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Dual-Pion Model Satisfying Current-Algebra Constraints*
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The dual-pion model, previously constructed with m~ =-2 and mp 0 is generalized to
arbitrary pion mass while maintaining the relation m& = m~ + 2. As in the conventional
dual-resonance model, the price for doing this is the introduction of ghosts. In the special
case m~ =0, the N-pion amplitudes are shown to possess Adler zeros, and, as a conse-
quence, to satisfy the constraints that current algebra imposes on on-mass-shell hadron
amplitudes. The axial charges are explicitly constructed and shown to close with the isospin
to form the algebra of SU(2) x SU(2). This model should provide a useful theoretical labor-
atory for studying the consequences of combining duality and current-algebra constraints.
The construction of currents is a challenging problem.

I. INTRODUCTION

A great challenge to the practitioners of the
dual-resonance art is the construction of a model
possessing a realistic spectrum. As a first step
one would like to have a ghost-free model with
massless pions, a p-f' trajectory with intercept —,

'

and no tachyon, satisfying current-algebra con-
straints. In this paper we present a model that
accomplishes all but one of these goals, its main
defect being that it has ghosts.

To put this work into perspective we review the
status of existing models. Last spring an appar-
ently ghost-free dual-pion model was constructed'
for the unrealistic masses m, '= ——,

' and mp' =0 (in
units with n' = 1). Subsequently, two different
modifications of this model were suggested, "each
of which allows for a massless pion and is prob-
ably ghost-free. However, they also have a mass-
less p and do not appear to satisfy current-algebra
constraints. Brower, 4 on the other .hand, formu-
lated a chiral-invariant model, which has ghosts
and a tachyon. It has been suggested' that any
ghost-free dual-resonance model must have a tra-
jectory with intercept unity. To my knowledge, no
counterexample to this rule has been found so far.
Ghosts are the price to pay (admittedly a high one)
for changing the masses from their values in the
ghost-free dual-pion model. It was known to
Neveu and me last spring that squares of masses
could be increased by A2 while preserving the cy-
clic symmetry of the N-pion amplitudes if k,. ~ k,.
were replaced by k,. ~ k,. +-,'X' for adjacent lines i
and j and unchanged for nonadjacent lines. The
reason we did not discuss this in our published
papers was that we did not know how to factorize
the modified amplitudes. Subsequently, but prior
to the present work, others' have expressed this
scheme in an operator formalism using (N+4)-

component vectors for the N-point amplitude. The
amplitudes constructed in this paper are the same
ones, but they are obtained in a formalism that
makes their factorization properties and spectrum
clearer than in the other approaches. To motivate
the construction we begin with a discussion of the
variable-intercept version of the conventional
model.

Following the notation of Ref. 1, we use har-
monic-oscillator operators n" for which

[n", n„']= -mg""5„
The conventional model with intercept unity for
the leading trajectory is built up from the ground-
state emission vertex operator

P(k)=exp(ik x)exp(&2k g ™"exp —Pkk8 Pl

(1.2)
and the propagator

D=(L —1) ',

where
1

Lp = —a o)o '
Q&) -Q o) „'o(„=R —p

n=1

The most commonly used method for extending
this model to the leading intercept +,.=1 —P~ is to
keep the same vertex operator (but requiring that
k'=))2 —1), and to modify the propagator to the
form

D = (1 —x)-"x'""-'dx.

A less familiar formulation of the same model
turns out to be better suited for generalization to
dual-pion models. In this formulation one defines
a vertex

V(k) = V,V,(k)
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Rnd px'opRgRtox'

eo oo.& +1 &(s)&(s)+p&(s) (s) (i 2)

sion vertex in the model i.s

v, (i ) = —~g[G., v, (n)]

=gl lfV, (}s),

where

1
Gm= Z (Sn' f'm-n~ 111=as/+so

(2.2)

and Vs(l's) is given in Eq. (1.2). This vertex, to-
gether with the propagator

The equivalence of the two formulations is an im-
mediate consequence of the formula

9, exp A. x'exp A.
" 0, = 1-x

where

To specify the spectrum of physical states it is
necessary to take note of the gauge invariances.
One gRuge operator is

(5} (5}
L'1 Lfo -n +n+l+ M O/-n ™n+l'

n=o n=0

The other Virasoro operators' fail to provide
gauge invariances in this case because of the
ground-state projection of the fifth mode in V, .
This is the origin of the ghosts. L,, is not the only
gauge invariance, however, because the fifth-
mode operators can only occur in those combina-
tions contained i.n

Gl/S + (+n ~l/S-n +n ~1/S-n) (2.4)

f,(s)

Lo=-S&o'(SO- Z &-n'(Sn —Z lllf)-m'&m~
n =l na=l /2

gives the dual-pion model with m,„'=-&and m~'
= 0 in the E2 formulation, s the one in which the pion
is represented by the ground state.

The generalization to other masses is now
straightforward. %e introduce new oscillators
b~~} with the algebra

[b(s) h(s) ], (2.3)

Rnd define

exp X " 05

Therefore there must be a gauge operator 6„to
embody this fact. The actual construction of 6„
is somewhat complicated. However, there does
not seem to be much value in doing it, since the
gauge condition is quite manageable in the form
we have expressed it, Usi.ng the gauge conditions
it is not hard to construct physical states. Fox
exanlple, at Ms=A' one. finds a vector e n, [0) and
a scaiar [(i/) )& (s, -~2(s(s)1]10)~

v„(}s}= ——[G„„v,v, (n)]1/S& S 0

=g O' HV5+ Hs, V~ V~ k ~

2
(2 5)

where it is now understood that the factor ~0s)(0s~
lnslde Vs 111 E(l. (1.3) 18 a prolectlon fo1' ho'th 'the
n„"and 5" modes. The appropriate choice for
the propagator is then

(2 6)

In the dual-pion model of Ref. I, we intx'oduced
operators b" with the algebra

(f„,f„')=-g '() (2.i)
m and n taking half-integer values. The pion emis-

I
O

= S (SO OO —Z (1 n
' (rn — Z 111'f)-~ ' f)m

n=l m=1/2

+ 1 &(s)&(s) + g &(s)&(s) + p ~ f,(s) f,(s)
n=l tn=l /3

Using the techniques of Ref. 8 it is then possible
to prove that Ql/, is a gauge operator, while the
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opexators G3/„G», . . . no longex axe. The oper-
ator G„is still a gauge as is the operator G~=N~'
-Na, where

k(s) k(s)
m=g /2

The duality of the model me have just formulated
is not obvious. It CRQ be p1oved by x'ecRstlng 1t 1Q

an E, formulat1on' and then using the methods of
Ref. I. An alternative method of demonstrating
that the Ã-pion amplitudes have cyclic symmetry
is to show the equivalence with the (K+4)-com-
ponent formalisme in vrhich the -px'oof is easier.

To illustrate the use and meaning of the formulas
given above, the calculation of the mm amplitude
depicted in Fig. 1 is presented in detail:

W, = (0; k, iV, (k,)(a+) '- -', s)-'V, (k,) io; k,)

dxx ' s "(OiV„(ks)xsV,(ks)i0)

gs dxx k -b-sos(1 )-sbs ~ bs-x
~0

&0 k, H- H, g" 4, ~ &+ -~ O

FIG. l. KlllemRtlC8 Of the foUT'-ply RmplltQde

Substituting A.
' =m, 2+ &, we obtain

, F(m„s+-,' —s)I'(m„'+—,
' —t)

( )

This is the formula of Lovelace and Shapiroe fox'

the case m&3=m„2+ & and m arbitrary, vrhich

noir has been obtained from a fully factorizable
scheme. Taking account of isotopic spin by the
Chan-Paton prescription, '0 the full mm amplitude
in the tx ee appx'oximation becomes

t
l

=-g'(k ~ k +-'X') dxx'-' '(1 )-'+'"s- -'
4o

M.„,(s, t, u) ——, tr(Tabs, 7,)C„+—, tr(v. )bv, T)C,„+s «(~.~ ~b7s)C,
„

(2.10)

Isolating the amplitudes of definite s-channel iso-
sPlQq which are in the ratio suggested by Weinberg. "

M(vs=i) 2(C

m'"=" = 2t.",„.
We specify our normalization by the partial-wave

expansion

M(~) (s, s) = ——Q (2 l+ 1)e's&('sin()t(s)P(z).
~=0

{2.12)
Identifying the width of the p from the residue of
its pole (which corresponds to the value one would

calculate in a one-loop approximation) gives, to
lowest order in m„,

rp/m, =-,'g'.
Similarly, for the s-vrave scattering lengths one
finds

IH. THE CASK m+=0

It is well known that the properties of the four-
pion amplitude ere have been discussing are in

striking agreement with current-algebra predic-
tions. %e ax'e noir in a position to see vrhether

this agreement is fox'tuitous or a property of the
N-pion amplitudes as mell. Thus me hencefox'th

consider the special case m„-=0, vrhich cox'x'e-

sponds to )(=1/W2. The spectrum can be investi-
gated by using the gauge operators G»2, G„,and

G~ to construct physical states. All of them with
M2=0, —,', I are listed in Table I. At MR=2 there
are an f', p', q, several o's, and possibly other

states as well. One of the o's is a ghost (negative

norm), the only such state with M' ~ -', . lt is inter-
esting that in the mm- mm amplitude thex'e is no

spin-zero pole at I' = —,'. The reason for this turns
out, to be Rn exRct cancellatkoQ bebveen posltlve-
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TABLE I. Low-lying states of the m~=0 dual-pion model.

Operator description

0+

0"

0

0+

E f/ 'g/2l 0)

~2(&'& g/2-& 'q/2)lo)

~puxa~ ~ ~-1/2 -«21o)

4& ~ ~ 1+(~) &'i' «2" t'-i/2 ($) '&'t'-u2&'-'i'/2}lo)

(y) (2&'&-«2&-gg2 —&'&

(2u(5)-~ n, +~2b(5&/2n f «,)lo)

norm and negative-norm a states. It is Not a mani-
festation of another gauge condition that has been
omitted. To check this point, the o couplings to
foux' pions have been explicitly calculated.

%e now come to the crucial question: Do the
Ã-pion ampbtudes have Adler zeros~ n In other
words, does the N-pion amplitude vanish when

any of the pion four-momenta goes to zero? Note

that there are no pole terms to take into account
because of the nondegeneraey of even- and odd-G-
parity states in the model. Consider the N-pion
amplitude shown in Fig. 2. This amplitude has
cyclic symmetry so we may equally well concen-
trate attention on any of the pion momenta.
turns out to be a particularly convenient choice.

pl 1 N

p( ) Q (i . . . ) k ' (i ) lid'k3 1/Rx 2

ao 00 .i= 4

dxx '/3(1 —x) '" dy ~ ~ dy g'(y).ka Og ao

The remarkable fact about the limit k, - 0 is that
the x integral becomes a separate factor. The in-
tegral is divergent, but it is an easy exercise in
analytic continuation to show that it should be
identified as B(~, --,')=0. Thus, as the factor in-
volv1ng g 1Qtegx'at1OQS ls 1Q geQex'al fin1te Adler
zeros are present.

Mandelstam has shown" that other current-alge-
bra implications for on-shell hadron amplitudes
are consequences of the existence of the Adler
zeros. Because of its simplicity and importance
we xepeat his argument here. Consider the pro-

cess 7/, +o.-w, +P depicted in Fig. 3. a and f/are
isospin labels and n and P are arbitrary on-mass-
shell states. The part of the amplitude that is iso-
vector in the t channel must be given by an odd
function of q (by Bose statistics). Expanding about
q=O,

M( '(8p, q, Q) = c.~[q„M"„'q(p,Q) + 0(q') j . (3.1)

FIG. 2. The N-pion amplitude. FIG. 3. Kinematics of the reaction x~+n- ~&+P.
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Since this amplitude must vanish for q= +—,
'

Q (the
Adler zeros), it follows that for small Q,

@„M".', (p, e) = o(e'). (3.2)

I".s(p, @= o) =yp„(~ll.lt)&, (3 3)

In particular, the amplitude for emitting zero-mo-
mentum pion pairs satisfies a divergence condi-
tion. By an argument of Weinberg'4 it follows that
the corresponding coupling constant must be pro-
portional to a conserved quantity. The only avail-
able candidate is the isotopic spin. (This identifi-
cation is reinforced in our model by explicit con-
sideration of the four-pion amplitude. ) Thus we
conclude that

are closely related to ones recently invented by
Del Giudice, Di Vecchia, and FubinV' for studying
the collinear emission of massless vector mesons
in the conventional model.

It is convenient to choose a particular frame for
studying collinear pion emission-, even though. the
results will be eovariant. We define two lightlike
four-vectors

p. =(-', o, o, --') and 5=(2, 0, 0, 2).

We then require that a state with mass squared M'
have the four-momentum P, +M'5. Emission of
pions with momentum proportional to 6 eonneets
states of this type. To implement this suggestion
we define

where y is independent of a and P, and that

I;'&'"(p, q, e=o)=yp q, ( Il. ltt& o(e').
V„„/2(z)=z~2V,(- (N+ —,')5)z ~o (4.1)

(3.4)
Taking the value of y from pion decay and compar-
ing wi.th our four-pion amplitude yields the identi-
fication y =4' and

g = (Bwn'I' ) = 1.l, (3.5)

where I"„=190 MeV is the pion decay constant.

IV. THE AXIAL-VECTOR COUPLING MATRIX

As part of a general discussion of the algebraic
consequences of chiral symmetry, Weinberg in-
troduced" the axial-vector coupling matrix. The
matrix element (X,)8„is proportional to the am-
plitude for the decay o.- P+7/, in a collinear frame.
The purpose of this section is to obtain an explicit
expression for X, in our model. The methods used

1 dz
BN+1/2 = . ~//+1/2(z).

2'tl'E
(4.2)

I/~(k) and I o are the expressions glve11 111 Eqs. (2.5)
and (2.7), respectively. The operator B„„„has
the property that (p IB„„„I(2&describes pion emis-
sion for the collinear on-mass-shell one-particle
states ~ and P, with momenta P, +m„'5and Po
+m&'6 respectively, if m„'=N+ &+me, '. The con-
toux integral is well defined if o and P are on the
mass shell. If they are on the mass shell, but
with m„'~N+-,'+mz', then the matrix element
&pIB„„„Io(&vanishes.

To see the connection between the B's and Wein-
berg's X„consider the case of forward w7t scat-
tering with I, =1.

1 ds' 1, du'
C(s, t =0) —C(u, t = 0) = —, ImC(s', t =0) ——, ImC(u', t = 0)

p~ s -s Q —Q

1 1 &0 ~ BN+1/2 B-(a+1/2) ~0&
&0IBN+1/2B-(N+1/2~lo& ~ (s-» ~ N 12 ~

No Ã+2- S Ã+ q —Q s,Italo N =0 X+3

(4.3)

C(s, t = 0) —C(u, t = 0) ~ wg 2(s —u). (4.4)

Therefore the operator

Bw'+xi2

g~v s=-- IN+~2l

satisfies the equation (OIX'IO&=1. To make the
notation completely clear, we emphasize that by
((2IX2lp& we mean

(4.5)

Qn the other hand, direct inspection of the func-
tions C(s, t) and C(u, t) in Eq. (2.9) gives for the
same limit

&~lx'I(3&=Z &~lxly&&ylxlP&,

where the intermediate states y are collinear on-
mass-shell one-particle states. Only the B„+„,
term in Eq. (4.5) with m 2-m&2=N+ —,

' contributes
to the matrix element (alXly&. Now, the argument
of Mandelstam presented j.n the previous section
allows us to conclude that X'=1 is not only true
when evaluated between pions, but i.s an operator
identity valid in the space of on-mass-shell phys-
ical states. The restriction to physical states is
crucial. The Adler zeros, which axe the essential
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ingredient in Mandelstam's argument, were dem-
onstrated to be present in N-pion amplitudes, which
contain only physical states. For example, it can
be shown by explicit calculation that for the spuri-
ous state [s)=G „,[0), &s~X'~s)=3(s[s). Thus the
operator equation X2= 1 is only true in the physical
part of the space, which is an indication that it may

, be difficult to verify by direct manipulation of the
operators.

The axial-vector coupling matrix can now be
identified as

X.= ,'(X+—nXfi'}7., (4.6)

where 0 is the twist operator. By this we mean to
indicate an operator whose matrix elements be-
tween single-particle states ~n) and ~P), with as-
sociated isospin matrices v and ~&, is

If ~n) and ~P) are states that satisfy the subsidiary
conditions and are simultaneously isospin eigen-
states, then the expression in (4.7) simplifies to
the form

(4.8)

which is nonvanishing only if I =0 and Is =1, or
vice versa. By similar reasoning we find for the
matrix element of [X„X~]

is the SU(2) x SU(2) algebra of vector and axial-
vector charges.

V. CONCLUSION

This work is expected to provide a useful the-
oretical laboratory for studying the meshing of
current-algebra and duality constraints. The
physical predictions of the model are of secondary
interest in view of its obvious defects -the pres-
ence of ghosts and the peculiar way in which G
parity arises.

Some interesting questions remaining to be
studied are the following:

(1) What is the SU(2) x SU(2) classification of
various low-lying states?

(2) How does a small pion ma, ss break the SU(2)
x SU(2) symmetry'P

(3) What Lagrangian field theory, if any, is ob-
tained in the zero-slope limit?" This limit should
yield a chiral-invariant theory of massless pi.ons
only, i.e., the nonlinear o model.

(4) What can be learned from an extension of the
model to include fermions?"

(5) Most important of all, is it possible to con-
struct the vector and axial-vector currents that
this model is likely to possess?
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