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Using methods previously used to derive the relativistic eikonal approximation it is shown
that high-energy particles are approximately equivalent to external moving point sources.
This result is independent of the nature of the rest of the process involved, but holds only
when the high-energy particle does not suffer significant changes in its four-momentum, nor
changes in its internal state, during its interactions with the other particles.

I. INTRODUCTION

It has been known for some time that large-mass
particles are approximately equivalent to static
sources in quantum field theory: This fact is used
implicitly, for example, in most treatments of the
hydrogen atom. ' A particle of large momentum is
also quite "rigid" in the sense that its state is not
easily changed significantly, and this feature has
been used as the basis for the eikonal approxima-
tion to some high-energy processes in quantum
field theory. ' ' In this paper an approximation
scheme which includes both the high-momentum
and large-mass limits is discussed. It is shown
that there may be situations where the effects of
particles of high energy (i.e., particles with a
large mass or a large momentum, or both) in-
volved in some process may be approximately re-
produced by external potentials which are static
and spherically symmetric in the rest frames of
the high-energy particles. "

The body of the paper begins, in Sec. II, with a
review of the derivation of the eikonal approxima-
tion to the sum of crossed-ladder diagrams for
two-body scattering. It is then pointed out that this
result can be extended to a much wider class of
processes: In Sec. IG fairly arbitrary processes
involving a single high-energy particle are con-
sidered, while Sec. IV discusses processes with
two high-energy particles. The concluding Sec. V
contains a summary of these results and suggests
possible applications and generalizations.

posite nature is unimportant. This difficulty will
be ignored in the remainder of this paper, so that
the results obtained will not necessarily be accu-
rate, or even applicable, in every situation. ) The
essential approximation in the derivation is the
linearization of the denominators in the propaga-
tors of the high-energy particles. The graph
shown in Fig. 1, for example, involves propagator
denominators of the form

by
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where q = —,'(qf +q,.) is the average of the initial and
final four-momenta of the high-energy q line. The
linearization leading to the eikonal approximation
simply drops the (qz-q, .) ~ k+k' terms, assuming
that in the high-energy fixed-momentum-transfer
limit

(q, —k)' —M'+ i@= -2q ~ % +i e .
This approximation replaces the Feynman propa-
gator

II. THE EIKONAL APPROXIMATION

It has been shown in several different ways' '
that the sum of all arbitrarily crossed-ladder
graphs in quantum field theory leads, in the high-
energy small-angle limit, to a relativistic analog
of the eikonal approximation. (It should be noted,
however, that this result does not hold for all the-
ories." ' Roughly speaking it is valid only where
the high-energy particles have no internal degrees
of freedom, "and in particular where their com-

FIG. 1. One of the six diagrams contributing to the
three-rung contribution to the two-particle scattering
amplitude. The sum over all diagrams of this type can
lead to the relativistic eikonal approximation in the high-
energy small-angle limit.
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where v=(l/qo, so that the q-line particie propa-
gates only forward in time with velocity v. In this
approximation, therefore, the high-energy parti-
cle is completely impexvious to outside influence,
and it is reasonable to a,ssume tha, t it is equivalent

to an external source. To obtain this result one
must sum over the permutations of the points of
attachment of the k lines to the q lines, making
use of the identity3

j
t)'(q~-q, +k, + ~ ~ ~ +k„) 2 ~

. ~ ~ ~

-2g 0'y j + l 6
1

-2q (kp, + ~ ~ ~ +Op{„,))+a~
n

=2q V'(q -(I, +1~ + ~ ~ +h ) x(2vt)" 'Q n(2q n }.
g=1

This identity follows directly from the more obvious relation

Q 8(tp„- tp{„,)) ~ ~ ~ 8(tp —tp, ) = I
aftex Fourier transformation and some simple x'earrangements and changes of variables. Its use elimi-
nates the lineax'ized q-line denominators from the integrand, and the resulting g functions can be used to
do the integrations ovex' the time components of the k vectors. The end result is an integral which is equiv-
alent to that for the scattering from an external potential, and at this stage a xelativistic version of the po-
tential-theory eikonal approximation can be used to obtain a compact expression for the scattering ampli-
tude. The simplU'ication made possible by linearizing the q-line denominators is a special case of more
general results discussed below.

III. SINGLE HIGH-ENERGY PARTICLE

In this section we shall consider the contribution A„ to a process involving a single high-energy line
which comes from all diagrams in which the high-energy particle (again represented by a "q line" in dia-
grams} interacts m times with the rest of the diagram. A typical diagram for n =2 is shown in Fig. 2: A,,
is the sum of this diagram and the 5 = sf -1 others obtained by permuting the points of attachment of the
k Uncs to the q line. For general m we have

x Q [(q kp, )' ——M'+is] ' ~ ~ ~ [(q —kp, —~ ~ ~ -kp{„,))' —M'+ to] '.
Here the f~(k~) are the k-line propagators in momentum space, including the coupling to the q line, while
E is the amplitude for the rest of the diagram, represented by the blob in Fig. 2.

In the limit in which the energy of the q-line particle becomes very large, with q&
—

q& remaining fixed,
we assume that the q-line denominators can be linearized. This leads immediately to the approximate
form

Vfe want to compare this expression with the corresponding term B„in the tx ansition amplitude for the
pxocess E occurring in the presence of the external fields

e,(x)= j (2 ), e "a,(k)'d~k

instead of in the presence of the q line, as indicated in Fig. 3:

4/4 g + @ + p

where P~=gp~ andP, =+p, . If we choose

a, (t{)= -2vO(2q. k)f,(Jt),

)) ttft„=(-1)" g ~ fq(k~)2vs(2q. t(q) (2v)45~ Ry P, —Q kq~ E„({1{)-},[k}).
W )



FIG ' 2. One of the six diagrams contr1butmg to ale
alnplltlldeA3 for the process q +pg ~ + p2 ~ qy + p~
+p2&+ p3&. The cross-hatched blob labeled E' repre-
sents the complete amplitode for the sub-process p~;
+p2 + k~+k2+ k3 p~+p2&+p@ vrith tbek lines off
shell.

Making use of re].ations implied by the other 5
functions, we have

6(Pq, -P,0
—P k~,)=5(P~ -P„-v /k))

=5(Py -P, -v (P~-$,)).
The energy 5 function in this form can be taken
outside the integral, givirg

The fox"m chosen for g, above implies that

4~(x) =-)t, e"*2v5(2q k)f,.(k)

Assuming that the propagator f depends only on
the invariant k', i.e., that f(k) =f (-k'),

Taking v to define the g direction,

e interaction with the high-energy q-line par-
ticle is thus approximately equivalent to the inter-
action with the external potentials 4,(x) which are
just the Lorents transforms of potentials V(r)
wh1ch Rre static Rnd spherically syIQmetx'ic. The
5(2q ~ (Pz -P, )) in the relation between B„and A„
mex'ely requixes that energy is conserved in the
frame where q =0 in which the external potentials
are static. This equivalence of high-energy parti. -
cles and moving external point sources producing
siIQple potentials ls more-or-less obvious for
particles of 1Rx'ge IQRss» Rnd is contRlned UQpllc-
itly in previous treatments of two-particle scat-
tering in the ultrarelativistic limit. These two
limiting cRses Rx'6 connected by the result obtained

ex'6» w'hlch 18 of coux'se not llmlted to two-par™
ticle scattering since the process I' is fairly Rx'-

bitrary. It should be noted, however, that the @-
line particle was assumed not to change signifi-
cRntly its 1ntex'nRl stRte» nox' its IQoIQentuIQ ox'

energy, while it was interacting with the othex par-
ticles involved in the amplitude E. The result is
thus limited to small-angle elastic or slightly in-
elastic scattex ing where the high-energy particle
is "not very composite" and where there is a smRH
probability for its spin or isospin state to change.

The result obtained above for a single high-en-
ergy particle could be immediately generalized to
an arbitrary number of such particles except fox'

two complications: In general there will be no
frame in which energy is conserved since the high-
energy particles will not necessarily have a com-
mon rest frame, and furthermore it may be neces-
sary to take into account the interaction of the
high-energy paxticles with each other. In this sec-
tion these coIQpllcRtlons %'ill be studied 1n their
simplest form by considering the amplitudes cor-

FIG~ 3 ~ Tbe analog of Fig 2 for tbe process p~~ +p2~
~py +p2y +peg in external potentials.

FIG. 4. Qne of the 2400 diagrams contributing to the
amplitude A223 for the process q&& + q2& +p&& +p2 ~ q~
+ q2 f +pQ' +p2 f +ps@ The blob labled E represents the
complete off-shell amplitude for the Sub-process p~;
+pm; +kg(+kg2+kmg+k22~pg + p2~+psy.



responding to Feynman diagrams of the type illus-
trated in Fig. 4. To simplify the discussion ere
shall work in a frame where q, = 2(q,f +q«) and

q = 2(q I+q ) RI'8 R11'tlpRI'R1181 with q def111ing t/18

g axis. The amplitude smith I, A lines between the

sub-diagx'am E and the q, line, n2 between E and
the q2 line, and with m L lines between the two q
lines, summed over aB permutations of the points
of attachment to the q bnes, is

Pn+ nl+n2-S ~ d4@ d4k & d4/

II(„)'f.(V II (,„)'f.(V,I 8( „).g(/}I&..., (IP) [~]}

Nl
w (Rw)'5'(qw - q„w r )'(„(Rw)'5' qw - q„w I')(,5

~a=1 s=l j

Z [«11 +1P11) Ml + 1~] [(f I + tw fI tw (» )) M + /+]
1

x& l«aI-&s»1)'-l2'+&&] ' [(&2I-&2PI- -&2~(» I)}'-M2'+/~l '.
Pg

In this expression Nl =n, +m and Nm=n2+m, and we have defined the neer labels for the 0 and 1 lines:

+ll ~ll

&3n, =&2n, y

+2(n2+l)

The factor of 1/m! compensates for the double counting in the permutations of the points of attachment of
the / lines.

If we here again linearize the (/-line denominators and use the identity introduced in Sec. II, we obtain

~...,.= * „,'"'"f(II,'5 5(qq R)f(5))(II „*.5 5(R.. 5)f(R))q...,((q). (5))

( w)Rw(5„q-q„'wI )K(
)'Rw~ 5„q- „q+I KII 5, Rw5(Rq, l)Rw5(qq, l)q(l)).2II '

The identity

/)(x}/)(y) =/)(x+y)/)(c, x- c,y),
where g, +@2=1, can be used to transform the 5 functions:

(2»)'/)3(q„-q„. +g K,)(2II)'/)3(q„-q„+g K,) = (2»)'O'(p, - p, -g k, —p k,)(2)I)sa'(h+Z+g f),

5=cI(qu q1,}-cm(cd -qmI}

Z =c,(g kR) -c,(g k,) .
For reasons that will become clear below the coefficients c, and e2 mill be chosen as

c1 = 51/(51 + 5)w) Rnd cg = 52/(51 + 52) 5

where 5; =
( q& ~/(/«. With this transformation we have

A. „,„=(-l)"""'((11 ', R55(qq, 5,)f (5,))(11 5
', Rwq(qq, R,)f (5,)) E„,„,(IP), .IR})

x(25)'H(p, -X, -gk, -gk, )

x, ' II 2, 2 /)(2q, ~ /)2 /)(2(/, ~ /)g(/) (2 )'5'(1)+~ +QT) .(-i)"," d'/



DA VID R. HARRINGTON

The factor in large square brackets can be simplified by using the integral representations

(2w)'5'(5+2++ T) = t d'rexpt-Pr (5+2+2 1)j,

2w5(2q ~ I) =Jt d~exp(-i2q. le)

g(l ) = cP'x e"'"D(x),

doing the integrations over I;, and then using the x'esulting 0 functions to do the integrations ovex' the x's.
The texm in large square brackets then becomes

mw))0), +~.)jr')le """'[ix(s)1"/m!,

),(5) = jdv—;dv))(x,+mq ~+2@,,r,)
is the eikonal function for the interaction between the bvo q-line particles. As indicated, g depends only on
the magnitude of b, the projection of the space component of the four-vector x on the x-y plane. Summing
over all m, we find

( ))" '"
)I

d=*b-'(' '"!' g ~
', 2 il(2q~ k,)f (),:,) ( g( ', 2 !!(Rrl~).',)f (,).,))

x(2w)'5'(P, -P,. -g~, -gk)2w5(~, +5,) e-"'Z„,„,((P), (a$).
Now considex' the corresponding texm in the amplitude B„„for the process E to take place in the px'es-

ence of the extex'nal potentials

" d~k
q„(x)= i, „e'"' a„(k)

j2mj

If @re choose

a,q(k„) = 2w5(2q~ -k,~)f,~(k„)e '~~""'b

g„(k,~) = -2w5(2q, k„-)f»(k„.) e"3"»'

then, using the definition of L above,

~(2w)'d(PI -I,. -Qu, -gu, )e-"'Z„„((pf,(u]).
The other 5 functions can be used to transform the energy 5 function:

5(&go-&~0-Z ~co-Z ~so) = 5(&go-&~0-V. .Z kx -&2 Z 4)
=(w, +g, ) '5((v, +v, ) '(P IP„)-5,)

where the last step follow's because, fx om enex gy conservation in the amplitude A. , w'e can identify P« - P&0.

with

qi&0+ q»0 Ay() —
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= -(vg+5)))5g ~
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(Note that our particular choice of the c, 's was used at this point. ) This result gives

8 „(,b„), (-=1}"'*"'(u,+a, )
'

} n ', Rw(}(mq, k, )f().,) n ', Rw}}(2q, k)f(k, )))w}}(}},+a, )

and, comparing with the expression for A„,„,
above, we find that

The forms chosen for the a» and a» imply that

where, as in Sec. III,

V(r) = e '"'f(k'}.
(2m)'.

The amplitude A. , involving two high-energy par-
ticles, can thus be approximately obtained from
the amplitude 8 for the same process to occur in
the presence of two sets of external potentials, 4,
and 4„which are static and spherically symmetric
in the rest frames of the two high-energy parti-
cles, but which in tile frame uQder consideration
are Lorentz-transformed so as to move with the
corresponding particles. In this frame the poten-
tial centers move in the +z directions and have
relative impact parameter b. The amplitude B
for this configuration is then multiplied by the
function exp[i}((b)] which accounts for the inter-
action between the two high-energy particles, by
a factor (((), + v, ) exp(-i 5 b}, and then integrated
over the entire b plane to give the amplitude A. .

V. CONCLUSION

It was shown above that under certain conditions
a high-energy particle may be approximately
equivalent to an external moving point source: Its
influence on other particles is nearly the same as

that of external potentials which are static and
spherically symmetric in the average rest frame
of the high-energy particle. The reason for this
is that a high-energy particle without internal de-
grees of freedom is very little affected by its in-
teractions, and the "feedback" it receives from
the other particles can be almost ignored. " Th~s
*'as given" nature is just the identifying feature
which distinguishes external potentials or sources
from their dynamically determined counterparts.

This observation, or generalizations of it, may
prove useful in a variety of calculations. The
simple case of two interacting high-energy parti-
cles is well known, ' ' and has been extended to a
restricted class of inelastic two-body collisions. "
It should also be possible to develop approximate
expressions for the absorptive corrections to
productions reactions, at least in restricted kine-
matical regions. "

The results discussed above apply only when the
high-energy particle changes neither its four-mo-
mentum significantly, nor its internal state, either
virtually in its intermediate states or bet%'een the
real initial and final states. It is probable, how-
ever, that they can be generalized, along the lines
of some earlier work, "to include processes with
a single "strongly inelastic" vertex where the
high-energy particle's state is changed significant-
ly. This would considerably broaden the class of
processes which could be treated, although almost
certainly at the expense of complicating the formu-
las.
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%'e demonstrate in this paper that despite the appearance of dynamical terms in the current-
commutation relations as a result. of the electromagnetic interaction, one can still use the
algebra of currents to derive low-energy results.

INTRODUCTION )'("(), q) =J eke "'*((y(ll)lr "()'",(x)v(0))lo),

It is generally assumed that the algebra of the
currents is preserved even in the presence of
symmetry-breaking effects. However, when elec-
tromagnetic fields are included, two effects corn-
bine to make their appearance felt in the com-
mutation relations: (l}The general yrinciyles of
quantum theory require that gradient terms be
included in the commutator of time and space com-
yonents, and (2) gauge invariance then effectively
modifies these commutation relations through the
substitution 8„-8„-ieA„. These terms can be ex-
plicitly calculated in several models, e.g., spin-
zero electrodynamics, the algebra of fields, ' etc.

In this paper we show that the inclusion of these
new dynamical terms does not affect the general
results obtained from current algebra by means of
low-energy theorems, and that one can still make
model-independent calculations provided that one
1s careful w1th relativity and gauge invariance.
Furthermore, we show that the appearance of non-
canonical terms is in fact necessary if one is to
avoid certain paradoxes. '

Consider the one-photon-vacuum matrix element

of the vector-vector current correlation function

is*(V~(x) V"(0)), namely,

where the T* product is the covariant time-
ordered product~

is *( ) = i T( ) +p"," 5'(x)

and p"," is the coefficient of the gradient term in
the commutator

[V',(x}, V~(0)]~(x') = 2V~(x)~'(x)

+ i(8~+ ieA)}pP(x)s'(x), (2)

with p"," =p'", and p'," =0, The explicit appearance
of A), in the commutator is required by gauge in-
variance. ', ' Calculating the divergence of (l) in
the standard way, one obtains

iq„T",'= dxe ""iy TD~ xV" 0 0

-ie(y (x,p', " (0) +2i(y ]v,"(0)(0). (s)

One can view E(l. (3) as a way of calculating the
matrix element (y jV,"(0)~0). On the other hand, one
can show' on the basis of Lorentz and gauge in-
variance alone that the matrix element of a gauge-
invariant four-vector field between the vacuum
arid the one-photon state must vanish, i.e.,

(~(k) (Z)'(0) ~0& = 0 (4)

whether J" is conserved or not. The inclusion of


