or
the interchangeable Q, model we can obtain nine
mass relations, but we can only get six mass
relations from the noninterchangeable Q, model.
It is worth examining how we can get the three
extra relations. If we assume

then from Eqs. (5.28), (5.29), (5.32)-(5.35), (5.38),
and (5.39) we obtain

Z* —2Z* + Z* Z 2Z +Z (5.52)

VI. ELECTRIC AND MAGNETIC DIPOLE MOMENTS
, OF BARYONS

The above three relations, (5.48), (5.50), and
(5.52), are the three extra relations obtained in
the paraquark model. Equation (5.47) is an elec-
tric isospin reflection between d' and m Q, 's, which
should be a good approximation. In fact, relation
(5.48) does fit experimental values well. Again,
Eq. (5.49) is the electric u-spin reflection between
R, and X Q, 's; this should not be a good approxima-
tion. Equation (5.50) indeed does not fit the ex-
perimental results very well. Finally, Eq. (5.51)
is the electric v-spin and u-spin reflections be-
tween 6'and X and z and A. Q,'s, respectively. This
should be poorer than the electric isospin reflec-
tion between 6' and 9t Q,'s. To see this, put

V(d', &, 1) —V(d', x, 0) = V(m, A. , 1) —V(m, x, 0) .
(5.53}

Then from Eqs. (5.33), (5.39), (5.32), and (5.38)
we obtain

(z —z') —(n-p) =(z+ —z+') —(A+' —ai').
(5.54)

Experimentally, Eq. (5.54) is better than Eq.
(5.52).

Clearly, these three extra mass relations ob-
tained from the paraquark model were derived
under the above less adequate assumptions. That
is why some of these relations, including Eq.
(5.46), do not fit the experimental data well. It
seemed that the paraquark model did not involve
any such assumptions in the derivation of these
relations, but, indeed, these assumptions were
already made without attention when we employed
the paraquark model. In our derivation of the six
mass relations from the noninterchangeable Q,
model we did not make any like assumptions.
This accounts for the fact that we only obtained
six relations from the noninterchangeable model.
Consequently, the noninterchangeable model is
more feasible than the paraquark model or the
interchangeable model in deriving the baryon
mass relations.

Once again, if we assume

(5.50)
As we know, the magnetic dipole moment (MDM)

of a nucleus is mainly contributed by the intrinsic
MOM 's of the nucleons inside and their orbital an-
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u(6') = -2u(&) = -2u(&) . (6.1)

gular momenta. The relativistic corrections to the
MDM's of individual nucleons, 28 '7 the cooperative
effects, "and the influence of spin-orbit coupling
are very sma11 in accounting for the MDM of the
nucleus. However, the situation is different for
calculating the MDM of a baryon instead of a nu-
,cleus. In the three-Q, model the three Q. 's
(ql6", q,FI', and q3X') of a baryon are very much
closer to each other and stronger in interacting
with each other than the nucleons of a nucleus. Al-
so, as discussed in Sec. II, the interaction between

q and q
' in a Q, will change the strength of the

MDM of the @ . Therefore, the MDM of a baryon
contributed by the cooperative effects'7 " (or the
so-called exchange MDM's) may be comparable to
that contributed by the intrinsic MDM's of the
three Q, 's.

From the baryon wave functions in Sec. IV we
can calculate the MDM's of the baryon octet. Let
u((PI) and u(d') be the intrinsic MDM's of Q, O'I

and Q, I{', respectively. The relation between u{6'I)
and u(6') is still unknown. However, if the Q,'s
are structureless particles, then we have

of nucleons. If a baryon is made up of only two
different kinds of Q, 's then the application is
straightforward. However, we have to keep in
mind that 6'Ot pairs are almost the same as 6'A.

pairs because both X and A. carry the same elec-
tric charge. It also follows that if a baryon is
made up of two kinds of Q, 's, X and h., then there
is no exchange MDM, since both K and A. carry the
same electric charge. Obviously, if a baryon is
made up of only one kind of Q, then the exchange
MDM is also zero. Finally, if a baryon is made
up of three different kinds of Q, 's, 6', ot, and A.,
then the exchange MDM will also vanish, because
the three Q„' s in a baryon do not produce an ex-
change EDM (if there was an exchange EDM in a
baryon, then it would be difficult to explain why
the baryon does not carry an EDM). The vanishing
may be due to the fact that the baryon is self-con-
jugate (i.e., the baryon remains the same if we in-
terchange 6' and X, X and A,, A. and 6', 6" and %',
%' and X', and X' and 6"). From Eg. (6.2) and the
wave functions in Sec. IV, we can express the
MDM's of the baryon octet in the, noninterchange-
able Q. model as

u(Q..) = u(Q, )+ u„. (6.2)

Here p, may be called a cooperative MDM which
can be positive or negative or zero.

Now we discuss p,„. In nuclear yhysics the ex-
change MDM of a nucleus" can be expressed as

&&=2' e~-~y ~ «~j»

x {r„xrI) d7ld72. . .d7 „, '

(6.3)

It seems to be a reasonable approximation to as-
sume that

u(p) = u(6')+ u„,

u(n) = u(&) —u„,
u(A) = u(&),

u(~') = u(6')+ u„,
u{&')= au(6')+ lu (R) —3u(&),

u(~ )=u(&),
u(=-') = u(&) —u, ,

u(=. )=u(&).

From Eqs. (6.1) (6.4) and (6.5) we olltaln

u((P) =2[u(p)+ u(n)] =1.'l60u„,

(6.4)

(6.5)

(6 7)

(6.8)

(6 ~)

(6.10)

(6.11)

(6.12)
where n is the number of nucleons in the nucleus;
j,&=1, 2, . . ., n; e, and e, are the electric charges
of the kth and jth nucleons; g is the wave function;
J» is the potential function between the j and 4 nu-
cleons; P» is the exchange operator; and r, and r~
are the position vectors of the two nucleons in-
volved.

From Eg. (6.3) we obtain the following: The ex-
change MDM's of conjugate pairs of nuclei (i.e.,
those that can be obtained from one another by in-
terchange of proton and neutron) are equal in mag-
nitude and opposite in sign." It also fo1lows that
the exchange MDM's of self-conjugate nuclei van-
ish.

To apply the above facts about the exchange
MDM's to the case of baryons, instead of nuclei,
we have to make a. little change, because there are
three different kinds of Q,*s instead of two kinds

u(&) = u(&) = -[u(P)+ u(n)] = -0.880u„
u„= -[u(p) + 2u(n)] =1.033u„.

(6.13)

u(~') = u(P) =2.&~3u„, (6.15)

u(A) =u(~ ) =u{=" ) =-[u(P)+u(n)]=-o. 88ou„,

u(=') = u(n) = -1.~13u,
u(~') =[u(P)+ u{n)l =o 88ou

(6.16)

(6.1V)

(6.18)

The results of the yaraquark mode123 arid the in-
terchangeable Q, model are

u(A)=u(~ )=ub )= 0~»u, -

It is clear that we ean express the MDM's of the
rest of the baryon octet in terms of u(P) and u(n)
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p") = (I.+2S)p, ,+5.

(ii) In the v «c approximation,

(6.19)

g) =(L+2S)p+5- g, + 5 T.(L+ 2S)' I.+ 2S

(6.20)

(iii) In the extreme-relativistic approximation,

(
[(L+2S)p, +5],

1-
(6.21)

where go=-(Q'll)/(2mc), 5 is the supplementary
EDM, and T is the average kinetic energy of the

Q . For the baryon octet and decuplet, L=O, S=O,
and 5 =0, because Q 's are bosons and structure-
less. We should note that the exchange EDM's of

~(Z') = ~(P) =2 793~,
p(Z') =0.53 p„,

g (:-')= -1.863 p,„.
The experimental data" are p (A) = (-0.73 ~ 1.6)p„
and p, (Z+) = (2.57+ 0.52)p„. We can see that the
predictions from the noninterchangeable or inter-
changeable model and the paraquark model are al-
most the same. Note that one may also introduce
the idea of exchange MDM into the calculation of
the MDM of baryons from the paraquark and inter-
changeable Q, models. The experimental data
show that the exchange MDM for these two models
is almost zero, which is expected.

Next, we will prove that this model predicts a
zero EDM for baryons in an S state. One difficulty
of introducing magnetic monopoles into the hadron
structure is in solving the problem of the EDM and
MDM of baryons. We know that a rotating electric
charge can produce an MDM, whereas a rotating
magnetic charge can produce an EDM. If there is
any magnetic monopole inside a baryon at all, why
do protons and neutrons not carry EDM's? ' It is
not a matter of T and P violations. A particle
carrying an EDM and MDM will violate only P, but
not T, if the EDM is induced by its moving mag-
netic charge. The answer to this question can be
that the three Q 's (6",Ot,', and X') in a baryon are
in an L =0 and S=O state. We may employ the
same formula used to calculate the MDM of a bar-
yon to calculate its EDM. However, we must
change electric charges to negative magnetic
charges and keep in mind that Q 's do not carry
intrinsic EDM's, i.e.,

~(e ) (6)t ) ~(e) (+s
) ~&e

) ( ~r ) 0

The EDM p,"produced by a Q carrying magnetic
charge Q' in a state L, S can be rewritten me as
follows:

(i) In the Newton approximation,

existing baryons are zero, since each baryon con-
sists of tp', R', and X' Q

' s, which make the bar-
yons magnetically self -conjugate. Therefore,
EDM is zero for the baryon octet and decuplet.
However, for highly excited states, L 0, a strong
EDM is expected to exist. The strength of such an
EDM will be in the order of 10 "g cm. The exis-
tence of such an EDM may be strong evidence of
the existence of the Q 's. Experimental investiga-
tions are very much encouraged.

VII. SUMMARY AND DISCUSSION

antum theory allows the existence of magnetic
monopoles. The purpose of this paper is to intro-
duce such monopoles into the hadron structure and
to solve some of the difficulties faced by the para-
quark model. To this end, the magnetic monopoles
are generalized to match the conventional quarks
(electric quarks) O', R, and )).; i.e., there are also
three kinds of magnetic monopoles called 6", Bt',
and A.

' magnetic quarks (Q 's), and their counter-
part Q„'s also exist. The Q 's, as required, are
all bosons. Electric quarks (Q, 's) and Q„'s are all
superstrong-interaction particles, and are consid-
ered to be the same kind of particles as far as the
superstrong interaction is concerned. The mag-
netic clusters, 6"(P'+X'%'+A, 'X' and 6" ~'X', car-
rying zero net magnetic charges, become the fun-
damental blocks of the existing mesons and bary-
ons, respectively. An Q, and an Q pair is called
an electromagnetic quark (Q, ). Three Q 's,
q,6", q, X', and q,X', replacing the traditional three
quarks q„q„and q3, form a baryon.

The three-Q, model can be divided into two pos-
sible submodels called interchangeable and nonin-
terchangeable Q. models. The interchangeable
model allows the three Q,'s or Q 's to interchange,
whereas the noninterchangeable model does not.
The interchangeable model will have the same
predictions in baryon mass relations and magnet-
ic dipole moments as the paraquark model. How-

ever, the paraquark model has statistical difficulty,
which the interchangeable Q, model does not have.
The noninterchangeable Q, model predicts bet-
ter baryon mass relations than the other two mod-
els. The three-Q, model, noninterchangeable or
interchangeable, also predicts the existence «
a strong electric dipole moment (EDM) in a bar-
yon state with nonzero Q. angular orbital momen-
tum. The strength is in the order of 10 "ecm.
An experimental investigation is strongly recom-
mended.

There remains to be discussed the question of
why Q,'s carry spin —,

' and Q 's carry spin 0. This
seems to break the symmetric property between
elects'icity and magnetism, just as Q

' s hold much
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stronger charges than Q, 's. The Q, and Q„differ
only in charge and spin. Maybe there is some re-
lationship between their charges and spins.

In calculating the baryon mass relations in the
noninterchangeable Q, model, we have expressed
the Q, pairing energies as a function of the spin,
electric isospin, and magnetic isospin of the pair-
ing system. For a unique solution there are too
many different pairing energies or too many un-
knowns in the mass exyressions. In order to make
the problem solvable we have ignored the electric-
isospin and magnetic-isospin dependence of the
pairing energies. We then have expressed the Q,
pairing energies in terms of Q, pairing energies
plus a constant. In this approximation the exis-
tence of Q 's only serves as a label marker to dis-
tinguish the Q, 's. %e may get the same baryon
mass expressions if we assume that the baryon
consists of three distinguishable Q,'s (even when

they are in the same spin and electric-isospin

states) and completely symmetrize the wave func-
tion in the Q, labels.

Finally, in calculating the EDM and the MDM of
the baryon we have only considered the relativistic
effect and the electric and magnetic exchange
moments. The influence of spin-orbit coup1ing and
recoil effect is not treated. The influence of such
extra effects is negligible in accounting for the
MDM of baryons; however, whether or not these
effects will produce an observable nonzero EDM
of the baryon is unknown. The author hopes to re-
turn to these questions later.
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