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rents as well.

Therefore, we conclude that on the basis of low-
energy theorems such as the above, one does not
need to introduce any new terms in either the com-
mutation relations or the divergence conditions
provided one consistently enforces gauge invari-
ance and relativity. Whether this conclusion is
valid for other current-algebra calculations such
as those involving hard-pion processes is an open
question.

en
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Sum rules are derived by applying soft-pion theorems to the dispersion relations for the
reactions 7+ I =7+ F, I =27+ F, 2+ I —F, with I and F general multiparticle states.
In the special case where I contains one particle and F contains two particles, these sum
rules have a simple algebraic interpretation: They require that the transition matrix ele~
ments for reactions 7 +I—F or I—F + can receive contributions only from the representa-
tions (A ,B) of chiral SU(2)®SU(2) with A=B , but not A=B +1. Prescriptions are given for
dealing with the complications caused by the nonvanishing matrix elements of chiral generators

between states of different mass and spin.

I. INTRODUCTION AND SUMMARY

Sum rules of one sort or another have played a
large part in the recent development of elemen-
tary-particle theory. Given their great impor-
tance, it is perhaps surprising that these sum
rules have generally been restricted to a limited

class, involving transitions between a single -par-
ticle state and other states, induced by a current
or another particle. For instance, the Adler-
Weisberger sum rules® are derived either by eval-
uating matrix elements of axial-vector-current-
density commutators between single -particle
states, or by using soft-pion theorems in conjunc-
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tion with the dispersion relations for scattering of
one single-particle state into another by a pion;
either way, one obtains a sum rule for the matrix
elements of an axial-vector current between a
one-particle state and other states. When these
sum rules are saturated with single-particle
states, there emerges a set of commutation rela-
tions for matrix elements of the axial-vector cur-
rent between single-particle states,? which imply
that these matrix elements generate the algebra
of SU(2)® SU(2).

The purpose of this paper is to widen the scope
of application of sum rules to general multiparti-
cle processes. In particular, we shall study in
detail the sum rules for the processes

T+I-m+ F,
I-7+7+ F, 1.1)
m+m+ I~ F,

where I and F are general multiparticle states,
and 7 is a massless pion. As long as we take the
two pion momenta along the same fixed direction
1, and keep the momenta of all the particles in the
states I and F fixed, the amplitude for these pro-
cesses will satisfy a simple single-variable dis-
persion relation. Furthermore, the dispersion
relation for the part of the amplitude antisymmet-
ric in the pion isovector indices is presumably
unsubtracted. We derive our sum rule by impos-
ing on this dispersion relation the condition that
the amplitude should vanish when either pion en-
ergy vanishes.

Such sum rules are interesting in principle, but
they involve matrix elements which would be very
difficult to measure. In order to use these sum
rules, it is in practice necessary to assume that
they can be reasonably well saturated by summing
over one-particle intermediate states, plus those
semidisconnected contributions from multiparticle
states which also yield terms meromorphic in the
pion energy. Even with this approximation, the
multiparticle sum rules do not reduce to a simple
set of commutation relations, except in the sim-
plest multiparticle processes: those in which the
initial state I contains one particle and the final
state F contains two particles, or vice versa.
However, within this limited context the multipar-
ticle sum rules take quite a remarkable form:

[T,1-1), T,1~2)]=[T,(1-1), T,1~2)]. (1.2)

Here I',(1-1) and I',(1 —~ 2) are suitably normal-
ized matrix elements of the pion current 0%,
(where a=1, 2, 3) for processes in which one par-
ticle goes to one particle or to two particles, with
T,(1 1) interpreted as a single-particle operator
which (like the isospin or charge) acts additively

on the particle labels appearing on the matrix
element I',(1 - 2) (see Fig. 1).

It must be emphasized here that the matrix
I',(1-1) will in general induce transitions between
single-particle states of different mass — indeed,
in evaluating the commutator (1.2), we must in-
clude in the intermediate state all the resonances
needed to saturate the dispersion relation from
which (1.2) was derived. This raises an important
problem: When we add contributions to the com-
mutator (1.2), in which the particle labels on the
matrix element I' (1 - 2) run over particles of
varying mass, what should we keep fixed? We can-
not fix the energies and the momenta of these par-
ticles as the mass varies, so should we fix ener-
gies, or momenta, or something else? This is an
old problem, which has troubled every attempt to
introduce symmetry operators which do not pre-
serve the mass of the particle states on which they
act.

Fortunately, in the present case there is a well-
defined answer to this problem, which is dictated
by the same arguments that are used to derive
(1.2). The prescription is, that in evaluating the
commutators in Eq. (1.2), we must keep fixed the
celerity of each particle. The “celerity” of a par-
ticle of momentum P and energy E is in general
defined as the three-vector

ésﬁE—ﬁ, (1.3)

where 1 is a unit vector defining the direction of
motion of the pions in reactions (1.1), taken to be
fixed throughout our calculations. (Incidentally,
the popular “rapidity” variable is just the loga-
rithm of i-C.) Given the mass and celerity of a
particle, we can determine its momentum and en-
ergy from the formulas

2 2'
*=—E§+(ES i >ﬁ, 1.4
P 2h-C a4
C2im?
E = 25.6 . (1.5)
b b a
o = a + a - b
_ - +
b b a

FIG. 1. Graphical representation of the commutation
relation (1.2). (In all figures the reaction proceeds up-
wards, wavy lines denote the pion current, solid lines
denote other hadrons.)



902 STEVEN WEINBERG

Thus, in interpreting commutation relations like
Eq. (1.2), we must think of I',(1 - 2) as a matrix
element for either the scattering process

Te+1-+2+3 (1.6)
or the decay process
1-7,+2+3 a.n

in which part1c1es 1, 2, and 3 have. fixed celerities
Cl, Cz, and Ca, but in which the labels describing
the types of particles (including their masses and
spins) are allowed to vary, with momenta and en-
ergies always given by Eqs. (1.4) and (1.5). The
momentum and energy of the pion in these reac-
tions are always taken to have the form

Bp=1iw, pr=w, (1.8)
so the pion carries zero celerity, and, therefore,
C,=C,+C,. 1.9)

Conservation of energy or momentum in the scat-
tering reaction (1.6) would give a pion energy

C,2em,?2 C2im2 C,%+m,?
G tmy” _3__4:_.._1__1_.
“Tom.C, 2.6, 28-G .10

This quantity can be positive or negative; if (1.10)
is positive then T",(1 - 2) does describe the scatter-
ing reaction (1.6), while if (1.10) is negative then
I',(1-2) describes the decay process (1.7). In
summing over particle states of varying mass in
Eq. (1.2), we will always encounter some terms
in which (1.10) is negative and others in which
(1.10) is positive, so commutation relations like
(1.2) really provide algebraic constraints on an
over-all amplitude which describes both scatter-
ing and decay.

It follows from the prescription of fixed celerity,
that the single-particle operator I',(1~1) will in
general change not only the mass but also the di-
rection of motion, and hence the spin, of the par-
ticles on which it acts. Thus, I',(1-1) is not pre-
cisely the same as the pion-emission matrix X,
introduced in earlier work,? which was defined
only for collinear processes. However, it is
shown here that I';(1 - 1) is related to X, by a
mass- and celerity-dependent Wigner rotation so
that T',(1~1), like X, generates an SU(2)® SU(2)
algebra, consisting of I',(1~1) and the isospin.

In consequence, any multiparticle transition ma-
trix may be broken up into a series of terms which
transform according to the various irreducible
representations of this algebra. From this group-
theoretical viewpoint, our main result (1.2) just
says that I',(1 - 2) consists only of the chiral rep-
resentations

©,0), (3,1, @,1), (3,3),. (1.11)

o

but not of the representations
(0 1), (1 0): (2’ 2), (2,2 ] (1’ 2), e sy (1'12)

which could otherwise contribute to an isovector
transition matrix.

This sort of elegant algebraic constraint is not
so easy to apply to real scattering and decay prob-
lems, for the simple practical reason that we do
not know many of the matrix elements of the
SU(2)® SU(2) generators X, or I',(1-1). However,
although unknown, these matrix elements are
knowable: What is needed is a major program of
measurement of decay amplitudes for the “cas-
cade” decays like A, ~p+m, p—m+m, in which a
sequence of resonant states decay into one another
by single-pion emission. Given our present igno-
rance of the “mixing angles” in X, and T',(1~1),
perhaps the main lesson to be learned from the
present work is not so much the particular alge-
braic results, that chiral representations (1.12)
are excluded from the transition matrix T',(1 - 2),
but instead the more general conclusion, that mul-
tiparticle sum rules can set algebraic constraints
on the amplitudes for transitions among states
containing several particles of fixed celerity.

II. KINEMATICS

We shall consider inelastic reactions of the gen-
eral form

T.(q) + I1(P)=my(q") + F(P'), @2.1)
I(P)=1,(~q)+m,(q") + F(P'), 2.2)
T,(q) +7,(=q") + I(P)~ F(P'), (2.3)
Ty(—q") + I(P) = 7,(~q) + F(P'), (2.4)

where I and F are arbitrary multiparticle initial
and final states with total four-momenta P*and
P'H, while 7, and 7, are massless pions with iso-
vector indices @ and b and four-momenta +g* and
+q'F. It is convenient to regard all four reactions
as special cases of a single process, with the
specific reaction determined by the signs of ¢° and
q'°. Thus, it will be understood that we are deal-
ing with (2.1) or (2.2) or (2.3) or (2.4) according
as¢®>0, ¢’°>0o0r ¢°<0, ¢’°>00rq°>0, g’°<0 or
q°<0, ¢'°<0.

The pion four-momenta are related by the ener-
gy-momentum conservation condition

gt -q'*=pP'H-pH, (2.5)

All the particles in the states I and F will be taken
to have fixed momenta, so P* and P’* are also
fixed, and the matrix element here may be re-
garded as a function of ¢* alone. However, there
is a constraint: In order that both pions should
remain on their mass shells, we must have
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0=¢"%=(¢+P-P')=2¢.(P-P')+(P-P')
(2.6)
and also
0=¢%=(q¢’'=P+P')P==2q'-(P-P')+(P-P')>.
2.7

We plan eventually to apply a soft-pion theorem,
so we must require that the physical region for
our reaction should include either the point g*=0,
or the point ¢’#=0, or both. Equation (2.6) or (2.7)
can only be satisfied at such points if (P —-P’)?
vanishes, so the momentum transfer here must be
proportional to a fixed lightlike vector:

PH_P'H=pkA, (2.8)
n0=|%| =1, @.9)

with A a fixed energy transfer, which may be posi-
tive or negative. The constraint (2.6) now reads
g-n =0, and since ¢ and #» are both lightlike, this
implies that ¢g* is also proportional to »n*:

g'=ntw. (2.10)

Finally, (2.5), (2.8), and (2.10) give the other pion
four-momentum as

q'*=n*(w+A4). 2.11)

The matrix element may thus be regarded as a
function of a single variable w.

It is convenient to write the S matrix for the re-
actions (2.1)-(2.4) in terms of a “semicovariant”
matrix element M:

Spp=2m6*(P+q—P' -q") (4|w| |0+ A 2M (w).
(2.12)

In accordance with our previous remarks, this

Aft)=

—fe“"“""’Dfo(Flo(x =9)[my (), m,()]|I) d*x for Imz <O,
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formula should be understood to give the S matrix
for reaction (2.1) when w>0, w+A>0; for reac-
tion (2.2) when w<0, w+A>0; for reaction (2.3)
when w>0, w+A<0; and for reaction (2.4) when
w<0, w+A<0. I follows from this convention,
and from Bose statistics, that M obeys the cross-
ing relation

M 25(w) =M &(-w-2). (2.13)

III. SINGLE-VARIABLE DISPERSION RELATIONS

We have specified that all of the hadrons in the
initial and final states I and F have fixed momenta,
so that only the pion four-momenta are allowed to
vary. The point of this assumption is that then
the “semicovariant” matrix element M is free of
kinematic singularities in the pion four-momentum
components g and ¢’*, because we have already
extracted the pion “wave functions” (2|¢°|)~*/2 and
(2lg’°])*’2 in defining M, while the corresponding
“wave functions” of the hadrons in I and F have
fixed arguments. Since ¢" and ¢’* are linear func-
tions of w, it follows that M (w) is free of kinematic
singularities in w.

Indeed, this is one multiparticle problem where
a dispersion relation in w can be proved by simply
recapitulating the classic proof?® of the dispersion
relation for elastic scattering of a photon. We note
first that M (w) may be written as the Fourier
transform of a time-ordered product

M 23 (w) =fe“""""‘°”Dx"'Df(FIT{nb(y)na(x)}ll>d4x,
3.1)

with 7 (x) any renormalized pion field. To extend
this matrix element off the real axis, we define
the closely related function

fe“""""”’Dfo(FlB(y = x)[m,(¥), m,(x)]|IY d* for Imz>0

3.2)

where 6(x) is the usual step function, equal to unity for x°> 0 and zero for x°<0. The time-ordered and re-

tarded products are related by

T{m, (¥)m, ()} =0(y = x)[m, (), 7, ()] +7,(x)m, (),

so M is related to F by

M p(w) =A% (w + i€) +fe"”"""“”’(Fl[jzvra(x)Dzn,,(y)II) d*x. (3.3)

The commutators in Eq. (3.2) are supposed to vanish when x *-y* is outside the light cone, so x* ~y* re-
mains within the forward light cone for Imz > 0 and within the backward light cone for Imz < 0; hence, A(z)
is an analytic function of z, with singularities only on the real axis. Further, the discontinuity of A(z)
across the real axis is immediately given by Eq. (3.2) as



904 STEVEN WEINBERG
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Al w + i€) =AY w —i€) = [ et &= (F|[Pr,(v), O, (0)]|T ) d*x
= %:(211)454(1)1 =y + Wn )(F|0Pm, (0)|Ny (N |7, (0)|T)
- ;4:(21)454(@\,-%6011 - be)(F|TP1, (0) [Ny (N |57, (0)|1 ), (3.4)

the sums running over a complete set of intermediate states N. Aside from possible subtractions, the
analytic amplitude A then satisfies a dispersion relation, which for Imz >0 reads

Al w+ ie) = A2 (w —i€)
Afil) = Tom foo( o = dw

W=z

T, (0)|NY (N|DPr (0)|1)

Py -0 -2
)<F|Dg7f,,(0)|N>(NIUZM(O)II) .
Py —p% -2

2,
- =sn? Z05, - By - (f ~pp L0

+ i<zn>3;63< By —Bp = (00 -2 (3.5)

To calculate M 23(w), we recall that
i(p% —p% = w —i€)t + 218 (p% =P —w) = i (PG - P - w+ €)™,
so that (3.3) and (3.5) give the dispersion relation for M:
TP, O)N) VIR, O)I1)
Py —pf —w—ie
<FID2N 0Ny N |TPr, 0)| 1)
—pp—w+ie :

M E3(@) = =i @ I6%By By — (02— p0)R) L
N

(3.6)

+i@PY_5%By ~Br — (09 D)
N
To display the crossing symmetry of M explicitly, we recall that
P;r):plo_A, (3~7)
51«* =Pr- fA. ®.8)
The dispersion relation (3.6) may thus be written

o I oy (EICPT, Q)N (VICPT, Oy | (FICPr,O)IN) V|0, O)17)
M50 = =i er 8, - By - (07 ~p30) (T e I LX)

in manifest agreement with the crossing relation (2.13).
In general, the dispersion relation (3.6) or (3.9) will not be valid without subtractions. For this reason,
it is useful to introduce the odd amplitude

M) = <W M 25(w) =M gh(w) ”(w)) (3.10)

2w + A

The numerator vanishes at the crossing-symmetric point w=-A/2, so the division by 2w + A does not in-
troduce a kinematic singularity. Also, the numerator is expected to behave as |w| - like w°, where a

is the intercept of the p trajectory; since <1, the amplitude M > would then vanish for |w|-. Hence,
we expect M (7% (w) to satisfy an unsubtracted dispersion relation. By either repeating the steps that led
to (3.9), or (less properly) by using (3.9) itself, we find this dispersion relation to be

F|OPm, (0)IN) (V|Pr, O)1) = (FIC?m, (0)|N)(N|D21rb(0)11>)
(p% =py+w+A —i€)(py—pF—w —ie€)

M) == @r 0% B, B~ (0 -2 00
3.11)

Up to this point, we have not bothered to specify whether the states labeled F, I, and N are “in” or “out”
states. Of course, it is understood that when we label the final and initial states, these are, respectively,
“out” and “in” states, while the sum over intermediate states N can be taken over either all “out” states
or all “in” states. It will be very convenient to expand this sum into a double sum, and write (3.11) as

MEPr(w) = —i(2ﬂ)3£6% Dy =Dy = (03 =N [(F, out|DPm, (0)|N”, in)(S7) v 4 NV, out|0?r,(0)]1, in)
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- (F, out]Dzﬂa(O)lN’, in)(S")N,N(N, outl[]z‘rrb(O)U, in)]
X (p% =p% +w + A —ie)"L (PG =PI - w —i€), 8.12)
where S™! is the inverse S matrix
(S y =@V, in|N, out) . 3.13)
This version of Eq. (3.11) has the advantage that matrix elements of the pion current (1?7 are always taken
with an “out” state on the left and an “in” state on the right.
IV. SINGLE-PARTICLE DOMINANCE

At this point, we make our one approximation, and assume that M (w) is approximately meromorphic in
w, with poles arising from a large number of resonant states with negligible width. This approximation
is of course not new: It has been used in conjunction with current algebra from earliest times,* it forms
the basis for the algebraic realizations of chiral symmetry,? and it is a key ingredient in the Veneziano
model and its successors.®

In our present context, it is important to recognize that poles in M (w) can arise not only:from single-
particle intermediate states N, but also from multiparticle states, provided that the matrix elements
(F|m|N'y and (N|r|I'y are suitably disconnected. In the most general pole contribution in Eq. (3.12), the ini-
tial and final states are divided into two groups of particles:

I=I+1,, F=F +F,. @.1)
The intermediate states N and N’ are divided into two groups plus a single-particle state:

N=N, +N,+a(d), N'=N{+Ns+a' (D), (4.2)
and the matrix elements break up into disconnected pieces

(F, out|0?m,(0)|N’, in) - (F,, out|T?r,(0)] o’ (B’) + N}, in), Spy ng>

(™= ™ gy S g, Sor a0 (B =B),

(N, out|TPr, (0)|1, in) = (@(P) + Ny, out|TPm, (0)|1y, in), Sy, 4, ,

where c denotes “connected part” (see Fig. 2). The S matrices all cancel, leaving us with N, = F,, Nj=1I,,
so that (3.12) becomes
Mm@ =-i@r? T T T [ a0%B, ~B, -5 - (63 ~p%, ~1°)

F1+Fy=F Li+I,=1 o

X [(F,, out|TPm, (0)| (D) + I, iny (@ (D) + Fy, out|(F?7,(0)|1,, in), — (@=b)]

X (Do+ DY, =D, +w —i€) (b + P, =b, —w —i€)™, 4.3)
Fiy
-—F
F2
Fy
b
-— NI
a
*“—N
a
103 -1 I2
I
FIG. 2. Graphical representations of the general pole FIG. 3. The same as Fig. 2, after cancellation of

terms in the dispersion relation (3.12). the S matrices.
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the sums running over all ways of dividing the initial and final states into two groups of particles (see
Fig. 3).

It is very convenient at this pomt to introduce a new variable to characterize physical states, the “celer-
ity” C. For a state of momentum B and energy P° the celerity is

C=ipr°-P. “.49)
According to Egs. (3.7) qnd (3.8), the total celerity is conserved in our over-all reaction

¢.=C,, 4.5)
and the 6 function in (4.3) ensures the conservation of celerity in intermediate states

C=1p%-po=Cp, -Cp, =C,-C,,. 4.6)
Knowing the celerity and the mass of the particle @, we can easily calculate its energy and momentum,

C2im 2
P% =ﬁ(,-_—5°‘— , (4.7)
2

Hence, we can drop the label p in the matrix elements in (4.3), it being understood that the momentum of
the particle « is fixed by the conservation of celerity. The integral of the 6 function in (4.3) is

a* 83(C,, -C -————u—— 4.9
[[@8°(Cry =T+ p%-) AL 4.9)
so Eq. (4.3) reads
MG W) =—i@r? 2o 2
F1+Fe=F I+ D=1 a (6,1 épl)
X [(Fy, out|(?m,(0)| @ + I,, in) (@ + Fy, out|Pr,(0)|1,, in), — (a = b)]
x(p+ pf,’z - PR, tw —i€e)™ (PO + p}’,.l - p,"l -w-—ie)t, (4.10)

it being understood that the energy and momentum of particle @ are fixed by the conservation of celerity.

The reader can easily check that the pole structure displayed here is precisely the same as would be
found in perturbation theory from Feynman diagrams like Fig. 3. From this point of view, a factor p?
enters in (4.10) to cancel the normalization factors (p%)~1/2 appearing in the noncovariant matrix elements
of the pion current, while the factor 1. ( C -C 1) arises from the denominator of the virtual-particle
propagator in Fig. 3:

(bry + 1w =P ) +my? = by =pp,)* +me’ +2n - (ppy —pp 0= =20« (Cpy = Cr)) (@ = Wpoie)- 4.11)

V. CHIRAL SUM RULES

It will now be assumed that our massless pions are the Goldstone bosons of an underlying chiral symme-
try of the strong interactions. It follows then that the matrix element M must vanish when either ¢* or ¢'*
vanishes, ' so that®

ME2(0) = M24(-A) =0. (5.1)

There are exceptions to this condition, but we will ignore them for the moment, and simply assume that
(5.1) is valid; the exceptions will be taken up at the end of this section.

As long as we consider only purely inelastic reactions with A+0, it follows from (5.1) that the odd am-
plitude M =’ also vanishes for zero w:

ME%°(0)=0. (5.2)

In the elastic case A=0, the value of M "’(w) at w=0 depends on the devivative of M (w) at w=0, which
might receive contributions from equal-time commutators of the axial-vector currents. To avoid these
complications, we will confine our attention to reactions with A+0.

Our sum rule follows immediately from Eqs. (5.2) and (4.10):
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O=Z EZ‘,,TP%T»‘"—

FyrFp=F h+I=I o 0+ (Cp - F1)

X(8+ by, —02,) 7 Do+ D%, =7)

It is convenient at this point to introduce a new.
notation for matrix elements of the pion current.
Given two states.] and F with four-momenta P*
and P’¥, we define the reduced matrix element I',
by
(F, out| 7, (0)|1, iny, =2F, " (P"* = PN, N,(T )y, »

(5.4)
where F,~190 MeV is a convenient normalization
factor, and N is the product of the normalization
factors (2m)~%2 and (2p°)*/2, one for each particle
in the state. We note that the “mass” difference
P2 - P? between states of equal celerity may be
written in terms of the energy difference as .

2 _p2_Pp’2 . (P'0) - P24 (P°)?
- (-ﬁ . ‘ﬁr)z - (P0)2 -~ ('ﬁ ,§)2 +(P%)?
=(A-P-P)(fi-P’'+P°-7.P-P%
=2(f.C)(P° - P').
Thus, the energy differences arising from the def-
inition of I', cancel the energy denominators in
Eq. (5.3), while the factor p9 in (5.3) is canceled
by the two factors of (p%)~'/2 appearing in the nor-

malization factors N, ,, and N, Py Our sum rule
now reads

D S L ci)m -.C,)
r)

F1+F2—F n+I=1 1- (C,1

X E [(Fb)Fz,a+12(ra)a+Fl.,1 ~(@~?)].

(5.5)

As always, the momentum of particle « is fixed
by the conservation of celerity in the transitions
a+l,~F,and I, - a+F,.

Now let us come back to the exceptions to Eq.
(5.1). This condition will be violated only if the
amplitude for “scattering” of an axial-vector cur-
rent from the process I - F has poles,” arising
from diagrams in which one of the axial-vector
currents interacts with an incoming or outgoing
hadron, without changing its mass. Such poles do
not arise for reactions in which all participating
hadrons are mesons of zero strangeness, because
in this case the interaction with the axial-vector
current must change the meson’s G parity, and
there are no strictly degenerate nonstrange meson
states of opposite G parity. Poles canr invalidate
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[(F, out|TPm, 0)| @ + I, iny(a + F, out|Pr, (0)|1;, in), ~ (@ b)]

(5.3)

T

Eq. (5.1) for reactions involving baryons or strange
mesons, but even so, the sum rule (5.5) will still
be valid. Note that for each such pole there is also
a missing term in Eq. (4.3), in which the matrix
element of (7, or [(r, is taken between single-~
particle states of equal mass, and therefore van-
ishes. Experience shows? that the pole terms
which violate Eq. (5.1) always simply supply the
terms, involving transitions between single-parti-
cle states of equal mass, which would otherwise
be missing in Eq. (5.5).

VI. THE FIVE-POINT SUM RULE

Our general result, Eq. (5.5), does not take the
form of a simple algebraic statement about the I
matrices. There are, however, reactions I - F
for which (5.5) reduces to a statement about com-
mutators. One such reaction is the well-explored
case in which I and F contain one particle each.
Apparently the only other reactions for which (5.5)
takes a simple algebraic form are those “five-
point” reactions in which I contains one particle
and F contains two particles, or vice versa.

Let us consider a reaction of this latter type:

B+mg=~y+b+m,, (6.1)

where B, y, and d are single-particle states with
celerities C,, C,, and C,, respectively. The only
terms which contribute to the first two sums in
Eq. (5.5) are those in which I, contains just parti-
cle g and I, is empty, while either

F, empty, F,=v+90,
or

or
F,=0, F,=v.

(In general neither F, nor I, may be empty.) The
factor i+ C, in (5.5) is then fixed,

fi-C I =1-C,,
while the other celerities cancel,
i+ (€, -Cp) =+ (Cp,-C,) =0T,
Thus, Eq. (5.5) here takes the form
0-3 [(T)y s s Tt (Tl Tt

+(r;)))’,o((r:1)a+6,8— (a°b)]- (6.2)
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In order to bring out the algebraic significance of
this result, let us now define an additive one-par-
ticle transition matrix I;(1—+1), by specifying that
the products of this matrix with any transition ma-
trix M that takes one particle into two particles
are®

(- I)M)y+6.ﬂ =2 [(I;:)‘y.a(M)a+6,B + (r;)a,o((M)y-r u,B] s

(6.3)
(MI;(I g 1))74-5,3 =Z) (M)y+5,a(r;z)a.ﬂ . (6.4)

Then Eq. (6.2) reads
[G(1~1), G(1-2)]=[(1~1), ;1~-2)], (6.5)

where I,(1-2) is the submatrix of I referring to
transitions from one particle to two particles.

It is shown in Appendix A that the general one-
particle matrix elements (I}); , are related to the
collinear pion transition-matrix elements (X,)s,
defined in earlier work, by the formula

(Gg)r pe1/X
(E.)sos.ao;E Do:x[R Y(C, mg)]
x

X (X)) N2 [RE, mp)].  (6.6)

Here og and ¢, are the components of the spin along
the pion direction fi, which we now separate from
the particle~type labels « and 3; R is a rotation
which depends both on the celerity (which is equal
for o and B) and the mass; and (X,())s , is a suit-
ably normalized matrix element for the transition
a- B+, in which @ and g have helicity A and mo-
menta parallel or antiparallel to the pion momen-
tum. The collinear matrix elements X,(1) and the
isospin matrices 7, were shown,? on the basis of
the single-particle saturated inelastic Adler-Weis-
berger sum rules, to form a representation of the
SU(2) ®SU(2) algebra:

[Xa()‘)’ Xb(k)] =€ I, -(6.7)
[Ta’ Xb(h)] = Z'Eulbc‘Xc()\) ’ (6-8)
[T ) =i€a. T, - (6.9)

In consequence, the matrix (6.6) for transitions
among single-particle states of arbitrary (but
equal) celerity also generates an SU(2) ® SU(2) al-
gebra similar to (6.7)-(6.9). Finally, this implies
that the additive single-particle matrix I (1~1) de-
fined by Eqs. (6.3) and (6.4) generates an SU(2)
®SU(2) algebra, in the sense that for an arbitrary
one-to-two-particle transition matrix M, we have

[Fa(l ng 1); [rb(l - 1): M]] - [rl‘)(l - 1); [1‘,‘,(1 - 1)’ M]]
=€ [T, M],

(6.10)
as well as the isospin commutation rules

jon

(7o [G(A 1), M]] = [G(1~1), [T, M]]
= i€abc[rc(1 - 1)! M]:
(6.11)

[T0 [T, M]]) - [Tb’ [Tm M]] '—‘ieabc[];’ M]. (6.12)

The commutation relations (6.10)~(6.12) allow
us to expand any matrix M in a series of terms
M(A, B) whose commutation relations with 7, and
I(1 - 1) define a representation (4, B) of the alge-
bra SU(2) ®SU(2). In particular, the pion-emis-
sion matrix I (1-2) is an isovector in the sense
that

(7, (1~ 2)] =€, T(1~2). (6.13)

Hence, the only chiral representations which can
contribute to this matrix are those in which A, B,
and 1 satisfy a triangle inequality, so that

B=A-1, or B=A, or B=A+l.

It is shown in Appendix B that the five-point sum
rule (6.5) simply rules out the representations
with B=Az1, so that I} (1~ 2) must consist only of
the representations (4, B) with

B=A. (6.14)

VII. OTHER SUM RULES

The general sum rule (5.5) applies to processes
in which the states I and F may contain arbitrary
numbers of particles, not just to the processes
discussed in the last section, in which I contains
one particle and F contains two. However, the
sum rules in this more general context do not
seem to lend themselves to any simple algebraic
interpretation.

For example, consider the case in which both
the initial state I and final state F contain two par-
ticles each. The sum rule (5.5) for this case is
shown graphically in Fig. 4. The first eight terms
add up to the commutators

[T, ~1), [,@~2)]-[T,1~1), T,2~2)],

just as in Eq. (5.5). However, the next 10 terms
cannot be put into so simple a form. In particular,
the celerity factors in (5.5) do not cancel or re-
main constant in the last eight terms of Fig. 4,
because neither F, nor I, are empty here.

There are of course a great many other multi-
particle sum rules, for both the limited class of
five-point reactions, and the wider class of reac-
tions involving more than five incoming and out-
going particles. For instance:

(a) Instead of the isospin-odd amplitude M
which has isopsin 1 in the nm channel, we could
instead consider the part of the isospin-even am-
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plitude which has isospin 2 in the 77 channel:
M7= (w) =M 23(w) +M £3(w) — §8,, M £5(w).

This amplitude presumably satisfies an unsub-
tracted dispersion relation,® so the requirement
that it vanish at w =0 would lead to additional sum
rules, just as in the single-particle case.?

(b) Instead of two-pion reactions, we could con-
sider reactions involving other massless particles,
such as

T+I-v+F,
y+I-vy+F,

etc. Dispersion relations may be easily derived
for these processes, so presumably the use of
soft-photon theorems would yield algebraic con-
straints relating photon and pion multiparticle
transition amplitudes.

(c) Instead of reactions involving two massless
or nearly massless particles, we could try to de-
rive sum rules from the Adler “self-consistency”’
condition ® for a reaction involving only one pion,
or from the soft-photon theorem!° for a reaction
involving only one photon. The trouble here is that
with only one massless particle involved in the
process, it is much more difficult to derive a
useful dispersion relation. For instance, consider
the reactions

7+I-F or y+I~F,

where I and F are arbitrary multiparticle states.
What should we keep fixed as the pion or photon
momentum varies? We might try to separate out
a massive particle o from the final state

F=a+F'
and keep fixed the momenta of all the particles in

I and F’, Particle a will then have an energy-mo-
mentum four-vector

Py =Aat+ gt
where ¢* is the pion or photon momentum and A¥*
is the fixed momentum transfer
At=phi_PL,,
Hence, in order to keep particle « on the mass
shell as ¢¥ varies, we must have
-miE=A%+2q-A.
But in order to apply a soft-pion or soft-photon
theorem, it is necessary that the point ¢#=0

should be in the physical region, so that we must

take the invariant momentum transfer here as
2 2
A%=wm, .

Hence, the pion or photon momentum must satisfy

o

f&o
K
X

R
3 3 T

a
- +
b
FIG. 4. Graphical representation of the sum rule

(5.5), for the case where the states I and F each con~
tain two particles.

the constraint
q-A=0.

But ¢ is lightlike and A is timelike, so their scalar
product cannot vanish. This difficulty could per-
haps be circumvented by simply assuming from
the beginning that all invariant amplitudes are ap-
proximately meromorphic in all invariant squared
subenergies, as in the Veneziano model.®

(d) There are an unlimited number of supercon-
vergence relations which could be used to derive
multiparticle sum rules. The trouble here, as in
(c) above, is to know which dispersion relations
to use. Again, this problem could be avoided by
assuming the invariant amplitudes to be mero-
morphic. One might hope that the sum rules de-
rived in this way could account for some of the al-
gebraic features of dual-resonance models on a
more general basis.

Evidently a good deal of work will have to be done
to judge how fruitful these developments are likely
to be.
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APPENDIX A: LORENTZ TRANSFORMATION OF THE TRANSITION MATRIX T, (11)

We wish to show here that the general one-pion transition amplitude (r‘,,)m"5 is related to the collinear
one-pion transition amplitude (X,),, 5 by a rotation, as in Eq. (6.6).

According to Eq. (5.4), the matrix element (T',)s . is defined by the formula
2F -1 (Wl 2 - 2)

(@n)°@p%p3)"?
We are now explicitly dlsplaymg the spin components o, 0, in the i direction as well as the momenta P,
and p,, which for a celerity € are given by Eq. (4.7) as

(BﬁBO'BIDzﬂa(O)[aﬁaO'a)= .(Fa(a))ﬂoﬂ»otoa . (A1)

Bosm 0225 a)
o 2n-C

Under an arbitrary Lorentz transformation A*, the single-particle states in (A1) transform into!°

U[A]| B0 a—Z( £)"pyg, [L"(pa)AL(fza)]la o, (a3)

where L(p/m) is the “boost” which takes a particle of mass # from rest to momentum {; D Y’[R] is the
usual spin-j unitary representation of the three-dimensional rotation group; and p’* is the transformed
momentum

Pt =AY P (A4)
Since [?r, is a scalar, we can use (A3) in (A1), and find

2E 0 =15) (1 (E))go oy = O,ZD“B’ "[L"@B)AL Bﬁ)]

Cr P " ™ N
BB50110%n,O)| a0l ggga[w@%)u(fi)] . @5)
We shall restrict our attention here to Lorentz transformations A¥, which leave the pion momenta fixed:
AF nV=nb, (a6)

The fact that §, and P, here have equal celerity can be simply expressed in the statement that pt —p§ is
proportional to ¥, so for Lorentz transformations which satisfy Eq. (A6), p*—-pS* will also be propor-
tional to »*, and hence p,, and p; will again have equal celerity C’. Thus, Lorentz transformations of this
type may Be viewed simply as transformations of the celerity, the transformed momenta being given in
terms of C’ and masses by formulas like Eq. (A2). To be more explicit, the transformed celerity is given
by
Cii - _pli +E'n‘
==A!,p! = A E + A% pint + A° En'
= =M} (=C! + nIE) = A} E + A% (=C? +n’E)n*+ A% En’

Using (A6), we find that all terms involving E cancel, so that

C'*=A% 0 =ntA%(CY (A7)

For such Lorentz transformations, Eq. (A5) may be written simply as the transformation rule
& -f7 - -1(Pg ]
S S A L AW
T
Now note that for any celgrity E, there exists a 1 0 -£ £

Lorentz transformation A(C) for which the trans- N 0 1 0 0
formed celerity (A7) lies in the 7 direction. With- A(CH,= L , (A9)
out loss of generality, we can take i to lie in the E 0 1-3 3¢
3-direction and C to lie in the 1-3 plane; the de- E 0 -ig2 14ig

sired Lorentz transformation A(C) is then
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where
£=C,/C,.

This does satisfy (A6), so the transformed celer-
ity is given by (A7). Applying (A7) and (A9) to the
celerity C = (C*, 0, C?), we find a transformed ce-
lerity pointing in the 1 direction

¢’'=(0,0,cd. (A10)

But if ¢’ is in the @i direction, then so are P’ and
P4, so that the matrix I',(C’) is nothing but the
collinear pion transition matrix defined in earlier
work?2:
(Ta(CNgog, a0 = (Xa0Ngadopop, for T
(a11)

(Recall that invariance with respect to boosts along
the 1 direction makes X, independent of the celer-
ity, while invariance with respect to rotations
around the 1l direction makes X, conserve helicity.)
Thus Eq. (A8) is the desired formula (6.6), with
the rotation R given by

R(C,m)=L(F" /m)A(C)L(p/m), A12)

where P is defined by Eq. (4.8) as a function of C
a.nq_ m, and p’ is the transformed four-vector
A(C).

APPENDIX B: CHIRAL CONSTITUENTS OF THE
TRANSITION MATRIX T, (1--2)

We wish to prove here that any isovector matrix
M,, which has a symmetric commutator with the
chiral generator I';(1~1),

[ra(l"l),Mb]=[rb(1"‘1))Ma]) (B1)

must belong to one of the representations (4, B) of
the chiral algebra SU(2)x SU(2), with A=B. Since
M, is an isovector, the only possible chiral repre-
sentations to which it could belong are of the types
(A, By with A=B+1or A=Bor A=B-1, Thus,

the theorem to be proven here just states that any
isovector matrix M, which belongs to a repre-
sentation (4, B) with A=B +1, and which satisfies
(B1), must vanish.

It proves very convenient here to use a four-di-
mensional tensor basis. Consider a four-tensor
Ty, ywe.. of rank n +1, which obeys the following
conditions:

(i) Ty,yw... is symmetric and traceless in the
n indices V, W, ... .

(ii) The contractions of the index U with any one
of the » indices V,W, ... also vanish.

Tu;yw... =0, (BZ)

(iii) The completely symmetric part of Ty, ...
vanishes.

TU;VW“-+TV;UW---+TW;UV---+ ...=0, (B3)

(Here U, V,W, ... run over the four values 1, 2, 3,
4.)

Condition (i) alone would restrict Ty, ... to belong
to the reducible representation

11 n on n-1n-1 n=1n+1
(Ei) ®(§’§)‘( 5 3 )e( 5 '3 )
n+l n-1 n+l n+1l
éB(2 ’ 2>®(2 ’ 2)'
Condition (ii) then eliminates the component
((n =1)/2, (n =1)/2), while condition (iii) elimi-
nates the component ((n +1)/2, (n+1)/2), so that

Ty, yy... provides a tensor realization of the repre-
sentation

n-1n+1 n+l n-1

(2’z>®‘<2~’z)‘ (B4)
Setting V, W, ... equal to 4 and U equal to ¢ in Eq.
(B3), we find

Toaag == NTg 00004 (B5)

(Here a, b, c,...run over the three values 1, 2,
3.) Hence, there is essentially only one way of
forming an isovector from T, and we can take the
part of M, belonging to the representation (B4) as

n-1n+1 n+l n-1
) o2 2]

(B6)

The commutator of this matrix with the chiral gen-
erator is then given by an infinitesimal O (4) rota-
tion

[T,1-~1), Thgennql= =80, 440 at T g0y,

so condition (B1) reads, for the representation
(B4),

Topaeeea=Thaa0ense (B7)

We wish to prove that (B6) must vanish for any
four-tensor Ty.py..., Which satisfies conditions
(i), @i), (ii), and also Eq. (B7).

To this end, consider the commutator of the
chiral generator I' (1 ~1) with Eq. (B7):

"iéacT'l;M vee g -iabcTn;«;--- a4t Z(n - I)Ta;bc.;... 4

= _i6b0T4;u4°-- 4—i6ach;44-" 4t z(n - I)Tb;ca-l see g

Contracting b with ¢, we find

Tyaaeeea=Tajaa0ea=200 = D(T ;00800 4= Tasopareea) -
(B8)

However, T is entirely traceless, so

Tyipaaeeea™ “Tyiaaeeeas
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Ta;bb4 ceog = _Ta;44 eee gy
and therefore (B8) reads

%(n_1)(T4;,14..-4—Ta;44...4)=O- (Bg)

Together with Eq. (B5), this yields the desired re-
sult,

Tyage0eq=0. (B10)

It should also be noted that the commutation re-
lation (B1) does not put any constraints on the
terms in M belonging to chiral representations
(A, B) with A =B, because such terms automatical-
ly satisfy (B1). A suitable tensor basis for the
representations ¢:/2, n/2) is provided by the com-
pletely symmetric traceless tensors of rank n.

For such a tensor #y,y..., there is just one way to
form an isovector, so that

MJ0/2,n/2)]=t4q... 4 (B11)

The commutator of the chiral generator with the
component of M is then

[T, ~1),M,0/2,n/2)]
=_i6nbt44...4+ Z@l -1)tab4"-4’

(B12)
and hence is automatically symmetric in ¢ and 5.
Thus, the whole content of a commutation relation
like (B1) can be summed up in the statement that
M, may receive contributions only from the chiral
representations (4, B) with A=58,
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The strongest possible lower and upper bounds on the electromagnetic radius of the pion
are derived in terms of the modulus of the timelike form factor. Numerical evaluation indi-
cates that the radius is bounded above by the vector-dominance value and that the form fac-
tor will not behave as a “dipole” until ¢ = (2E)?*> 17 GeV?, if at all. The location and number
of possible zeros of the form factor are discussed.

At the present time there is a rapid accumula-
tion of information on the pion’s electromagnetic
form factor,! F(¢), for timelike and spacelike mo-
mentum transfer. Colliding-beam measurements
of o(e*e” -~ 7t 7~) provide direct access to |F(¢f)| in
the timelike region; for example, experiments? at
Novosibirsk, Orsay, and Frascati have deter-

mined |F(¢)| for ¢t <4.4 GeV2. Data at higher ¢ will
be furnished by new colliding-beam facilities under
construction. Estimates of F(¢) in the spacelike
region have been indirectly extracted from electro-
production experiments.> More precise informa-
tion on the spacelike form factor will soon be
available from the Serpukhov-UCLA group,* which



