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rents as well.
Therefore, we conclude that on the basis' of low-

energy theorems such as the above, one does not
need to introduce any near terms in either the com-
mutation relations or the divergence conditions
provided one consistently enforces gauge invari-
ance and relativity. %hether this conclusion is
valid for other current-algebra calculations such
as those involving hard-pion processes is an open
question.
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Sum rules are derived hy applying soft-pion theorems to the dispersion relations for the
reactions x+ I x+E, I 2m+ E, 2m+ I E, with I and E general multiparticle states.
In the special case where I contains one particle and E contains two particles, these sum
rules have a simple algebraic interpretation: They require that the transition matrix ele-
ments for reactions x+I-E or I—E+x can receive contributiona only from the represeatR-
tions Q,B) of chiral SU(2) SSU(2) with 4 =B, but not A=B + 1. Prescriptions are given for
dealing with the complications caused hy the nonvanishing matrix elements of chiral generators
between states of different mass and spHl.

I. INTRODUCTION AND SUMMARY

Sum rules of one sort or another have played a
large part m the recent development of eIemen-
tary-parhcle theory. Given their great irnpor-
tance, it is perhaps surprising that: these sum
rules have generally been restricted to a limited

class, involving transitions between g, single-par-
ticle state and other states, induced by a current
or another particle. For instance, the Adler-
%eisberger sum rules~ are derived either by evaI-
uatLng matrix elements of axial-vector-current-
density commutator s between single -particle
states, or by using soft-pion theorems in eonjunc-
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tion with the dispersion relations for scattering of
one s&sgle-particle state into another by a pion;
either way, one obtains a sum rule for the matrix
elements of an axial-vector current between a
one-particle state and other states. When these
sum rules are saturated with single-particle
states, there emerges a set of commutation rela-
tions for matrix elements of the axial-vector cur-
rent between single-particle states, ' which imply
that these matrix elements generate the algebra
of SU(2) SU(2).

The purpose of this paper is to widen the scope
of apylication of sum rules to general multiyarti-
cle yrocesses. In particular, we shall study in
detail the sum rules for the processes

m+I m+ I,
I m'+g+ E,

m'+m+ I I,
where I and I' are general multiyarticle states,
and n is a massless pion. As long as we take the.
two pion momenta along the same fixed dlrectlon
n, and keep the momenta of all the particles in the
states I and E fixed, the amplitude for these pro-
cesses will satisfy a simple single-variable dis-
persion re1ation. Furthermore, the dispersion
relation for the part of the amplitude antisymmet-
ric in the pion isovector indices is presumably
unsubtracted. %6 derive our sum rule by impos-
ing on this disyersion relation the condition that
the amplitude should vanish when either pion en-
ergy vanishes.

Such sum rules are interesting in principle, but
they involve matrix elements which would be very
difficult to measure. In order to use these sum
rules, it is in practice necessary to assume that
they can be reasonably-well saturated by summing
over one-particle intermediate states, plus those
semidisconnected contributions from multiparticle
states which also yield terms meromorphic in the
yion energy. Even with this ayyroximation, the
multiyarticle sum rules do not reduce to a simple
set of commutation relations, except in the sim-
plest multiparticle processes: those in which the
initial state I contains one particle and the final
state I' contains two particles, or vice versa.
However, within this limited context the multiyar-
ticle sum rules take quite a remarkable form:

on the particle labels appearing on the matrix
element I',(l-2) (see Fig. 1).

It must be emphasized here that the matrix
I',(1-1)will in general induce transitions between
single-particle states of different mass —indeed,
in evaluating the commutator (1.2), we must in-
clude in the intermediate state all the resonances
needed to saturate the dispersion relation from
which (1.2) was derived. This raises an important
problem: When we add contributions to the com-
mutator (1.2), in which the particle labels on the
matrix element I",(1-2) run over particles of
varying mass, what should we keep fixed'P %6 can-
not fix the energies and the momenta of these par-
ticles as the mass varies, so should we fix ener-
gies, or momenta, or something else'P This is an
old problem, which has troubled every attempt to
introduce symmetry operators which do not pre-
serve the mass of the particle states on which they
act.

Fortunately, in the present case there is a w611-
defined answer to this problem, which is dictated
by the same arguments that are used to derive
(1.2). The prescription is, that in evaluating the
commutators in Eq. (1.2), we must keep fixed the
celerity of each particle. The "celerity" of a par-
ticle of momentum y and energy E is in general
defined as the three-vector

0 -=nE-p,

where n is a unit vector defining the direction of
motion of the pions in reactions (1.1), taken to be
fixed throughout our calculations. (Incidentally,
the popular "rapidity" variable is just the loga-
rithm of n. V.) Given the mass and celerity of a
particle, we can determine its momentum and en-
ergy from the formulas

C'+m'
2i ~ C

Here I",(1-1)and I",(1-2) are suitably normal-
ized matrix elements of the pion current Cl m,

(where a =1, 2, 8) for processes in which one par-
ticle goes to one particle or to two particles, with
I', (l-l) interyreted as a single-particle oyerator
which (hke the isosyin or charge) acts additively

FlG. l. Graphical representation of the commutation
relation {1.2). {In all figures the reaction proceeds up-
vrards, gravy lines denote the pion current, solid lines
denote other hadrons. )
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1"m.+2+3 (1.7)

in which particles 1, 2, and 3 have. fixed celerities
Cl, C2, and Cs, but in which the labels desex'ibing
the types of particles (including their masses and

spins) are allowed to vary, with momenta and en-
ergies always given by Eqs. (1.4) and (1.5). The
momentum and energy of the pion in these reac-
tions are always taken to have the form

p„=n(d, p'„= ~, (1.6)

so the pion carries zero celerity, and, therefore,

C~ =C, +V~. (1.9)

Conservation of energy or momentum in the scat-
tering reaction (1.6) would give a pion energy

C,'+m, 2 0,'+m, 2 C, '+m, '
2n. V, 2n 0, 2n. C,

(1.10)

This quantity can be positive or negative; if (1.10)
18 positive then I' (1 2) does describe CL8 scatter-
ing reaction (1.6), while if (1.10) is negative then

1,(1-2) describes the decay process (1.7). In

summing over particle states of varying mass in
Eq. (1.2), we will always encounter some terms
in which (1.10) is negative and others in which

(1.10) is positive, so commutation relations like
(1.2) really provide algebraic constraints on an
over-all amplitude which describes both scatter-
ing Rnd decay.

It follows from the prescription of.fixed celerity,
that the single-particle operator l~(1 ~ 1) w111 in
general change not only the mass but also the di-
rection of motion, and hence the spin, of the par-
ticles on which it acts. Thus, I', (1- 1) is not pre-
cisely the same as the pion-emission matrix X,
introduced in earlier work, ' which was defined

only for collinear processes. However, it is
shown here that 1,(1-1)is related to X, by a
mass- and celerity-dependent Wigner rotation so
that I', (1-1), like X„generates an SU(2) 8 SU(2)
algebra, consisting of I',(1-1) and the isospin.
In consequence, any multiparticle transition ma-
trix may be broken up into a series of terms which

transform according to the various irreducible
representations of this algebra. From this group-
theoretical viewpoint, our main result (1.2) just
says that I', (1- 2) consists only of the chiral rep-
resentations

(o, o), (-,', —,'), (1, 1), (-.', —,'), . . .,

Thus, in interpreting commutation x'elations like
Eq. (1.2), we must think of I', (1- 2) as a matrix
element for either the scattering process

(1.6)

or the decay process

which could otherwise contribute to an isovector
transition matrix.

This sort of elegant algebraic constraint is not
so easy to apply to x'eal scattering and decay prob-
lems, for the simple practical reason that we do
not know many of the matrix elements of the
SU(2)SU(2) generators X, or I",(1-1). However,
although unknown, these matrix elements are
knowable: What is needed is a major program of
measurement of decay amplitudes for the "cas-
cade" decays like A, -p+ m, p - m + m, in which a
sequence of resonant states decay into one another
by single-pion emission. Given our present igno-
rance of the "mixing angles" in X, and I",(1-1),
perhaps the main lesson to be learned from the
present work is not so much the particular alge-
braic results, that chiral representations (1.12)
are excluded from the transition matrix I', (1-2),
but instead the more general conclusion, that mul-
tiparticle sum rules can set algebraic constraints
on the amplitudes for tx'Rnsltlons among stRtes
containing several particles of fixed celerity.

~.(q)+ I(P)-~,(q')+z(I'),

1(P)-~.(~)+v, (q')+ Z(p'),

v. (q)+v, (~')+1(f )-Z(f '),

(2.1)

(2.2)

(2.3)

v, (-q')+1(p) -v. (-q) + Z(p'), (2.4)

whel e I' RQd E Rx'e Rx'bltrRl y multiparticle lnltlal
and final states with total four-momenta P&and
P'I', while m, and m~ are massless pions with iso-
vector indices a and b and four-momenta aql' and
+q'~. It is convenient to regard all four reactions
as special cases of a single process, with the
specific reaction determined by the signs of qo and
q". Thus, it will be understood that we are deal-
ing with (2.1) or (2.2) or (2.3) or (2.4) according
asq'&0, q"&0orq'&0, q"&Oorq'&0, q"&Oor
qo& 0 qto& 0

The pion four-momenta are related by the enex-
gy-momentum conservation condition

q P q ~V-P~P PII (2.6)

All the particles in the states I and I' will be taken
to have fixed momenta, so P~ and P'~ are also
fixed, and the matrix element here may be re-
garded as a function of q ~ alone. However, there
is a constraint: In order that both pions shouM
remain on their mass shells, we must have

II. KINEMATICS

We shaB consider inelastic reactions of the gen-
eral form



O=q"=(q+P-P')'=2q (P-P')+(P-P')'
(2.6)

I»-I"~=n~~,

n'=fnf =1. ,

(2.8)

(2.9)

with 6, a fixed energy transfer, which may be posi-
tive or negative. The constraint (2.6) now reads
q n=0, and since@ andn are both lightlike, this
implies that q~ is also proportional to n~:

(2.10)

Finally, (2.5), (2.8), and (2.10) give the other pion
four-momentum as

q'"= n"((d+4). (2.11)

The matrix element may thus be regarded as a
function of a sixie variable (d.

It is convenient to write the S matrix for the re-
actions (2.1)-(2.4} in terms of a "s'emicovariant"
matrix element M:

S~",=2s6'(P+q-P'-q')(4&(cuf Jcu+nJ) '12M„",(co).

In accordance with our previous remarks, this

0= q'= (q'-P+P')'= -2q' (P —P')+ (P —P')'.

(2.V)

We plan eventually to apply a soft-pion theorem,
so we must require that the physical region for
our reaction should include either the point @~=0,
or the pointq'"=0, or both E.quation (2.6) or (2.V)

can only be satisfied at such points if (P -P')
vanishes, so the momentum transfer here must be
proportional to a fixed lightlike vector:

formula should be understood to give the 8 matrix
for reaction (2.1) when ~& 0, &v+4& 0; for reac-
tion (2.2) when &u & 0, &u+ 4 & 0; for reaction (2.3)
when &u&0, &d+b, &0; and for reaction (2.4) when
m«0, ~+A«0. It follows from this convention,
and from Bose statistics, that M obeys the cross-
ing relation

M,",(~) =M;,'(-~-~) . (2.13)

with 7&(x) any renormalized pion field. To extend
this matrix element off the real axis, we define
the closely related function

III. SINGLE-VARIABLE DISPERSION RELATIONS

We have specified that all of the hadrons in the
initial and final states I and I' have fixed momenta,
so that only the pion four-momenta are allowed to
vary. The point of this assumption is that then
the "semicovariant" matrix element M is free of
kinematic slDgularltles ln the ploD four-momentum
components q~ and q'I", because we have already
extracted the pion "wave functions" (2~q'~)-"' and

(2~q "~) '" in defining M, while the corresponding
"wave functions" of the hadrons in I and E have
fixed arguments. Since q~ and q't" are linear func-
tions of (d, it follows that M(&d) is free of kinematic
slngulal'ltles 1D 4P.

Indeed, this is one multiparticle problem where
a dispersion relation in ~ can be proved by simply
recapitulating the classic proof ' of the dispersion
relation for elastic scattering of a photon. We note
first that M(&u) may be written as the Fourier
transform of a time-ordered product

MF';(~)-Je'""'~-"v,',*(FIT(~,(v)r. (x))II)d'x

(3.1)

e""' "G„IQ,2 Ee y-x m, y, m, x I d4x for Im&0
Ag~(z) -=

e""'-" „' „2(P]e(x y)[v, (y),-v.(x)][1&d'x for 1~&0,
(3.2)

where e(x) is the usual step function, equal to unity for xo&0 and zero for x'&0. The time-ordered and re-
tarded products are related by

T(w, (y)m, (x)] = 8 (y -x)[v,(y), s, (x)]+w, (x)n, (y),

soM is related to Eby

Mg)(w) =4„'(w+ a)+f(8' ' "(E) 'w, (xKI w, (y))"r)*d x. (3.3)

The commutators in K&I. (3.2) are supposed to vanish when x)' y)' is outside the l-ight cone, so x)'-y)' re-
mains within the forward light cone for Ims & 0 and within the backv()ard light cene for Imz & 0; hence, A(z)
is an analytic function of x, with singularities only on the real axis. Further, the discontinuity of A (e)
across the real axis is immediately given by E&I. (3.2}as
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A')()0) (e)-A')(~-(e) fe"""")'(FI[ *)),(&)), z')).{x)III)d'x

= Z(2w)sos(P -P„+c(sz)&E( sw, (0)[N) &N(Usw, (0)jI)

—Z(2w)'6'(P»+ ~ —P, )&E[CPw.(0)PV) &N)CPw«(0) [I),

the sums running over a complete set of intermediate states ¹ Aside from possible subtractions, the
analytic amplitude A. then satisfies a dispersion relation, which for Img & 0 x'eads

1 A»I((d+ 'LC) —A»l(&o -'sC)
A~lg )—2' -~ QP —g

d(d

(2 )s~6s (
o o) &EICPw«(0)f&) &Nfa w, (0)fl)

col yI y» I »
It g ~I

.
( )sg s (

() o) &E(Q wo(0)(N) &N[asw«(0)(I)
(3 6)

To calculate M„",((o), we recall that

s(P» -P» —(o-s&) +2w6(P»-P»-(o) = s(P» —P»- &o+ s&)

so Clat (3,3) Rlld (3,5) give tile dispersion 1'elaboll fol' M:

M «.(~);(2 )s+6s(- -
(po po) }&EI w«(0)IN) &NI

&E)n'w. (0)]N) &N[ 'w, (0)]I)

To display the crossing symmetry of M explicitly, we recall that

py =pr

The dispersion relation (8.6) may thus be written

«. p. „-&&IIo~ &{&)IN& &){Io'~.({&)l&),o I».&{&)II»o&l»')) ({&)I»)

(3 7)

(3 6)

in manifest agreement with the crossing relation (2.18).
In general, the dispersion relation (3.6) or (8.9) will not be valid without subtractions. For this reason,

it is useful to introduce the odd amplitude

', (~) -&)»,(~))
2(v+ 4 (8.10)

Tile 111111181'Rtol' VRllislles Rt the crossing-symmetric polllt &o = -4/2) so the dlvlsloll by 2&(P+ + does llot ill-
troduce a kinematic singularity. Also, the numerator is exyected to behave as ~(d~ -~ like (o, where (w

is the intercept of the p trajectory; since o(&1, the amplitude M' would then vanish for ~&o~ -~. Hence,
we expect M»&, &"((o) to sabsfy an unsubtracted dispersion relation. By either repeating the steps that led
to (8.9), or (less properly) by using (8.9) itself, we find this dispersion relation to be

Mr-))( 2 mq -
q q

- &&I& ~ {{»I»&»(& ~ ({&)I» (&I)&'" ((&)I»({&I&~ ({&)I~&)

(P -P + (d+ n -sE')(P -P —())& —«E)

Uy to this point, we have not bothered to specify whether the states labeled E, I, and N are "in" or "out"
states. Of course, it is understood that when we label the final and initial states, these are, respectively,
"out" and "in" states, while the sum over intermediate states Mean be taken over either all "out" states
or all "in" states. It will be very convenient to expand this sum into a double sum, and write (3.11)as

M»&1)««((o) =-s(2w)s Q5'(p, -p»- (Po1-Po»)n} f&E, out(Osn, (0)(Ã', in)(S ')».»(N, out(CPw, (0)(I, in)
NNw



—{E,outlcPv. (0)l¹,in) {s-')~,~qr, outlcPv, (0)lI, in)]

x(P'„-P~+~+&-~~) '(P'„-Pg-~-&&) '~ (3.12)

where 8 ' is the inverse 8 matrix

(8 ')„,„-=(¹,inly, out) . (3.13)

This version of Eg. (3.11)has the advantage that matrix elements of the pion current Elmer are always taken
with an "out" state on the left and an "in" state on the right.

At this point, we make our one approximation, and assume that M(&u) is approximately meromoryhic in
QP %1th poles Rx'lslng from R 1Rx'ge number of resonant states with negllg1ble width. This Rppl'oxlmatlon
is of course not new: It has been used in conjunction with cux'rent algebra from earliest times, ~ it forms
the basis for the algebraic reelizations of ehiral symmetry, ' and it is a key ingredient in the Veneziano
model Rnd its successors. '

In our present context, it is important to recognize that poles in M {~)can arise not only: from single-
particle intermediate states N, but also from multiparticle states, provided that the matrix elements
{ElvlÃ) and (Nlw lI) are suitably disconnected. In the most general pole contribution in Eq. (3.12), the ini-
tial and final states are divided into two groups of particles:

I= Iq+ I2, I" =I'"~+E2.

The 1ntel med1Rte stRtes K Rnd N Rx'8 dlv1ded 1nto two groUps plus R s1ngle-pRx't1cle state:

N = Ni+ N2+ a(y), N' = N,'+ N2+ a'(p),
and the matrix elements break up into disconnected pieces

&E, «tl&'v, (0)l¹,in)-(E„«tl 'v, (0)la'(p')+&,', in). ~, ,;,
(~ '4 N" (~ ');N, @ ')N N, ~ ~ ~'(y' -y)

(4.2)

(N, outl&s. (0)lI, in)- {a(y)+N„otul 'vr, (0)lI„ in), 8„I, ,

where c denotes "connected part" (see Fig. 2). The 8 matrices all cancel, leaving us with Ni = Ei, ¹,=I2,
so that (3.12) becomes

x l'(E„outlO'v, {0)l a(y) + I„in), {a(y)+E„outlCPm, {0)lI„ in), - (s- 5)]

x(P'+PI, -P~, +~-f&) '(P'+P~, -P~, —~-f~) ', (43)

FIG. 2. Graphical representations of the general pole
terms in the dispersion relation (3.12).

FIG. 3. The same as Fig. 3, after cancellation of
the 8 matrices.
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the sums running over all ways of dividing the initial and final states into two groups of particles (see
Fig. 3).

It is very convenient at this point to introduce a new variable to characterize physical states, the "celer-
ity" C. For a state of momentum P and energy P', the celerity is

C —=nPO- P.
According to Egs. (3.V) gnd (3.8), the total celerity is conserved in our over-all reaction

and the 6 function in (4.3) ensures the conservation of celerity in intermediate states

(4.4)

(4.5)

(4.6)

Knowing the celerity and the mass of the particle a, we can easily calculate its energy and momentum,

2 2
O

+Sgf)f
PQ ra~2n ~ C

(4.V)

(4.8)

Hence, we can drop the label p in the matrix elements in (4.3), it being understood that the momentum of
the particle o. is fixed by the conservation of celerity. The integral of the 6 function in (4.3) is

f 0
d'P 6'(V~, —Cr, + P~n -p) =

so Eg. (4.3) reads

M (-&ha(&) i(2&)s g g g P~

&&+&2=~ r&+ r2= r a n (0r —C~ )1 1

x[(E„out( 'n, (0)(o.+ I„i)n, ( o E+„otu( ~v, (0)~I„jn), (s-5)]

x (P~+ Pr —Pr + (4 -iE) (P~+ Pp —Pr —(d —i6) (4.10)

it being understood that the energy and momentum of particle o. are fixed by the conservation of celerity.
The reader can easily check that the pole structure displayed here is precisely the same as would be

found in perturbation theory from Feynman diagrams like Fig. 3. From this point of view, a factor p
enters in (4.10) to cancel the normalization factors (P') 'r' appearing in the noncovariant matrix elements
of the pion current, while the factor n ~ (Cr, —C~, ) arises from the denominator of the virtual-particle
propagator in Fig. 3:

(pr + nw -pz )'+m ' = (Pr -pz, )'+m„+2n ~ (Pr, -p~ )&u = -2n ~ (Cr -Cz )(u —u&„„,). (4.11)

V. CHIRAL SUM RULES

It will now be assumed that our massless pions are the Goldstone bosons of an underlying chiral symme-
try of the strong interactions. It follows then that the matrix element M must vanish when either q~ or q'I'

vanishes, so that'

M';(0) =M,",(-A) =0. (5.1)

There are exceptions to this condition, but we will ignore them for the moment, and simply assume that
(5.1) is valid; the exceptions will be taken up at the end of this section.

As long as we consider only purely inelastic reactions with d x 0, it follows from (5.1) that the odd am-
plitude M' ' also vanishes for zero ~:

M'-'"(0) =0. (5.2)

ln the elastic case & =0, the value of M' '(~) at &u =0 depends on the derivative of M(&u) at ~ =0, which

might receive contributions from equal-time commutators of the axial-vector currents. To avoid these
complications, we will confine our attention to reactions with 4 g 0.

Our sum rule follows immediately from Egs. (5.2) and (4.10):
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p0
0 = g g g [(p0 out[ r0(0) )

n+ I0 111) (n+ E out[a v (0)[I1 i11) (rr $)]
r, +r,=r r,+r;ra-n. (Cr -C~ )

(5.3}

It is convenient at this point to introduce a new.
notation for matrix elements of the pion current.
Given two states I and E with four-momenta Pj'

and P'j', we define the reduced matrix element I",
by

(P, out~ 'rr. (0) ~I, in). =-2P„-'(P" -P')N,
W r(r .}„,

(5.4)

where E, = 190 MeV is a convenient normalization
factor, and N is the product of the normalization
factors (2rr) "' and (2p0) '", one for each particle
in the state. Vfe note that the "mass" difference
P"-P' between states of equal celerity may be
written in terms of the energy difference as

pr0 p0 pe0 (pi0)0 p0 + (p0)0

(» p/)9 (p/i0)0 (»n, p}2 + (p0)0

=(n p-p')(n p'+p"-n p-p0)
=2(n ~)(p0-p").

Thus, the energy differences arising from the def-
inition of 1, cancel the energy denominators in
Eq. (5.3), while the factor p0„ in (5.3) is canceled
by the two factors of (P0) '" appearing in the nor-
malization factors N„+I and N~+~ . Our sum rulea+ I@ 1
now reads

(n C~,)(n C„)
r1+r0=r r1+r;rn (Cr --C )&x

~Q p a+I ~a 0+8 I

Eq. (5.1) for reactions involving baryons or strange
mesons, but even so, the sum rule (5.5) wiQ stQ1
be valid. Note that for each such pole there is also
a missing term in Eq. (4.3), in which the matrix
element of 0'n, or H'm, is taken between single-
particle states of equal mass, and therefore van-
ishes. Experience shows' that the pole terms
which violate Eq. (5.1) always simply supply the
terms, involving transitions between single-parti-
cle states of equal mass, which would otherwise
be missing in Eq. (5.5).

VI. THE FIVE-POINT SUM RULE

Our general result, Eq. (5.5), does not take the
form of a simple algebl. alc statement about the
matrices. There are, however, reactions I -I'
for which (5.5) reduces to a statement about com-
mutators. One such reaction is the mell, -explored
case in which I and E contain one particle each.
Apparently the only other reactions for which (5.5)
takes a simple algebraic form are those "five-
point" reactions in which I contains one particle
and E contains two particles, or vice versa.

Let us consider a reaction of this latter type:

where P, y, and 5 are single-particle states with
celerities C„C„and C„respectively, The only
terms which contribute to the first two sums in
Eq. (5.5) are those in which I, contains just parti-
cle P and I, is empty, while either

As always, the momentum of particle n is fixed
by the conservation of celerity in the transitions
++I -E andI e+F .

Now let us come back to the exceptions to Eq.
(5.1). This condition will be violated only if the
amplitude for "scattering" of an axial-vector cur-
rent from the process I- I" has poles, ' arising
from diagrams in which one of the axial-vector
currents interacts with an incoming or outgoing
hadron, without changing its mass. Such poles do
not arise for reactions in which all participating
hadrons are mesons of zero strangeness, because
in this case the interaction with the axial-vector
current must change the meson's G parity, and
there are no strictly degenerate nonstrange meson
states of opposite G parity. Poles can invalidate

or

or
F~ =y, Em=5,

Eq =5, E2 =y.

o =Z Hrb)y. b~(r}.,8+(r0~6,.(r)..ys

+(r,),.(r.).„,—(~ -5)]. (6.2)

(ln general, neither E0 nor I1 may be empty. ) The
factor n ~ Cr, in (5.5) is then fixed,

n ~ C =n ~ C„
while the other celerities cancel,

n (Cr —C~ ) =n ~ (C~ —Cr, ) =n ~ C~ .
Thus, Eq. (5.5) here takes the form



(mr, (1-1))„,,=g (m)„, (I,'), .

Then Zq. (6.2) reads

[r(1-1),r(1-2)]=jr{1-1),r{1-2)], (6.5)

where I;(1-2) is the submatrix of r, referring to
transitions from one particle to two particles.

It is shown in Appendix A that the genex'al one-
particle matrix elements (I'.)8 „are related to the
collinear pion transition-matrix elements (X,)s
defined in earlier work, by the formula

(r.)...„.=p D.,'„[.ft-'(c, I,)]
x(x„(~)), D,'." jest(c, m )]. (6.6}

Hex'8 ca and 0~ are the components of the sp1n along
the pion dix'ection n, which we now separate fx'om

the particle-type labels a and p; ft is a rotation
which depends both on the celerity (which is equal
for n and p) and the mass; and (X,(a))~, is a suit-
ably normalized matrix element for the traneition
u- p+ m in which a and p have helicity A. and mo-
menta parallel or antiparallel to the pion momen-
tum. The collinear matrix elements X,(X) and the
isospin matrices T, were shown, 2 on the basis of
the single-pax'ticle saturated inelastic ANer-Weis-
berger sum rules~ to fox'xn a representatiGQ Gf the
SU(2) 8SU(2) algebra:

[x,(x), x,(z)] = ~~...z.,

[r x,(x)]=&~.,~,(~},

[1,', T,]=is,„,2;.

(6.V)

(6.8)

(6.9)

In consequence, the matrix (6.6) for transitions
among single-particle states of arbitrary (but
equal) celerity also generates an SU(2) SSU(2) al-
gebra similar to (6.V)-(6.9). Finally, this implies
that the additive single-particle matrix r,(1-1)de-
fined by Kqs. (6.3) and (6.4) generates an SU(2)
SSU(2) algebra, in the sense that for an axbitrary
one-to-two-particle tx'ansition matrix 3g, we have

[r.(1-1),fr,(1-1},~j]- [r,(1-1),[r.(1-I},mj]

= ie„,[2'„M],

(6.10)

In ordex' to bring out the algebraic significance of
this result, let us now define an additive one-par-
ticle transition matrix I;(1-1), by specifying that
the products of this matrix with any transition ma-
trix M that takes one particle into two particles
are

(r(l- 1)m)„,,=g [(r)„„(~)„,+(r),„(m}„„,j„

[&., [r,(1-1),jf]]~jr,(1-1),[r m]]
= s~.„jr,(1-1), m],

(6.11)

[T., [Z;, m]] - [r„[r„mj]= ~e.„[r., u].
The commutation relations (6.10)-(6.12) allow

us to expand any matrix 3f in a series of tex ms
M(A, B) whose commutation relations with T, and
I;(1-1)define a representation (A, 8) of the alge-
bra SU(2) SSU(2). In particular, the pion-emis-
sion matrix 1,(1-2) is an isovector in the sense

[T., r {1-2)]= a~„,r (1-2).
Hence, the only chiral x'epx"esentations which can
contribute to this matrix are those in which A., 8,
and 1 satisfy a triangle inequality, so that

It is shown in Appendix 8 that the five-point sum.
rule (6.5) simply rules out the representations
with B=A+ 1, so that r,(l -2) must consist only of
the representations (A, B) with

VII, OTHER SUM RULES

The general sum rule (5.5) applies to processes
in which the states I and I' may contain arbitrary
numbers of particles, not just to the processes
discussed in the last section, in which I contains
one particle and E contains two. However, the
sum rules in this more genex"al context do not
seem to lend themselves to any s1mple Rlgebx'alc
interyretatiOn.

For example, consider the case in which both
the initial state I and final state E contain two pax'-
ticles each. The sum rule (5.5) for this case is
shown graphically i.n Fig. 4. The first eight terms
add up to the coxnmutators

[r„(1-1),r.(2- 2)] -[r,(1-1),r, (2- 2)],

just as in Eq. (5.5). However, the next 10 terms
cannot be put 1nto so simple a forIQ. In particular
the celerity factors in (5.5) do not cancel or re-.
main constant in the 4,st eight terIns of Fig. 4,
because neither E~ nor I~ are empty here.

Mere Rre of course R great many G&er MQMi

particle sum rules, for both the limited class of
five-point x'8Rctions, Rnd the %'Her clRss of reac-
tions involving more than five incozning and out-
go1ng pRx'tlcles. Fox' instRnce:

(a) Instead of the isospin-odd amplitude M'"'
which has isopsin 1 in the mm channel, we could
1QsteRd CGD81dex' the part of the 180spln-eveD RDi



plitude which has isospin 2 in the mw channel:

Mg r="((u) =M-~",(~)+M/ ~((o) —', 5„-Mp~(&o).

This amplitude presumably satisfies an unsub-
tracted dispersion relation, g so the requirement
tllRt lt vanish Rt =0 vlould lead to RddltloDRl sum
rules, just as in the single-particle case.'

(b) Instead of two-pion reactions, we could con-
sider x eactions involving other massless particles,
such Rs

m+ I y+I",

y+ I y+I',

etc. Dispersion x'81RtloQS may be 8Rsily del ived
for these processes, so presumably the use of
soft-photon theorems should yield algebraic con-
strRlnts 161Rtlng photoD Rnd ploD InultlpRx'ticle
transition amplitudes.

(c} Instead of reactions involving two massless
or nearly massless particles, ere could try to de-
rive sum rules from the Adler "self-consistency"
coIM4tloQ fox' R 1eactlon 1QvolvlQg only 088 Piony
ox from the soft-photon theorem'0 for a reaction
involving only one photon. The trouble here is that
with only one massless particle involved in the
process, it is much more difficult to derive a
useful dlspex'sion 161Rtlon. Fox' instance, coQsldex'h x'8RCtlons

where I and F are arbitrary multiparticle states.
What should ere keep fixed as the pion or photon
momentum varies'P %8 might try to separate out
a massive particle e fx om the final state

and keep fixed the momenta of Rll the particles in
I and I' '. Particle a &60 then have an energy-mo-
mentum foul' vectox'

rvhere q~ is the pion or photon momentum and»
is the fixed momentum transfer

H8Dce, iD older to keep pRx'tlcle Q on the mass
sheB as q~ varies, ere must have

FIG. 4. Graphical representation of the SUHi TQle
(5.5), for the case v4ere the states I and E' each con-
tain tyro particles.

But q i.s lightlike and 4 is timebke„so their scalar
product cannot vanish. This difficulty could per-
haps be circumvented by simply assuming fx om
the beginning that all invariant amplitudes axe ap-
proxj, mately meromorphic in all invariant squared
subenergies, as in the Veneziano model. '

(d) There are an unlimited number of supercon-
vergence relations vrhich couM be used to derive
multiparticle suIQ x'ules. TI18 trouble Ilex'8, Rs in
(c) above, is to know which dispersion relations
to use. Again, this problem couM be avoided by
assuming the invariant amplitudes to be mero-
mox"phic. One might hope that the sum rules de-
rived ln this @ray could account for some of the al-
gebx'Rlc feRtures of dual-lesoQRDce Inodels oD R

Inore geDex'Rl bRsls ~

Evidently a good deal of vrork vnll have to be done
to judge bmoc fruitful these developments are likely
to be.
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But in order to apply R soft-pion or soft-photon
theorem, it is necessary that the point q~ =0
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We wish to show here that the general one-pion transition amplitude (1',)„8is related to the collinear
one-pion transition amplitude (X,) 8 by a rotation, as in Eq. (6.6).

According to Eq. (5.4), the matrix element {I',)8 „is defined by the formula

2I' -' ' '-e'
&P ps&&l 'v. (o)lop.&d= . ;, ', (I'.(C))8..~..„.(2.)'(4p'. p', )'I' (Al

Vfe are now expbcitly displaying the spin components vs, a' in the n direction as m'eH as the momenta ys
and p „which for a celerity C are given by Eq. (4.V) as

(m„a'+ C')

Under an arbitrary Lorentz transformation A" »the single-particle states in (Al) transform into'0

w&..-&=K(',!')"'.-".. - ('=') g=) i..-;..&,

where 1.(p/m) is the "boost" which takes a particle of mass m from rest to momentum p; D "&[A] is the
usual spin-j unitary representation of the three-dimensional rotation group; and P'I" is the transformed
momentum

8ince CPv. is a scalar, we can use (AS) in (A'I), and find
~ p

w &~ a $1. {P (C)) QD(js& iL 1 P~ ~Af P~
(2v)'(4p "p")*"

660~g 8 g

eu.".e*.o&i--.;;».'„...~- (p)«(j) . {A6)

e shaH restrict oQx' attention here to Lorentg tran8forIQRtions A&„v8Qch leave the pion momenta fixed:

A&„n"= n&. (A,6)

The fact that p„and ps here have equal celerity can be simply expressed in the statement that p"„-pg is
proportional to n&', so for Lorentz transformations which satisfy Eq. (A6), p '&'-p'&' will also be propor-
tional to n, and hence p„' and ps will again have equal celerity O'. Thus, Lorentz transformations of this
type may be viewed simply as transformations of the celerity, the transformed momenta being given in
terms of C' and masses by formulas like Eq. (A2). To be more explicit, the transformed celerity is given

by

A~~ p~ A-~OE +Aoq p—~n'+ AOOEn'

=-A*,(-C~+ n'E) -A'*,E+A0, (-C~+n'E)n'+A', En'.

Using (A6), we find that aH terms involving E cancel, so that

C ~ A' C~ a~ho C~

For such Lorentz transformations, Eq. (AS) may be written simply as the transformation rule

Now note that for any celerity C, there exists a
Lorentz transformation A(C) for which the trans-
formed celerity {AV) lies in the n direction. With-
out loss of generality, we can take n to lie in the
3-direction and C to lie in the 1-8 plane; the de-
sired Lorentz transformation A(V) is then



& -=C,/C. .
This does satisfy (A6), so the transformed celer-
ity is given by (AV). Applying (AV) and (A9) to the
celerity C = (C', 0, C'), we find a transformed ce-
lerity pointing in the n direction

C' = (0, 0, Cb). (A10)

But if C' is in the n direction, then so are p '„and
ps, so that the matrix I', (C') is nothing but the
collinear pion tx'RQsit1on matrix deflQed 1Q eRx'llex'

work2:

(I',(C'))s, „, =(X,{o,'))8„5,... for C' ccn.

(Recall that invariance with respect to boosts along
the n dix'ection makes X, independent of the celer-
ity, while invariance with respect to rotations
around the n direction makes X. conserve helicity. )
Thus Eq. (A8) is the desired formula (6.6), with
the rotatloQ R given by

B(C,~) = l.-'(p'/m}A(C)L, (p/m), {A12)

where y is defined by Eq. (4.8) as a function of C
and m, and p' is the transformed four-vector
A(CQ.

APPENDIX 8: CHIRAI. CONSTITUENTS OF THE
TRANSITION MATRIX 1 (1~2)

%'e wish to prove here that any isovector matrw
M„which has a symmetric commutator with the
chiral generator I",(1- 1),

[I.(I -1),M,] =[I',(I- I),M.], (81)

must belong to one of the representations (A, B}of
the chirai algebra SU(2) && SU(2), with A =B Since.
I, is an isovector, the only possible chiral repre-
sentations to which it couM belong are of the types
(A, B) with A=B+I or A=B or A=B-1. Thus,
the theorem to be proven here just states that any
isovector matrix M„which belongs to a repre-
sentation (A, B) with A =B +1, and which satisfies
(81), must vanish.

It proves very convenient here to use a four-di-
mensional tensor basis. Consider a four-tensor
T~.«... of xankn+1, which obeys the following
conditions:

(i) T~ „~... is symmetric and traceless in the
n indices V, S', ... .

{ii) The contractions of the index U with any one
of the n indices V, W, ... also vanish.

TQ a p'gf a a ~

(iii) The completely symmetric part of T„.„~...
vanishes.

1 1 n n n-1 n-1 n-1 n+1

n+1 n -1 n+1 n+1

Condition (ii) then eliminates the component
((n -1)/2, (n -1)/2), while condition (iii) elimi-
nates the component ((n+1)/2, {n+1)/2), so that
T~.«... provides a tensor realization of the repre-
sentation

n -1 n+1 n+1 n -1

Setting V, 8', . . . equal to 4,and t'I equal to a in Eq.
(88), we find

~ 4/a ~ o4 nT4a @~ ~ ~ ~ (85)

(Here a, b, c, . ..run over the three values 1, 2,
3.) Hence, there is essentially only one way of
forming an isovectox' from T, and we can take the
part of M, belonging to the representation (84) as

n -1 n+1 n+1 n —1&

The commutator of this matrix with the chiral gen-
erator is then given by an infinitesimal 0 (4) rota-
tion

[ 1(1-1), T ... ]= 45,. T ..-+inT,. .
so condition (81) reads, for the representation
(84),

a;544 ~ ~ 4 TQ;a4 ~ ~ 4 4 ' (BV)

We wish to prove that (86) must vanish for any
four-tensor T~.«..., which satisfies conditions
(i), (ii), (iii), and also Eq. (BV).

To this end, consider the commutator of the
chiral generator I', (l-l) with Eg. (BV):

bsacT4 b4 ~ ' 4 bSbcTa .44 ~"4+ 4 tn }Ta bc4. ~ ~4.
=-j5 Tbc 4;a4 "4 ac b;44 ~ ~ 4-+ "& } b;ca4 ~"4

Contracting 5 with c, we find

However, T is entixely traceless, so

Q ~ Qa4 1 a ~ @ T4aa a@ 4 ~ ~

(88)

Tv:vw" +Tv;vw ~ +Tw;vv -+" =o.

{Here U, V, W, . . . run over the four values 1, 2, 3,
4.)
Condition (i) alone would restrict T„.v~. .. to belong
to the reducible representation
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and therefore (88) reads

For such a tensor t«~. .., there is just one &ray to
form an lsovectorq so that

1)(Te: s" c
tif.[(n/2, n/2)] = t. (811)

Together with Eq. (85), this yields the desired re-
sult,

The commutator of the chiral generator with the
component of M is then

[r.(1-1),m, E'S/2, s/2)]
~a 44~«~ 4 (810)

= -t5„t ...,+ i(s -1)t,
It should also be noted that the commutation re-

lation (81) does not put any constraints on the
terms in M belonging to chlral representations
(A, B) with A =B, because such terms automatical-
ly satisfy (81). A suitable tensor basis for the
representations (n/2, n/2) is provided by the com-
pletely symmetric traceless tensors of rank n.

(81.2)

and hence is automatically symmetric in a and b.
Thus, the whole content of a commutation relation
like (81) can be summed up in the statement that
M, may receive contributions only from the chiral
representations (4, B) with A =B.
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The strongest possible lower and upper bounds on the electromagnetic radius of the pion
are derived in terms of the modulus of the timelike form factor. Numerical evaluation indi-
cates that the radius is bounded above by the vector-dominance value and that the form fac-
tor will not behave as a "dipole" until t = (2E) & 17 GeV, if at all. The location and number
of possible zeros of the form factor are discussed.

At the present time there is a rapid accumula-
tion of information on the pion's electromagnetic
form factor, ' E(t), for timelike and spacelike mo-
mentum transfer. Colliding-beam measurements
of &r(e'e m'w ) prov-ide direct access to ~E(t)~ in
the timelike region; for example, experiments' at
Novosibirsk, Orsay, and Frascati have deter-

mined l&{t)I «r t «4 ««'. »t»t »gher t will
be furnished by new colliding-beam facilities under
construction. Estimates of F(t) in the spacelike
region have been indirectly extracted from electro-
production experiments. ' More precise informa-
tion on the spacelike form factor will soon be
available from the Serpukhov-UCLA group, 4 which


