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The statistical bootstrap models of Hagedorn and Frautschi, modified so that the volume
of a hadron is allowed to vary with the temperature, are considered. It is shown that a
large class of polynomial solutions for the level density of hadrons is possible. A feature
common to polynomial spectra is that the volume of a hadron must vanish as the temperature
approaches infinity. The requirement that hadrons have a finite size implies both a maximum
temperature and an exponential hadron mass spectrum. Also, the recent formulation in
terms of quasiparticles demands an exponential hadron mass spectrum without requiring an
asymptotic bootstrap condition. A unique solution, pgm)~m5/2e™8 ag m — <, is obtained if
one assumes the asymptotic bootstrap condition of Hagedorn.

1. INTRODUCTION

Recently there have been several attempts at
understanding the dynamics of strongly interacting
particles from the statistical point of view.'™3
Although the different approaches lead to similar
results, the underlying features of the models are
quite different.

The thermodynamical model of strong interac-
tions and a systematic comparison of theoretical
predictions with experiments were started by

Hagedorn in 1965. The main success of this pro-
gram has been to introduce a bootstrap condition
in statistical theories of hadrons leading to an ex-
ponential hadron mass spectrum with a universal
highest temperature.

More recently, Frautschi® developed a statistical
bootstrap model of hadrons closely related to that
of Hagedorn. However, Frautschi opts to work in
terms of phase space with explicit momentum
conservation. Also, zero- and one-particle states
are excluded. The results Frautschi obtains are



5 COMMENTS ON STATISTICAL BOOTSTRAP MODELS... 923

analogous to those of Hagedorn.

The work of Ref. 3 is motivated somewhat dif-
ferently. Its main effort is to describe an inter-
acting system of particles which is localized in
space, this being the main feature of a physical
particle. - This is accomplished by introducing
distinguishable quasiparticles as constituents of a
hadron. If the quasiparticles are treated quantum-
mechanically the hadron mass spectrum rises
faster than exponentially but less than or equal to
exp(constminm). On the other hand, if the quasi-
particles are treated classically one obtains an
exponential hadron mass spectrum as in previous
works.

In this note the statistical bootstrap models of
Hagedorn and Frautschi are examined mathema-
tically under the condition of a temperature-depen-
dent volume. Such freedom gives a physical in-

sight for the existence of a maximum temperature.
It is shown that if one requires particles to have a
finite nonzero size then a maximum temperature
necessarily emerges. This connection was first
made in the work of Ref. 3 and serves to relate
mathematically the values of the maximum tem-
perature, the volume of a hadron, and the lowest
mass of the system. [See Eq. (12) of Ref. 3.] Also,
one finds the rather interesting result that the ap-
proach of Ref. 3 when extended to finite-width par-
ticles leads to an exponential hadron mass spec-
trum without requiring a bootstrap condition. Re-
call that exponential spectra were obtained in Ref.
3 only if an asymptotic bootstrap condition was
assumed. If one still insists on an asymptotic
bootstrap condition then a unique spectrum, p(m)
~m~%%¢™ a5 m—~ o, is obtained.

II. STATISTICAL MODEL OF FRAUTSCHI

The work of Ref. 2 is based on the phase-space integral

o= 2 (B2 1L [ amp,om) [ a'pio(m- 5 B)o( ), 1)

n=2 =1

i=1

with solutions satisfying the asymptotic bootstrap condition

P M~ py(m) as m—w,

where p,;, () is the single-particle density.

Frautschi finds that any solution must grow essentially exponentially as m—«,

@)

We shall relax the con-

dition that the volume V is a constant and allow it to vary with the temperature. Define

punB) =2 (3] 5 T famo, om) [ a*pi0(m= 35 5) 04 35 5 -B). ®

n=2

i=1

One recovers Frautschi’s p, () for P=0. Now, for a>0,

w b n=-1
R Y
o n=2 n )

Vv
where the real function R(a, 7) is defined by
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Suppose p,;,(®) is a polynomial in m, that is,
Pin (m) =;alml M (6)
Let us calculate p,,,(m). Now,
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On integrating (4) with respect to ¥ and using (7),
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Suppose we have a solution which satisfies the strong bootstrap condition,* that is, p,,(m) =p,,(m). It is
clear that the existence of such a solution would imply the existence of a solution satisfying the asymptotic
bootstrap condition (2). Then, p,(m)=Yam' so that (8) becomes

VI(I+1) ~~ 1 47 (~ 472'*t Va 1+5\ [1+1\]"
@n*Y e D =2 73D ',;{'fo x®dx [E (ETRIGELE T\ )\ - ©)
1

1 n=2

Note the appearance of the factor Va,/a’** on both sides of (9). This equation should hold for gl values of

a; atherwise, the bootstrap condition p,(m)=p;, (™) cannot be satisfied.
Equation (9) implies, for a given input spectrum, that is, a given set of (positive) numbers {a,}, a rela-
.tionship between V and @, V=V(a). Therefore, for (6) to be a bootstrap solution the volume must be a
function of the temperature. If, however, the volume does not depend on the temperature then (9) cannot
hold for all values of « and (6) cannot be a bootstrap solution.
The above analysis can be elucidated for the simple case when p; (m)=C, a constant. Then (8) becomes

(20)° f £ ) =3 (L) 20 C22C) TG D) o

If the volume V is independent of the temperature o™, then (10) can be inverted and gives

; _S (VY T2m (67°C)" TET(3n=3) n-s
(27)°p out (m)—§<h3) W T(4n-3) T'(Zn) m . (11)

Therefore, we do not have a bootstrap solution; that is, pg,(m0) #0in (m). However, assume a bootstrap
solution p,(m) =p;, (m) = C; then (10) becomes

had n-1 3 5 3
(21!)3C="Z:; (E%F) %’(GnZC)"%’ (12)
which has two possible solutions for C; a trivial solution, C=0, and a nontrivial solution VC/a*h®=pure
real number. Therefore, if the volume is related to the temperature as Vo« T7% then a bootstrap solution
exists with p;, (m) = pou(m)=const. This can be seen also directly from (1) provided one introduces pro-
perly the dependence of the volume on the temperature. This is accomplished by replacing the volume in
(1) by the differential operator (43/C)A(d*/dm*), where A=VC/a*h® is the pure real number determined by
(12).

It has been reported recently’ that Nahm has established analytically that p(m) ~m™2e™ 7o, as m- =, by
studying the singularity of the partition function, Z(T), for T— T,. The solutions found above do. not have
a singularity at T'= T, or better, T,=«. The works of Refs. 1 and 2 only considered solutions with a sing-
ularity in Z(T), that is, the exponential hadron mass spectrum, and omitted those which give rise to a
Z(T) which is regular in 7. Note, however, that in Ref. 3 the solutions for Z(T) must always be singular
and, hence, nonexponential hadron mass spectra are ruled out (see Sec. IV). In Ref. 3 [see Eq. (12) there-
in] it was assumed that the volume must be finite which implied both a maximum temperature and an ex-
ponential spectrum.

1II. THERMODYNAMICS OF STRONG INTERACTIONS

In his formulation of statistical thermodynamics of strong interactions, Hagedorn posed the following
mathematical problem?®:

« Viw1 (" nm
f alm, Ve ™Tdm= exp[ﬁ Z 772-] plm;n)m’K, (T) dm], (13)
o n=1 0
with
Inp(m) 14
Ino (m, V,) 1 as m-—e, (14)
where

p(m) for n odd
plm;n)=py(m) - (-=1)"pplm)= (15)
Ap(n) for n even

and

Vo= gmm, 3.
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Hagedorn argues that for p(m)=36(m-m,), o(E,V,) grows as exp(constE®/*) and the self-consistency condi-
tion (14) can never be established. Frautschi® also follows this line of reasoning and concludes that p,,, (%)
must grow at least this fast. Both proceed to give proofs that their respective statistical bootstrap models
do not possess solutions which grow less than exponentially.

In this section we shall construct polynomial solutions for the level density which allow for a dependence

of the volume on the temperature. Suppose

Ap(m)=0 and p(m)=a,m’.
1

(16)

We shall impose the strong bootstrap condition o(E, V,)=p(E), which is more stringent than (14). Then

V I+5 I+1
I+1 0 — —
Zl;alr‘(l+1)T —exp[zﬂ2 E' a,I‘( 3 )1"(2 >

for all values of T. Given a bootstrap solution, a
given set of (positive) numbers {a,}, we obtain a
solution V=V (T) determined by (17). Therefore,
if V, is allowed to vary with the temperature T as
Vo =V,(T) then one has a nonexponential bootstrap
solution to Hagedorn’s mathematical problem.

Consider the simple case when p(E)=0(E, V,)
=C, a constant. Then (17) becomes

CT =exp|(3/4n)V,CT*U,], (18)

where Ug=}7 7 44(1/7° and (18) is to hold for all
values of T. Equation (18) possesses a unique so-
lution given by

3 ¥,C

7= TU,=1, (19)

so that for a given bootstrap solution p(E)=0(E, V,)
=C, V, must be related to the temperature T by
(19). The functional relationship between V, and T
is as in the corresponding case in the previous
section.

Note that, as in the analysis of the previous
section, if V, is not allowed to depend on T, then
bootstrap solutions of the type (16) could not exist.
However, as the model of Ref. 3 and the numerical
work of Ref. 4 indicate, bootstrap solutions do
relate V,and 7. In fact, the result of Ref. 3 re-
lates T and V, as follows:

2

= AnVe (MeCV e (m,eop), (20)

" (he)* B

where m, is the pion mass and 8= (k7).

IV. QUASIPARTICLE METHOD

The quasiparticle method of describing a system
of strongly interacting particles was introduced in
Ref. 3. There one wrote formulas in terms of a
mass spectrum of the form

p(m) =37 Z;6(m —m;) + p.(m) (21)

t
where Z; denotes the multiplicity of the low-lying
mass states and p,(m) denotes the continuous part

21+1T1+4Z _1{_5] )

nodd

T
of the spectrum.

In reality, particles do not have a well-defined
mass; hence one should write formulas in terms
of a continuous spectrum only. Also, this will
allow for a more direct comparison of the work of
Ref. 3 to that of Frautschi and of Hagedorn [(1) and
(13) of the present paper], which are already ap-
propriate for theories where particles are not
treated as infinitely narrow resonances.

The fundamental equation (6) of Ref. 3 is

j;)me’mdw(M)dm=eXpl:—L:p(m)dmln<1_ h‘fs_fdsp

xexp[—a(p2+m2)”2]>} .

(22)

This is the analog of (1) and (13) in Frautschi’s
and Hagedorn’s work, respectively.

In the previous sections it was shown that (1) and
(13), together with the asymptotic bootstrap con-
dition, allow solutions which do not behave expo-
nentially for large values of the mass, if the vol-
ume is allowed to depend on the temperature. We
shall now show that (22) gives rise to an exponen-
tial hadron mass spectrum without using the as-
ymptotic bootstrap condition (14). If, in addition,
the asymptotic bootstrap condition is required, then
the solution to (22) is unique for large values of the
mass.

The right-hand side of (22) requires

47V LK
1——%——m02—2£-7£-9£)-20. (23)

Therefore, if the temperature a™* is allowed to
go to infinity, then the volume of a hadron will
vanish as 77° or faster as 7—«. Hence one must
require that

o

Ty Koorga) 7 Vo7 o

That is, there exists a nonzero g such that



926 MOORAD ALEXANIAN 5

2
1-%%%5%’—”&@?0, (25)
which implies that @ > >0. (The maximum tem-
perature 87! is to be determined experimentally
from the hadron level density.) One must insist
that the volume of a hadron cannot vanish. This,
in turn, implies the existence of a highest tem-
perature. This requirement gives the relationship
(25) between the maximum temperature g~!, the
threshold mass m, (or “lowest” mass), and the
volume V, of a hadron.

The left-hand side must also be valid only for
a= B#0. The density of states w(m) cannot be a
polynomial because a polynomial would give for the
left-hand side a function valid for @>0. The con-
sistency of both sides of (22) requives w(m)
~ glm)e™ as m~ « with glm) =o0(e™) as m— « with
€>0. However, such behavior for w(m) will make
the left-hand side diverge for a— 8. [For g(m)
~m" 42" a5 m~ o one has an essential singularity
for a- B.] That is, one must require that p(m)
~mPe™ as m— o with b = —3. The right-hand side
would then behave as a- S

lim exp{—pr(m)dmln[l - 4—2—;‘1 %Kz(ma)]}
mo .

a~f
BexpA(a- 9~ b>-3 (26a)
D(a-p"°, b=-3 (26b)

where A, B, C, and D are positive constants.
Hence,

o

BAnm(5/2+b)n s
- o _5
me(om) Lt 1T ((3+0)n) b>-z  (27a)
~J

m-»>o

[D/T(C)}m°, b=-3. (2Th)

It is quite important that for 5> -3, g(m)=o0(e™)
as m-» with €>0; otherwise the integral on the
left-hand side of (22) will not exist. We want to
show that the integral function g(m) given by (27a)
is of finite order as m— w; that is, gm)=0(e™)
as m- with y>0. One has that® g(m) = o(e™”) as
M= with y=(3+b)/&+b). Since 3+b>0 then
glm)e™™~0 as m—~= for €>0,

This result is rather interesting since one has
obtained that p(m) must behave exponentially for
large values of the mass wilkhout requiring any
bootstrap condition whatsoever. Recall that in
previous works'~? the appearance of an exponential
hadron mass spectrum cannot follow without the
assumption of the boutstrap condition of Hagedorn.
We see that in the quasiparticle formalism with
finite-width particles the bootstrap condition was

not invoked; nevertheless the hadron mass spectrum
behaves exponentially for large values of the mass.
If, in addition, one requires the asymptotic
bootstrap condition (14), then the only solution
which satisfies this added restriction is p(m)
—~m~%2¢™, Therefore, in the quasiparticle for-
malism with an asymptotic bootstrap condition one
obtains a unique behavior for the hadron mass
spectrum at large values of the mass. In the works
of Nahm, Hamer, and Frautschi, a unique solution
is obtained if one adds a strong asymptotic boot-
strap condition and does not include the zero-
and one-particle terms.

V. CONCLUSION

The existence of polynomial hadron mass spec-
tra in the statistical bootstrap models studied by
Hagedorn, Frautschi, and Alexanian demands a
temperature-dependent volume. This dependence
is such that as the temperature approaches infin-
ity the volume vanishes. The necessity of re-
quiring a maximum temperature in order to ex-
clude point particles from the theory was already
derived in Ref. 3 in relation to the quasiparticle
formalism. In this note it is shown that the statis-
tical bootstrap models of Hagedorn and Frautschi,
when extended to include temperature-dependent
volume, also have the feature of relating the exis-
tence of a maximum temperature with the absence
of point particles.

Temperature is related to average energy; thus
polynomial hadron spectra require a dependence
of the geometrical size of a hadron on average
energy. However, all statistical bootstrap models
so far investigated assume a constant volume for
a hadron. In the work of Ref. 3 the volume is re-
lated to the hadron mass spectrum through the
parameter g in (25). It is clear that a connection
between the hadron mass spectrum and the geo-
metrical size of a particle has been established.
If the hadron spectrum behaves exponentially for
large values of the mass then one has no point par-
ticles and the geometrical size of the particle is
determined by (25). However, the possibility still
remains that at high energies particles may be-
have like point particles, in which case the hadron
mass spectrum will behave as a polynomial for
large values of the mass. Recent experimental
data may indicate such a behavior.” However, it
is not clear how to interpret theoretically the ex-
perimental data. Nevertheless, a volume depend-
ing on the energy (or temperature) may be re-
quired by future experiments.

The question of the width of particles is an im-
portant point which emerges out of the present
works. In Refs. 1 to 3 one dealt primarily with
zero-width resonances in the following sense.
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Hagedorn and Frautschi suppose a spectrum in-
creasing faster than exp(constn®?), a result based
on the existence of at least one zero-width par-
ticle. However, their asymptotic bootstrap con-
dition, of course, makes no mention of the low-
mass states. This is what allowed us to obtain a
nonexponential hadron mass spectrum. Therefore,
in order to derive the geometrical size of a par-
ticle from the works of Hagedorn and Frautschi
onemust introduce a further postulate, for ex-
ample, a stronger bootstrap condition, as done by
Hamer and Frautschi, in order to introduce in-
formation about the low-mass states. Note that
this may also serve as a means of obtaining a
unique solution, as Hamer and Frautschi claim.
Of course, one may abandon giving information
about low-mass states and instead insist that the
geometrical size of a particle should not vanish,
in which case exponential hadron spectra are ob-
tained with perhaps a relationship between the
parameters of the spectra and the geometrical

size of a hadron. On purely physical arguments
it is clear that there should be a connection be-
tween the existence of low-mass states and the
fact that particles have a finite geometrical size.
The different cases (i), (ii), and (iii) discussed
in Ref. 3 were also based on the existence of low-
lying zero-width resonances. There one needed
the asymptotic bootstrap condition to obtain an
exponential hadron mass spectrum. We have seen
in this note that if the idea of zero-width reso-
nances is totally abandoned in favor of the more
realistic finite-width resonances, then there exists
no singularity in the partition function except that
due to the massive states, case (iii) in Ref. 3, and
such singularity emerges without using a bootstrap
condition.
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The two-particle discontinuities of the planar and nonplanar single-loop graphs are calcu-
lated for s<4(10~ay) BeV? for several values of the Regge intercept o, of the dimensionali-
ty D of the oscillators, and of the squared momentum transfer £, The results are not at all

what was expected.

I. INTRODUCTION

Several years ago Kikkawa, Sakita, and Vira-
soro (KSV)! proposed that unitarity be incorporat-
ed in dual-resonance models (DRM) by regarding

the N-point beta function as the Born approxima-
tion to a complete theory for the strong-interac-
tion scattering amplitude. The full amplitude
would be a sum over Feynman-like multiloop dia-
grams defined to have their discontinuities cor-



