
STEVEN W'E IN BERG

and therefore (88) reads

For such a tensor t«~. .., there is just one &ray to
form an lsovectorq so that

1)(Te: s" c
tif.[(n/2, n/2)] = t. (811)

Together with Eq. (85), this yields the desired re-
sult,

The commutator of the chiral generator with the
component of M is then

[r.(1-1),m, E'S/2, s/2)]
~a 44~«~ 4 (810)

= -t5„t ...,+ i(s -1)t,
It should also be noted that the commutation re-

lation (81) does not put any constraints on the
terms in M belonging to chlral representations
(A, B) with A =B, because such terms automatical-
ly satisfy (81). A suitable tensor basis for the
representations (n/2, n/2) is provided by the com-
pletely symmetric traceless tensors of rank n.

(81.2)

and hence is automatically symmetric in a and b.
Thus, the whole content of a commutation relation
like (81) can be summed up in the statement that
M, may receive contributions only from the chiral
representations (4, B) with A =B.
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The strongest possible lower and upper bounds on the electromagnetic radius of the pion
are derived in terms of the modulus of the timelike form factor. Numerical evaluation indi-
cates that the radius is bounded above by the vector-dominance value and that the form fac-
tor will not behave as a "dipole" until t = (2E) & 17 GeV, if at all. The location and number
of possible zeros of the form factor are discussed.

At the present time there is a rapid accumula-
tion of information on the pion's electromagnetic
form factor, ' E(t), for timelike and spacelike mo-
mentum transfer. Colliding-beam measurements
of &r(e'e m'w ) prov-ide direct access to ~E(t)~ in
the timelike region; for example, experiments' at
Novosibirsk, Orsay, and Frascati have deter-

mined l&{t)I «r t «4 ««'. »t»t »gher t will
be furnished by new colliding-beam facilities under
construction. Estimates of F(t) in the spacelike
region have been indirectly extracted from electro-
production experiments. ' More precise informa-
tion on the spacelike form factor will soon be
available from the Serpukhov-UCLA group, 4 which



is using me scattering to measure the pion's x'adi-
us' (~„}.

The analytic properties of E(t) imply the cor-
relation of these ostensibly different experiments,
which measure the variation of F(t) in the space-
like region (e.g. , the value of x,') and the behavior
of IF(t)l in the timelike region. The standard tech-
nique for making that correlation is to use an or-
dinary dispersion relation (dispersive equality) to
calculate r,' from ImF(f) for timelike t. The major
disadvantage of this method' is that it is necessary
to employ an intermediate model in ox'der to con-
struct ImF(t) from the measured values of IF{t)l.
This paper considers the problem of using analy-
ticity to draw a direct correlation between the
spacelike behavior of F(t) and the measured varia-
ti» of IE(f)l I» time»ke momentum transfer; so
intermediate models are necessary. The result is
a set of d1spex"slve s8egQQlst'te8 wh1ch g1ve the
strongest possible bounds on x„' in terms of inte-
grals of IF(t)l over the timelike region.

In the following paragraphs the basic inequal-
ities are first stated, then proved and discussed.
Next, in order to facilitate the numerical evalua-
tion of the results, we propose a description for
IF(t)l in the timelike region. The evaluation of the
basic inequalities then leads to lower and upper
bounds on r ' which are strong enough to coxx'elate
the values of x„' and the timelike form factox'.

The basic theorem, which bounds r„' in tex'ms
of IF(t) I, can be stated as follows: Assume E(t')
is an analytic function of ( with a cut on the positive
real axis at 4tl1~ = fo ~& $ 4 00; suppose E(() satisfies
the "reality" condition, E*($*)=E($}, and asymp-
totically approaches some power of t' as t- ~.
Then x,' is bounded below and above by

—sinh(4e) -4e r„' sinh(4e) —4e—+1» ---a
2 +I,

8tpl~

m„,."„,»iF(i)i 2m,
,

"„,IniF(i}I

In order to prove this result, it is convenient to
use the following mapping to transform from the
$ plane (complex I plane) into the z plane:

(5- i,)'"=(il,'")(I+z)/(I -z).
This transformation maps the whole $ plane into
the open unit disk in the z plane, the uppex' and
lower cuts in the $ plane onto the lower and upper
unit semicircles in the z plane, and the points
( = 0, to, ~ into'z = 0, -1,+l. In the z plane the form
factor is represented by f (z}=-E{$(z)}. The prop-

. erties of E(t') (see the "reality" condition and Ref.
1) imply that f (z} is analytic on the open unit disk

and satisfies f*(z*)=f(z}, f(0)=1, and f'(0)
= —2ty, '/3. In the language of the z plane, the
problem is to bound r„' or f '(0) by integrals of
If (z) I around the unit circle. It is now possible to
exploit the factorization theorem' of complex anal-
ysis, according to which f (z) can be represented
as f(z)=B(z)G(z) where

B( )
Q»

+Pl (+II
i o„l{l—o.*z) '

l,' e"+z
G(z) =exp —

i —, lnlf(e' )ld8 ~

Here, the a„are the zeros of f on the open unit
disk {0&In„I& 1). Now, the chain rule of differen-
tiation gives

f '(o) = B'(0)G(o) +B(o)G'(o)

Substituting B(0)=f{0)/G(0) and using the values of
f(0) and f '(0), we find

I (2f.&.'/3) +G'(o)/G(o) I
= IB'(o) I I G(o) I.

Notice that G(0) and G'{0) are known in terms of
integrals of If(z)l over the unit circle Henc. e, if
we can bound IB'(0) I from above in terms of such
integrals, then Eq. (4) gives lower and upper
bounds on r„' in terms of [f(z) I

on the unit circle
To do this, observe that Eq. (3) implies that B(z)
is analytic on the open unit disk, is continuous on
the closed unit disk, and satisfies the boundary
condition IB(e' )I =1. Therefore, the maximum-
modulus theorem' says that one of the following
two statements is true: (a) B(z) = 1 on the closed
u»«isk and IB'(0)l =I- IB(o)l', » (b) IB(z)I&1
on the open unit disk. In case (b) it is possible to
define a function A(z) which is analytic on the open
unit disk and continuous on the closed unit disk:

B(0) -B(z)
z[1-B*(0)B(z)]

'

It can be verified that IB(e' )I =1 implies IA. (z'e)l
= 1. Therefore, the maximum-modulus theorem
requires IA(z)l &1 on the closed unit disk. In par-
ticular, for case (b) we have l4. (0)l & 1, which by
definition of A. (z) leads to' IB'(0)l & 1- IB(0}l',
This completes the demonstration in both cases
(a) and (b) that IB'(0)l is bounded by the following
integrals of lf (z)l over the unit circle:

IB'(0)l- I - IB{0)l'=I - IG(0)l '
The combination of Eqs. (4) and (6) implies that we
have succeeded in bounding t', ' by integrals of
If(z)l over the unit circle:

l(2io~. '»)+G'(0)/G{0)I - IG(0}l(l —IG(0}l '}
or
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1 1 6'(0)
4f. IG(0)I-~'"}~- G(0)

Ci(0)-i
6 4f, ~G

IG(0)~ G(0),
'

The proof is completed by using Eq. (2) to convert
the integrals in G(0) and G'(0) into integrals of
~E(t)[ over timelike t.

An examination of the above proof shows that the
resulting bounds on r, ' [Eq. (1)] are the strongest
ones which can be derived in terms of IE(t)

~
in the

timelike region. Other authors' have derived
weaker results for the upper bound, which can be
obtained from the exact upper bound [Eq. (1)] in
the approximation that c is small.

In order to evaluate the bounds on x,', it is nec-
essary to know the behavior of ~E(t}~ for to & f «.
The Novosibirsk and Qrsay experiments' have
measured ~E(t) ~

on the interval 0.35 & f & 1.0 GeV';
the data are fit by a modified, I'-wave Breit-sig-
ner shape:

0.399
[(0.592 —t)+(1.41)b(t)]'+(1.99)k't ''

I (f) =n'[I (f) -0.504] —(0.0425)(f 0.592},

(0.637)k v f +2k
~g 0.276

k{t)=(0.5){f- f,)'~2.

Although there is no information for 0.08 QeV'
= to «f «0.35 GeV', there are good theoretical rea-
sons'0 for believing that ~E(t)

~
is also described by

Eq. (V) at these energies. Therefore, we will use
Eq. (I) for the entire range f, & t & 1.0 GeV'. The
Frascati experiment' indicates a rather large form
factor for 2.0 «t «4.4 Qe7'; those results are ap-
proximated by" IF(f)l'=(2.16 GeV')/P. We will use
this expression for all I; on 1.0 « t«4.4 GeV',
since this curve intersects the Breit-signer
shape [Eq. (7)]at t = 1.0 GeV'. Since there are no
data for t &4.4 QeV, we will propose a model for
IE(f)l at high t, characterized by a single free
parameter f„. It will be assumed that ~E(t)~' can
be crudely represented by a "large, " gently falling
Frascati curve for 4.4 GeV & I; «t& and by a
"small, " sharply falling curve (say, - 1/f') for t„

In other words, we assume

I I I I I I I I I I I I I

0.8—

Uke a "single pole" at very high t.
A computer was used to evaluate the lower and

upper bounds on x,' [Eq. (1)] as functions of t„
[i.e., as functions of the behavior of ~E(f) I]. The
results are displayed in Fig. 1(rvD2 =-6/mp', the
vector-dominance value for r „') Note that the up-
per bound is nearly constant and therefoxe insensi-
tive to the high-t behavior of (E(t)~. The conse-
quences of these results include the following:
(1) The derivation of bounds on r, '/r»2 has ex-
ploited the assumptions that E(t) is analytic in the
cut t plane and that ~E(t)~ is adequately described
for t, & f & ~ by one of our models (i.e., by some
value of t„). If the measured values of (t„,r„'/~»)
fall in the shaded region of Fig. j., then the bounds
are violated and at least one of these two assump-
tions is incorrect. (2) Barring a violation of these
assumptions, we can conclude that both inequalities
are satisfied and that (f„, r, '/r ') must lie in the
unshaded region of Fig. 1. This restriction repre-
sents the expected correlation of the "spacelike
and timelike" parameters, r„2 and t~. Jn particu-
lar, it follows that 0.3 «r, '/r»' & 1.0 and t„& IV
GeV'. Thus, "dipole" behavior of ~E(t)~ will ap-
pear only at ~~g~o yv Qe7'2, if at al.l. Further
more, it can be shown" that the location of the
point (fggq f ~ /tjq) ) in 'the unshaded legion gives us
information about the zeros of the form factor:
(a) If ~„'/r»' = 1.0 (the upper bound) and t„&17
GeV', then F(g) has one and only one zero" at the
real spacelike momentum transfer, t~„=-4t,e"
x (e"—1)-'. A calculation based on this expres-
sion shows that, as t„varies between 17 QeV' and
~, t„„ranges" from -~ to -42 GeV'. (b) If
r„'/AD' = 1.0 (the upper bound) and t„=17 GeV',
then E($) has no zeros (c) If .(t„, r„'/rvD') falls
on the lower (but not upper) boundary of the un-

~E(t)I'=(2.16 GeV'}/P for 4.4 G V' et&&i„,

IE(t)P=(2.16 GeV )te'/t4 for f~&f&

I Iit l

lO

~«v )

I I I I I I I

The parameter t~ represents a transition point,
after which the "dipole" behavior of the form factor
manifests itself; if t„=~, the form factor falls".

FIG, 1. Lovrer and upper bounds on x~2/~vD2 as func-
tions of tz. As tz ~, the upper bound on x~2/gvo2 stays
at 1.0, and the lower bound approaches 0.3.



shaded region, then E(g) has one and o»y»e zero
at a real timelike point, tqL = 4t,e4'(e" + 1) '. A
computation of tz«shows that it lies just below
threshold for all f„. (d) If (f„, r,~/r„D2) falls be-
tween but not on the upper and lower boundaries,
then E(t) has two or more zeros.

To understand the significance of these conclu-
sloQs lt ls Qecessax'y to conslde1 the uQcex'talntles
1Q the bounds on K„due to expex'lIneQtal el x'ox' 1Q

measurements of IE(~)l. A, rough estimate shows
that the upper and lower bounds on r, ' are uncer-
tain by -+0.25. The above quantitative results are
correspondingly blux'red. Calculations of t&U are
especially sensitive to experimental errors in
IE(f) I and, at present, constitute only estimates of
order of magnitude.¹teadded. After this work was submitted for
publication, the authox's x'eceived related repoxts
from I. Raszillier [I.Raszillier, Institute of
Physics (Bucharest) report, 1971 (unpublished);
Lett. Nuovo Cimento 2, $49 (1971)]. These papers
mention that Eq. (1) has been independently derived
in the paper by B. V. Geshkenbeln, Yadern. Fi.z. 9,
1222 (1969) [Soviet J. Nucl. Phys. 9, 720 (1969)].
However, the phenomenological discussion of the
present paper is more elaborate and of immediate
interest to experimental. sts. Also, Raslillier has
demonstrated that Eq. (1) is true even if IE(t)l is

replaced everywhere by IS(t)l, where IS(f)l is any
upPex Bmit on the form factor's modulus in the
timelike region, . This last remark implies that the
numex'ical results of the present paper axe valid
even if the colliding-beam data are "contaminated"
by a significant two-photon process. [See S. J.
Brodsky, T. Kinoshita, , and H. Terazawa, Phys.
Rev. Letters 26, 972 (1970).] To see this, note
that charge-conjugation inva, riance requix'es that
the one-photon and two-photon amplitudes sum in-
coherently to give the total cross section o(e' e- w w ), which is measured in colliding-beam ex-
peri. ments. Thus, the measured total cross section
provides an upper bound on the squared modulus of
the one-photon amplitude. Therefore, the colliding-
beam "measurements" of IE(t)l (obtained by neglect-
ing the two-photon contribution) must always furnish
an upper bound on the actual value of IE(f)l. Com-
bining this fact with Raszllllex' s result» we coQ-
elude that the empirical analysis of this paper is
probably valid even if the hvo-photon process is
significantly lax'ge. Therefore, any violation of our
bounds should be taken seriously,
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