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with a Resonance Kernel*
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(Received 1 November 1971)-

The solution of the Amati-Bertocchi-Fubini-Stanghellini-Tonin multiperiyheral integral
equation with a narrow-resonance kernel is investigated. First, an approximation scheme
that leads to a tractable analytic approximate solution is presented for both the forward and
nonforward equations. Next, the exact numerical solutions are displayed for the relevant
values of the input parameter's: These results serve as a measure of the- accuracy of var-
ious analytic approximate solutions. The approximate solution presented here, which is
found to be good to within about 10% in the region of interest, sh'ouM be useful both in the
general study of the output of the multiperipheral model and in the Pomeranchukon pertur-
bation theory.

I. INTROOUnION

In this paper. we shaIl investigate in two. comple-
mentary ways the solution of the Amati-Bertocchi-
Fubini-Stanghe11ini-Tonin (ABFST) multiperipheral
integral equation, ' in the modern version formu-
lated by Chew, Rogers, and Snider, ' and by Abar-
banel, Chew, . Goldberger, and Saunders. s We
shaB study in detail- the solution of the equation
with the simplest kernel. consisting of a single
sharp resonance, and discuss only briefly the
straightforward generalization to the case of a
kernel with many resonances. , This solution, in
the language of Ref. 3, corresponds to- the "unper-
turbed solution, " since we neglect the sxnaLl high-
subenergy diffractive-scattering part in the input
kernel.

In ord'er to gain insight into the nature of: the out-
put, we first obtain an analytic approximate solu-
tion by repIacing the original kernel by a factori-
zable kernel. This replacement is guided in some
sense by "peripheralism, " that is, the factorizable

kernel should behave like the original kernel in
the peripheral region, where the contribution to
any convergent integral involved is expected to be
important. We shall demonstrate that the solution
so Obtained reproduces itself under the action of
the original kernel in the most peripheral region.

On the other hand, we have also solved the equa-
tion numerically for certain values of the input pa
rameters. This solution provides a measure of
the accuracy of vanous analytic approximate solu-
tions.

Our analytic approximate method is presented
in Sec., II (for forward scattering) and Sec. III (for
nonforward scattering' ). There is: no pretense of
rigox'; rather, in a practical way we shall develop
a tractable explicit form that is simyle enough and
yet has reasonable accuracy. The latter point is
justified' by' comparing with the exact numerical
solution which is presented in Sec. XV. Some gen-
eralizations and tI1e que:stion of the uniqueness of
olIr apploxlInatlon sc11eme.ale pl68ented at. the
end of the paper.

II-. THE FORWARD' EQUATION AND THE APPROXIMATE SOLUTION

We shall first illustrate the properties of our approximation in the case of forward scattering (q =0 in
F'ig. I). Let us here ignore the problem of internal symmetry; this can easily be incorporated into the
model by introducing crossing matrices as described in Ref. 3. The absorptive part A; of Che elastic m-
pl'itude T of pseudoscalar-meson-pseudoscalar-meson scattering is rmrmalized in. such a ~ay thzt

g(s ~2 ~s). g1/2(s @2' ~2)~tot(~ ~2 ~2)

where p,
2 is the meson mass- squared-,

h(x, .y, z) =x'+y'+z'-2(xy+yz+zx),

and o'~' is the total meson-meson (p-p) cross section. The elastic p:-g cross section o" enters. In the
input. potential of: the eguation ln the {on-sllell): forM
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TABLE I. The variables.
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FIG. j.. The kinematic structure of the multi-
peripheral i.ntegral equation.

1
2

72=P2 2

Pi » g
)1/2( t)i/2

P2 ~ 0
@2

( ) 1/2 ( t)1/2

The O(1, 3) partial wave of 2 is defined as
(cf. Table I)

(7', r ) fd=se '~"'+" VA(s, r, v );

(2.3)

7I P l2 P'
(—7')'"(-t)',"

—1~@~1 for all~ 8

cosh' -gi g2
cosh/

(y g 2)1/2(y g 2)1/2

the inverse transform is

f dA. ~+&X,+1)e(s, rj, 7'2)

J 2' 2(-7 )'"( T)'"-sinh8(s T ~ )
(2.4)

where the contour is taken to the right of any singularity of A~ in the X plane. In terms of A ~, the ABFST
-equRtiOn iS

1 dv'
w, (~„~,}= v, (~„~,)+ „,„,v„(~„~')w, (~', ~,) .

/

The essence of our method is to approximate

@-e(s, wg, v'2) 2 (-~,)'"(-7.)'"
(s 7., -T,)+-[(s -7, -r,)' —4(-r, )(-y, )]'/2

by a factorizable expression 4

( s~ )1/2( s~ )1/2
g s, r„')7—2( )( )

The function g is actually a loner bound to e . Notice that

e " "&"I'-&(s, ~„v,)[1+2(-~,)(-v, )//s']

(2.5)

(2.6)

(2.V)

(2.8)

when either T, or ~„or both, approach zero. When either r, or r„rbooth, approach (minus) infinity, the
two expressions are different. One hopes that, in any convergent integral involved in the calculation, the
contributions from these "nonperipheral" regions do not matter very much. Notice also that $ is a small
quantity for all values of 7., and ~,. For a given s, it has an absolute maximum

(2.9)

vrhereas

e( )[ mRx (8 T2) (8)
-'fixed &2o -~1=s ~2 I ~l/2

. 'L T2j

Rppx'ORching the Rbsolute maximum vRlue of I fox' -Tl = -72 && 8.
With this approximation, Eq. (2.5) is immediately soluble. Here we consider the solution for the kernel

with a single (sharp) resonance. A kernel with many resonances will be discussed in Sec. V. Thus we put
for the (on-shell) potential

V(s, p', g') =a'/2(s, p, ', i/, ')wmxl eg,„6(s-m') -=m'R(0)5(s —m'), (2.10)

vrhere m2, x, and F are the squared mass, elasticity, and width of the p, -p resonance. %e shall assume
p'«m'. The solution to Eq. (2.5) is then

I*R(0) (-m*r, )"*(-I'r,/I*) ~"
1 TrSC, g' -~, )-(m2- ~,)

(2.11)
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where

moR(0) o d~ m27 x+z

16»'(A. +1) (».'-T)' g' —v)'

, B(X+2, X+2)E(2, X+2, 2X+4, 1- p,'/m')

(2.12)

(2.13)

R(0) a(~, ~)
16n' 2(2A. +1) (2.14)

In Eqs. (2.13) and (2.14), B is the Euler beta function and E is the hypergeometric function. The eigen-
value condition is given by the vanishing of the Fredholm determinant

D (A.)= 1 —TrK &
= 0 . (2.15)

A special property of this approximate solution is that, under the action of the original kernel, it "repro-
duces itself' for -7'~, -v„or both, small (in comparison with mo). This can best be illustrated by going
back to the s plane. From Eqs. (2.4) and (2.11), we get for the leading behavior of the full amplitude

(2.16)

where nis the largest value of X satisfying Eq. (2.15), and

s 16v'
jn gg R(0) x. I (2.1'I)

In the interest of simplicity and clarity, let us put p, '=0 for the moment; then the amplitude at the physical
(and most peripheral) point is

A(s, 0, 0)~ 16»oP„(s/m') (2.18)

On the other hand, in this asymptotic region of the s plane, the full amplitude, when written in the form

A(s, r„~,)~ P (7„7,)s",
gazoo

satisfies an equation corresponding to Eq. (2.5):
1 d~'1/2 ~ 1&t'2 m+1 ds I&'(s v v') e &~+a&e&o, » ~

~'&
1 2 1P 2 16vo(~ p 1) . 0 ll (~2 7.l)2

(2.19)

x[(-~')'"(-~,)'"]""y,(~', 7,) . (2.20)

If we put Eq. (2.16) as a trial function into the right-hand side of Eq. (2.20) with the original kernel, the
output physical amplitude is

A(s, 0, 0) - lim Q„(r„v,)s"
Q o T@~0

m' R(0) 'd~' -7' "",( m' ) "' s &

16m'(++1) ~" m' —7'

(2.21)

(2.22)

which is just Eq. (2.18) by virtue of Eqs. (2.12) and (2.15). (Actually the condition r, =0 is not necessary
in this part of the argument; ~, can take any value. ) The corresponding property can of course be demon-
strated in the A. plane. It should be noted that some previously proposed approximate solutions '"' do not
possess this property. Comparisons of the solution proposed here and other approximate solutions with
the exact numerical solution will be given in Sec. IV.

III. THE NONFORWARD EQUATION AND ITS APPROXIMATE SOLUTION

Away from t = 0, the on-shell potential is given by

1 dt, dt, g(-h(t, t„ t,)+4tt, tg(s -4p'))
16m'LP" (s p g') [ n, (t f t )+4-tt tJ(e —4y, ')]'" (3.1)

where T is the complete elastic amplitude; ImT(s, t) =A(s, f).
A single (sharp) resonance contributes a potential
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Tf{s, t) =2x (2L+1)P (z,))(mxI'6(s-m )
16ms

where

-= m'B(t) 5(s -m'),

2s

(3.2)

and L is the spin of the resonance.
The appropriate O(1, 2) partial-wave amplitude is

A, (r„z„r„z„t)= ds Q, (cosh() A(P, r„»zr» z»t),
gtf 2

and the inverse transform is

d l (2l+1)P, (cosh')
1& 1& 2s» ) 2~t 2[( r )(1 2)( r ){1 z 2)]1)2 )( ls 1&»z» )&

where the contour is taken to the right of any singularity of A., in the l plane.
In terms of A„ thy nonforward ABFST equation is

)+' d '(1»)-~)2
I(»z»r»z» ) ~g( lizli » 2i ) ~~ 4 d I 2 I ) ~2 i I2 ~l( 1tz»16' ~ „J& (p. -7'-~t) -7'tz'

x A, (r', z', r2, z„t) .
In order to make an approximation similar to that discussed in Sec. II, we note that the function

Q)(cosh)1)) can be expanded as'

(3.3)

(3.4)

r'(l + 1)22"'n!
Q (cosh&) =~ [(1 z 2)o+1~~2Cl+). (z )][(1 z 2)(l+1)/2+)+(( )]s ()+1+n)e(s, )g T2) (3.6)r (2l+2+n) n 1 2 n 2

n=0

where C)"' is a Gegenbauer polynomial. Now, as before, we shall replace exp[-8(s, r„r,)] by $(s, r„r,) of
Eq. (2.7). With the input potential Eq. (3.2), the kernel in Eq. (3.5) is then a sum of factorized terms. We
shall, discuss this case in Sec. V. As a first approximation here, we take only the first term of the sum in

Eq. (3.6).'o This is not unreasonable since, as we have realized above [Eq. (2.9)], $(s, r„r,) is a small
quantity throughout the range of integration. Thus

m'ft(t)B(i+1, —,') ' +' dz (1 -z')'+'" nPr '+'-
16)( „,(p, r- , t) -rtz (m ---r) (3 7)

(3.8)

where we have Used the notation u = -~ and & = -4t for convenience. Now observe that, for a given g & 0,
the expression (4ug)/(p'+ u+ &)' is always less than or equal to unity throughout the range of integration

4gf f &1 for p +0
(p'+u+f)2 „„2+~ t)2+/ =1 «» t(2=0 ~

(3.9)

Thus, the expansion of E as a hypergeometric series in powers of (4ug)/(p, '+ u+g)' always stays within

the radius of convergence of the series for Rel & -2. After this expansion has been made, the series can
be integrated term by term, each term being expressed as a hyyergeometric function. Thus we get a
series of hypergeometric functions with coefficients (g/m')" . The first two terms are as follows:

TrK) =1~, l 1
'B(l+2, l+2)E 2, l+2, 2l+4, 1—R(t) p'+g)

+2 l 2
—,B(l+1, /+3)E~4, l+1, 2l+4, 1-, +O(g/m') E) (3.10)

The next step is to transform" E(a:, 5, c, 1 —x) into E{a', i)', c', x) and then to express E(a', b', c', x) as a
hypergeometric series in powers of x —= (p~+ r)/(riP) [since we shall be interested only in the small-t region
where (p,'+ g)/gz) ~ 1]. After this manipulation, we obtain the eigenvalue condition



1=TrK,

a(t) (B(()), )(t+)) u'+ 2()+2) 3()+8)) «'+(}'
-1a, ~,2(2i. 1)

' l.1

P'+g '
1

(2l+2)(l+2) P, '+& (2l+2)(l+2} (2l+3)(l+3) 1 ('P'+g '
sinai m l+1 m2 l+1 I+2 2 ~ m

4 g l ' 1 4 p, '+g
'2(l.2) ~ — ""l.l l.1' l.2 ~

l(l+2) v p'+g ' '
1 2l(l+3) p'+g

{3.11)

Notice that ln Eq. (3.11), the radius of convergence of the series ls controlled by m . Tllerefore, fOr
f g0, even if p~- 0, the solution i(f) of Eq. (3.11) remains finite. If, instead of the procedure following Eq.
(3.8), a direct expansion of the nonforward propagator were made in the form

(~'- r--.'t)*-T«* (u -~) 2'(v, '-~) (u'-~)* ) ' (3.12)

one would obtain a series representation of TrK, with a radius of convergence that is essentially controlled
by p,'. Thus sucb, a procedure would suggest that TrK, -~ for ItL'-0 and l &1, even though the correspond-
ing integral representation of TrK, is actually finite in this limit. 8 8

The slopes of the trajectories can easily be computed from Eq, (3.11)by the formula

da 1 1
0

16m~ 2mm

dt, , F(0) 4m' B(0) a(m', u', (u')

in which a satisfies Eq. (3.11) and

16mX'(0) = —
( )

TrK)

B(n, n)(n+2)
1

3(a+3) p' n'

(-n+1)(2n+1) (-a+2) m2 sinwn m2 m'

2nB(n, n) 4(a+1} p,
' v n lL' " '

1 2 3
p'

(-a+1)(a+1)(a+2) (-a+2) m2 sinwa 3 m' m'

(3.13)

(3.16)

(3.1V)
8 16ns

) (0)= —„„,T rc)

B(n, n) B(n, n) B(n, n)(a+2) 3B(a, n) B(n, Q(n+2)
2(2n+1) {2a+1) (-a+1){2n+1} (-a+1)(2n+1)' (-a+1)'(2n+1) m'

+ ln — + cosgcF — 1+2 &+2 —+ ~ - ~ -2 — + 3 18

4 1 6V 1 2
g' ' p2

. mw ln ~ ~ ~ 4 4 ~ (3.19)9 2 9 3 m2g ng3

In Eq. (3.18), B(n, o}=2B(a, n)[@(a)-g(2a) j. From these relations one sees immediately that owing to the
presence of the factor [{p.')/ipP)]" ' in X(0), dn/dtI(, 0- when p2-0 and n ~ 1. Alternatively one can see
this from the derivative of the integral representation of TrK, in Eq. (3.8): The integral (s/s l) TrK, di-
verges at the lower end of integration when jU,

2 =0 and & =0. By taking p,2-0 we have moved the threshold
froxn I;=«4@2&0 to t=0.

We have also
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B(l+1,—')[(1-g ')(1-z ')] '4' R(t) (-m'r ) (-mr )
1( 1& lr 21 2i ) 1 Try

m2 n(g)+1 P ~f)f (g)+y + n(t)
A(s, r„r~;t) ~ 16m P„«)(t)s~~ m -71 m 7g) m

where, as before, tI„«&(t) =-[Y(t)] ~.

(3.20)

(3.21)

Notice that when t (i.e., f) goes to zero, Eq. (3.21) coincides with Eq. (2.16). That is, in the forward
limit, the leading member of the family of Regge poles (l = n -n, n =0, 1, 2, . . . ) and the corresponding
Toiler pole (A, = n) are the same, as far as the high-energy behavior of the full amplitude is concerned.
This result is true in general and does not depend on the approximation we have made. Qn the other hand,
from Eqs. (3.20) and (2.11) we see that A, -, ,A~ apart from the function B(I+1,—,') and a factor with de-
pendence on z, and z„however, this result- follows only from the fact that we have discarded all the daugh-
ters (l = n —1, n —2, . . .) in A.„'owing to the approximation made after Eq. (3.6).

IV. EXACT NUMERICAL SOLUTION AND COM-

PARISON WITH APPROXIMATE SOLUTIONS
B(0) 2
16m' n(n+1)(n+2) (4.1)

We have also solved Eqs. (2.5) and (3.5) numeri-
cally, using the method described by Wyld" to
find the leading pole and its residue. We have
considered the two cases p,

' = 0 and p' =m,' (i.e.,
g'/m' =~M) for a kernel consisting of a sharp res-
onance of mass squared nP =m '=0.585 GeV'. The
quantity A is treated as a variable parameter.

In Fig. 2 we show the numerical solution for the
intercept of the leading pole when p, '=0. It should
be noted that the method of numerical solution is
not precise in this zero-p, limit: the error in e
might be as high as +0.1. The value of n(0) cal-
culated from Eq. (3.11) with p,

' = 0 and g = 0 is al-
so plotted; it differs from the numerical solution
by about 6/o when n=1. For the sake of compari-
son we have also plotted the values of n(0) calcu-
lated in the trace approximation~

(dashed line), and the approximate solution of Ref.
5

B(0) 1
16ns n(n+1) (4.2)

I.O—

I I I
[

I I I [ I I I
[

I I l

ExaCt

0.8—

0.6—

(dotted line), which is also the expression obtained
in Ref. 6.

Figure 3 shows the numerical solution for n(0)
when (tj, ')/(m') = —,'„ together with the value of n(0)
calculated from Eq. (3.11) to first order in

(t ')/(m')

I I I
[ I I I

[
I I I

0.4—

1.0

Exact 0.2—
Q

0 I I I I I I I I I l I I I I

0.8 -0.2

0.6 - 0.4

0.4 - 0.6—

0.2

R (o)
)6'&

-0.8—

0 I I I I I I I I I I I I I I I

0 2 4 6
R (0)
)6~'

FIG. 2. Solutions for the intercept of the leading
pole when p~ =0.

FIG. 3. Solutions for the intercept of the leading
pole when p, = m~ .
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(4.4)

It is seen that the approximate solutions are "more
peripheral" than the exact ones. This is not sur-
prising since we have replaced the original kernel
by the one which is more peripheral [cf., Eqs. (2.6)
and (2.7}].

Finally, in Fig. 7 we show the slope of the lead-

ing pole at t = 0, when the p. -ti resonance is (i) a
scalar and (ii) a vector. The numerical solution
for t =0 lies somewhere within the shaded area.
We have also computed the values of the slope at
t = 0 according to Eq. (3.13}up to order [()(12)/(rrP)]'
at three different values of R(0) corresponding to
n(0) =0.5, 0.8, and 1.0.'2 They are shown as x's
in the figure.

V. GENERALIZATIONS

Let us consider briefly the case of a kernel consisting of a finite sum of factorized (and symmetric)
terms. The sum may arise either fr'om the input of many resonances in Eq. (2.10) or from taking more
terms in the series of Eq. (3.6). For example, if we put

V(S, t12, t12) =g rn, 28,6 (S m, -),2.
i=1

then we have

1/2 X.+1 1/2 )( +1
I/ (7 T ) ft1/2 i( 1} ~It 1/2 1( 2}

1& 2 i i ~2i 1 i 2
(5.1)

which is no longer factorizable in 7, and T,. The resulting equation can be solved by an algebraic method.
That is, for an integral equation of the type

f(&„& ) v(&„& )+f&8„=&')A&')f(&', & )«' (5.2)

with

I/(~„T2) =p v, (T1)v, (r2),

the solution is just
n n

f (7„~2)=g v, (7,)v, (72)+ Q .v,.(7.,)(1 T),/ 'T/-2v, (72),
i,f,0=1

where

(5.3)

T,, =T, , =Jt v,. (r)S(7')v/(T)d2 . (5.4)

For the case n =2, for example, the solution is

f (7'1, r2) = [(1—T,2)v1 (r, )V1 (7,) + (1 —T )1v (r2)v1(T2) 2T+12V1 (T1)V2(t2) + T21V2(T1)V1 (T2)][(1 —T„)(1—T„)—T, T~2] ',
which is similar to the solution to a coupled-channel problem. (5.5)

VI ~. DISCUSSION AND CONCLUSION

From the explicit approximate solution, Eqs.
(2.16), (3.11), and (3.13)-(3.21), we see the fol-
lowing characteristics:

(1) The leading behaviors of the trajectory and
residue do not depend on the external mass p, '; in
fact, the full expressions for them remain finite
in the limit )(i'-0 (but not for the slope at t =0 for
(2 &1).

(2) The mass nP plays the role of the "scale pa-
rameter" in the factor [(s)j(m')]" as well as in the

slope formula Eq. (3.13); this scale parameter is
usually asserted to be about 1 GeV' in Regge phe-
nomenology. And, apart from the masses p.

' and

2/P, the residue is completely determined by the
location of the pole a(t). In the Veneziano model,
the situation is similar to that mentioned in (2)
above, in that it is the reciprocal of the slope of
the trajectories which serves as the scale param-
eter. But in that model there is an over-all factor
in the residues (the constant usually denoted by P)
which is not determined by the theory itself.

From the numerical solution (as .well as from



S QI UTIQN QF THE AMATI-BERTOCCHI- FUBINI. . .

the approximate solution), we see that the leading-
pole position o.(0) and the residue Q„display mono-
tonic behavior as a function of the kernel strength,
which is characterized by R(0)/16n' A. s we have
mentioned in Sec. II, the factorizable expression
(2.7) we used is actually a lower bound to the orig-
inal kernel (2.6), whereas the approximate solu-
tions obtained by various authors '"' are based on
some upper -bound factorizable expressions. It
can be shown'~ that, for a(0), the approximate
value obtained here is a lower bound to the exact
one, while other approximate values' ' are its up-
per bounds. "

Let us now turn to the question of the uniqueness
of our approximation scheme. As we have under-
stood, there exist a lot of factorizable forms simi-
lar to the particular one given in Eq. (8.7). Even
the conditions that we imposed in Eqs. (2.8) and

(2.22) do not seem to determine $(s, ~„~,) uniquely.
However, if we multiply Eq. (2.7) by a factor
y(s, ~, )y(s, w, ) in which we require

y(m', r, )y(m', T,) =1

when either 7, or r, goes to zero (i.e. , that

$ (m', ~„)Ty(m', ~, )y(m', ~,)

matches exp[-8(s, ~„~,)] along the line ~, =0 (v, =0)
for all values of 7, (r, ) in the ~, -7, plane), then it
must be true that y(m', 7 ) -=1 (apart from a sign).

On the other hand, if we only require y(nP, 0) =1,
then the condition in Eq. (2.22) imposes

Of course y(m2, T) -=1 (the original proposal) fulfills
this requirement. There do exist, however, non-
null functions which are orthogonal to

(1/T2)[(~y)/(m2 p)&]"+& ~

and thus one may be able to choose a suitable
y(m', r) to match the high-T behavior of
exp[-8(s, r„r,)]. We shall not investigate this
possibility further here. It suffices to say that Eq.
(2.7) seems to be the simplest choice and produces
a solution with reasonable analytic properties and
in fairly good numerical agreement with the exact
solution. We believe that such a solution will be
useful in the semiquantitative study of the general
physical output of the multiperipheral model, as
well as in the Pomeranchukon perturbation theory. '
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A Feynman-diagram model of spin-J fermion Regge poles is developed for meson-nucleon,
scattering and is used to study the conspiracies arising from two types of Lorentz-invariant
couplings. For a completely symmetric coupling, the model automaticany leads to a con-
spiracy relation (M=@}between two leading trajectories of opposite parity which are Mac-
DoweB partners. The second type of coupling, which is antisymmetric in two indices, leads
to an M=& conspiracy re1ation between four leading trajectories. At high energies, the
M=2 conspiracy favors the scattering. of spin-1 mesons with zero heBcity in both initial and
final states while the M= j~ conspiracy favors mesons of helicity +1. Since the M =2 trajec-
tory chooses nonsense coupling at J = 2, the lowest spin of a particle on the trajectory is 2.

I. INTRODUCTION

In Regge-po1e theoI'y FeyQIQRQ diagram models
have proven to be R useful tool in studying the an-
alytic structure of the scattering amplitudes.
They provide a convenient method of coupling a
Regge pole to the external particles so that the
basic notions of analyticity are satisfied. In these
models, the introduction of daughter and conspir-
ator Regge trajectories to restore analyticity to
the scattering amplitude' arises in a natural way.
The numerator of the high-spin off-mass-shell
Feynman propRgRtoI'8 CRI'I'les lower- spin coIQpo-
nents which combine to cance1 the singular parts
of the spin-J projection operators. Models of this
type were first studied by Van Hove and Durand. 2

They have been used to study fermion and boson
daughter trajectories" and have been extended to
1Qcox'pol Rte bosoQ coQspix'Rcles.

This pRper 8tudies ferxQlon conspix'Rcles wlthln

the framework of the Feynman-diagram models.
It wi11 be shown that the amplitude for Regge-pole
exchange automatica11y contains the necessary
conspiring Regge trajectories to maintain Rnalp-

ticity. Since we are studying conspiring Regge

trajectories, the masses of the external particles
mill be taken to be equal, so that the daughter tra-
jectories which arise fiom unequal external mass-
es mill decouple from the scattering amplitude.
Signature will be ignored since it can be trivially
included at the end of the calculation.

Qflthln the, framework of the one-pRI'tlc1e-ex-
change (OPE) model of Van Hove and Durand, we

will see that the conspiracy relations for g-N
scattering Rre automatically satisfied by Mac-
Dowell- symmetric' baryon trajectories. %'e will
then look at the meson-baxyon scattering in a more
gene/al four-point coupling model in which the
coupling 18 vlR LoreQtz-lnvRx'1RQt teIlsors. For
p-N scattering this leads to more compbcated
conspiracy relations among the. leading Regge tra-
jectories and makes definite predictions about the
p's density matrix. These predictions depend only
on the form of the Lorentz-invariant couplings and

shouM be independent of the dynamical details of
the model.

The Rng(LQar momentum part of the coupling be-
tween the external particles and the Regge pole is
obtained by use of Lorentz-invariant tensors. The
dynamical part of the coupling is taken as a con-


