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We construct a model in which the mass of the quark, tao-quark, and quax'k-quark-anti-
quark states diverge while a quark and an antiquark and three quarks have finite-mass bound
states. In this model the quarks are quark-meson bound states. All bound states are formed
by a 4-fermion point interaction. For simplicity we use the static limit of the ladder approxi-
Ination.

I. INIODUICTION

The introduction of quarks into hadron physics'
may have improved tremendously the understand-
ing of strongly interacting particles. However,
the interactions of the quarks themselves are not
clearly understood through this concept. Indeed,
no one (to the author's knowledge) has produced a
consistent explanation of why no single-quark (q),
two-quark, four-quark, or quark-quark-antiquark
(qqq) bound states have been observed, while
quark-antiquark and three-quark bound states ap-
pear to abound in nature. It is the purpose of this
paper to construct a model satisfying these experi-

mental data; i.e., the existence or nonexistence of
observable quarks and quark bound states. The
most common explanation of the failure to observe
a free quark in high-energy experiments is that
the quark's physical mass is very high (more than
ten times the mass of the proton), and therefore,
it cannot be produced mth the presently existing
accelerators. 'this point of viewer mill be adopted
in this paper. The fact that no free quark has
shown up in deep-ocean, moon rock, and numerous
other samples can be accounted for by assuming a
sufficiently high binding energy between a quark
and an antiquark and between three quarks. If any
free quarks ever existed at the beginning of the
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universe, they had time enough to meet their kin
Rnd form bound states with such large binding en-
ergy that they never disintegrated into free quarks.
The question now is: %hat produces this high bind-
ing energy between, e.g., R quark and an anti-
quark' The simplest answer is the exchange of
mesons (Fig. 1). The coupling constant 6 of quarks
and mesons can always be chosen high enough as
to account for any binding energy. However, if the
exchanged particle is any of the known mesons,
with a mass of a few hundred MeV, then the range
of such forces will be comparable to the distances
between the nucleons in a nucleus. In this case the
quarks of different nucleons in the same nucleus
will be able to interact so strongly as to make nu-
eleRr fu81on Rnd flsslon impossible~ Rt least with
the experimentally known energies. In order to
avoid this difficulty we will assume that the binding
of qq into mesons is due to a zero-range force [a
4-fermion point interaction (4-f.p.i.)] with respect
to which contributions from meson exchanges are
neghgible.

From Fig. 2 we see that two quarks and an anti-
quark exchange a quark, using the 4-f.p.i., and
could possibly be very strongly bound, e.g., into
a quark. In a similar way, three quarks can ex-
change R quark, thus generating a short-range in-
teraction between three quarks.

In order to simplify the initial presentation of
this formalism, we will restrict ourselves to one
quark only, with spin —,', baryon number 3, and
Rll other quantum numbers 0. Furthermore, every
particle and bound state will. be taken to be in the
lowest allowed energy and angular momentum
state.

In See. II we define our basic 4-fermion point
interaction. %e show that it is possible, in the
ladder approximation, to adjust the strength of the
interaction in such a way that qq will be bound into
a scalar meson while qq has no bound states.

In See. HI, we will use the effective qqp. inter-
action (where p, represents the meson) to show

that qp, bind into q in the static limit of the ladder
approximation.

In Sec. IV, we will show that qqq bind into bar-
yon8 of spin g Rnd ~ in oux' RpproxlIQation.

In Sec. V, we will generalize our model to in-
clude three distinguishable quarks, of the same
mass, and we will show that we obtain SU(3) (the
Cutkosky relations), the additive and independent
quark model, and the exclusion of exotic quarks
and baryons.

In Sec. VI, we discuss the eonelusions Rnd pros-
pects of this theory.

II. THE TÃO-PARTICI. E BOUND STATES

In order to simpli, fy the px'esentation of this mod-
el Rnd to be able to use some of the work of Nambu
and Jona-Lasinio' (NJL) we choose:as our basic
interaction

where:: represents the normal product.
NJL' showed that the interaction (1), used in the

ladder approximation, for the fermion-Rntifermion
and fermion-fermion scattering amplitudes leads
to the following conditions for the existence of
bound states (poles in the scattering amplitudes):

(1) There is a scalar-meson bound state of qq
Rt R mass ppgg lf

g )" (s —4m')(1 —4m'/s)'"
4v 8 —Vlg

where ~ 18 the quar'k mass.
(3) There is a pseudoscalar-meson bound state

of qq at a mass m~ if
A s(1 4 2/s)l/2

4v' 4m»-m/. 4s=~»

(3) There is a vect'or-meson bound state of qq
Rt R mcLSS Pffft lf

FIG. 1. One-meson exchange between a quark and an
antiquark (the dashed line represents the meson, full
lines represent quarks).

FlG. 2. One-quark exchange between bvo quarks
and an antiquark.
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g m,' ' (1-4m'/s)"'
1

2m'
d

4w 3 ~ 2 s —my s

(4)

(4) There is an axial-vector-meson bound state
of qq at amass m„1f

g A (1 —4m'/s)"' m„' 2m' m'
~+ + d8=1,

4m~ ~ +A

(5) There is a qq, "diquark, " bound state at a
mass PAL) lf

gm' "(1 —4m'/s)"'
tB =1.

s —mg

These equations are obtained by summing over all
bubble chains and ident, ifying the sum, near its
pole, with the corresponding bound state (Fig. 3).
The vector and axial-vector interactions mere ob-
tained from the scalar and pseudoscalar interac-
tions by using Fierz transformations which guaran-
tee that all the bubbles are free of Dirac indices
coming from the propagators (the two propagators
of a bubble are contracted with each other at the
two ends of the bubble, and never with the propa-
gators of neighbor bubbles). Using the factoriza-
tion theorem (Appendix A) we see that each term
is the simple product of the bubbles in it, all bub-
bles in a chain having the same value. The theory
cons1dexed by NJL possesses chlral symmetry
from which they conclude that m~ =0 and all other
masses are determined from this condition. In
our theory, however, the total Hamiltonian is not
necessarily chiral-invariant and there is no reason
to fix m~ or any other mass p pn'ori.

When the integrals in Eqs. (2) to (6) are worked
out, they are functions of the dimensionless param-
eters, 4~'/gA', 2m/A, m, /A, m, /A, m„/A,
m&/A, and m~/A. When we compute explicitly the
integrals (2) to (6) as functions of the above param-
eters and try to satisfy Eqs. (2) to (6) with different
values for the parameters, it becomes clear that

there is no set of values of those parameters for
which all five equations are satisfied. In particular,
for 2m/A ~ 10 ' there is a set of values for
4v'/gA', and m~/A, for which (3) is satisfied but
(4), (5), (6), and ('f) are not. Thus, if for simplic-
ity me impose the existence of a finite-mass scalar
meson and 2m/A ~ 10 ', then we will have no pseu-
doscalar, vector, axial-vector mesons, or a qq
bound state. The above results were obtained
through a numerical analysis of Eqs. (2) to (6) done
on a computer.

In the same way as NJL, we then define the "phe-
nomenological" coupling constant g;, ~ between the
quarks and the scalar meson as the residue at the
pole of the scattering amplitude:

g- ' ' (s-4m')(1-4m'/s)'"
@AS ds ~

4m — 4 ' (s-m, ')'

IH. THE qqq BOUND STATE

Having established in Sec. II that qq bind into a
scalar meson and that there are no qq bound states,
we can approximate the qqq scattering by a quark-
meson scattering. The scattering amplitude of q8
in the ladder approximation is graphically illus-
trated in Fig. 4 and leads to a rather complicated
Bethe-Salpeter equation. Instead of trying to solve
this equation exactly, me will limit ourselves in
this paper to a preliminary study of its properties.
In particular, me will consider a simple equation
obtained from Fig. 3 after each of the exchanged-
quark's propagators has been replaced by 1/m.
An intuitive, though by no means rigorous, justifi-
cation of this prescription is that if the mass of
the quark is as high as suggested by experimental
evidence (and by this model as we shall see), it
might be permissible to neglect the exchanged mo-
mentum with respect to the quark mass. The con-
dition that a quark and a meson bind into a quark
is then illustrated by Fig. 5, where the qqSS cou-
pling constant is given by

+ 1~ ') + + + ii

FIG. 3. The quark-antiquark bound-state condition in
the 1adder approximation for a 4-fermion point interaction.

FIG. 4. The quark-meson scattering amplitude
in the ladder approximation.
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A'

I(p) kcqss pcs(
m ~sP s-p'

where p, ~(s} is given by (see, e.g. , ¹shijima,
Ref. 3),

p„(s)= s '[s —(m -m, )']"'[s—(m +m, )']'"

and A' is a cutoff parameter related to A by the
consistency requirement. Since any power of B(P)
will be proportional to P+m, we can write A(P} as

A(f ) =(/+m)K(f ).
The condition that qqq bind to give a quark is that
near p =~ we have

A(P'= m') = g;„'(P+m)/(P' -m') . (14)

For p = lpga, g -& ca,n be neglected with respect to
A(P) and the bound-state condition becomes

2mI( p' =m'} =1

with a new expression for g„-8:

S,.(s)
4v &m+~~&2 (s-m~')'

We now require that the "new" value of g„-~ agree

2/
gauss =

&~e8 &~ y

where g„-~ was defined in Sec. II.
If we call A(P) the sum at the left-hand side of

Fig. 5 and B(P) the analytic expression of the qS
bubble with g„-» attached to one end of the bubble,
A(p) is given by

[1 —B(P)l[A(P) —g„-g g1 =Z„ggB(-P).

For p'= m', B(P) can be written as

B(O) =(/+m)1(u)
FIG. 6. The three-quark scattering amplitude

in the ladder approximation.

with the previous one (this condition will relate
the cutoff A' to the previous cutoff A) while the qS
bound-state condition is satisfied. %e thus get
two new relations involving the parameters m/A
and m, /A. A numerical analysis of Eqs. (2), (7),
(8), (15), and (16) determines the values of the pa-
rameters to be

m/p=10-', 1.1x10-' ~m, /m &1.1x10-',
gpg2=0. 25x10 3, g„-~~= 2.37,

A/A'=0. 9x10 '.
%e verify that for these values there is indeed
only a scalar qq bound state and no qq bound state.
The numbers thus obtained are quite reasonable,
but are too crude for detailed compa, rison with ex-
perimental data because of our approximate treat-
ment of the Bethe-Salpeter equation.

Por the qqq scattering we consider the ladder
approximation illustrated by Fig. 6. As in Sec. III
we restrict ourselves to the study of the simpler
graphs obtained from Fig. 6 by replacing the ex-
changed-quark's propagators by 1/m, thus reduc-
ing Fig. 6 to Fig. 7 where the effective 6-fermion
coupling constant C is given by

I
I

I
I

It
/

J e ~ e

FIG. 5. The quark-meson bound-state condition
in the static hmit of the ladder approximation. FIG. 7. The static limit of Fig. 6.
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In order to satisfy Eq. (2) for A- ~ we must have
g- 1/A' as A- ~, and in order to satisfy (15) we
must have m- A' (or A} as A'- ~ '(which is consis-
tent with the idea of a:heavy quark}. Therefore,
Eq. (1V) implies that G-1/A' as A- ~.

The sum g of the bubble chains for three quarks
(Fig. 7) is given schematically by (see Appendix 8)

(1-e)(a - 2!G)= 2!eG,
%'hex'e 18 a tensor with Slx splBor lndlces I'epx'e-
senting the three-quark bubble and ha.s the farm

@n8y 2(2 )-l$G(a '8'y')

x (y/$'(/$$5(„58$5yy') + P( „5:g:.5y" ))I,

+[m&!~(y„)$$(y„}yy)+ j!(~(yp)$ (&„Py }]1$],
(19.)

where the brackets denote symmetrization over
the primed indices. I, and I, are given in Appendix
B. Q is given by

where G is the 6-f.p.i. induced by the 4-f.p.i.
,Since the bubble 8 is made out of three quarks, it
has spin--,' and spin- —,

' components, and so will the
sum 8 and we can write

~ ( &./& ) + (g (3/2 }

e = e""'+e""'

where e""' e""' e""', and g""' are the
spin- —,

' and spin--,' components of and I, respec-
tively. Therefore, Zq. (18) can be decomposed
into

(1. d!''u/$ ))(C!(1/$ ) 2 t G) 2 |G(g (1/$ &

(I (g ($/$)}(g($/$) 2|G) 2|G(g($/$)

(21a)

(21b)

Consider now the condition that three quarks in a
spin- —, state are bound into a baryon Ã of .mass M
and three quarks in a spin- —,

' state are bound into
a. bary'on PP of mass hf*, and those baryons inter-
act phenomenologically with the quarks according
to

G//$q~(Cy&) q&qy(N$$)y+H. c.

with symmetrization over spinor indices. C is the
charge-conjugation matrix, q is the quark field,
N~ 18 the spin-p bRryon fi&M~ 'and PPp ~ 18 the
Barita-Schwinger field for the spin-~ baryon. G~
and G„~ are effective coupling constants to be de-
termined. Kith these conditions, we can replace
8""'and 8' "'near p' =M' and p'=M*, respec-
tively, by

(24)(n "/$')"'y(P$ =M$) =G $C"[(/+M)/(P$ M$)]'(C+)-y

($/$) a$y $ $$ $ a j™. 1 ppp~ P$~& ~&~p . + y(& ) „,(P =M*)=G *(Gy„) p. M..g„. 2~$y. 2-M: -2M. [(Cy'.) ].

(26)

(25

and we can neglect the term G3! with respect to @u/$' and 8~/" near p$ =M' and (M*}', respectively. In
order to obtain S"/", we use {M+j!)/2M to project the N state out of /B. Since we know that only the term
proportional to I, wiO contr'ibute to the spin--,' state, we get

(&""')",$y =-,'(2$) "m'I, GP„';y„...)[(m+M)d", V„'5 }+(I+~/M)j!&,"5„"'6 }]

.'(2$) "m'I,G—f$y..-.)(m/. M)(M5(,"5"„'5 &+ P&"„'V„'5 &),

where we assumed M/m = 0. S!""'will be given by
6!—Su/ '. Inserting (24) and (26) in (21a), for
p'= M', we see that the left-hand side has a pole at
p =M2 that must be baIancedby a zero at p =M:

( j!+M)[1—(2v)-"16m'I, (p' =M*)G] =0 (27)

G -[1(P'=M*)m']-' -A

which is implied by the qq.and =.qS bound-state con-
dition as shown in the beginning of this section.
Therefore, the condition for three quarks in a
spin- —,

' state to have a bound state with a finite
mass M to be determined from (27) can be satis-

fied. SixnpIy by looking at the dimensions of the
terms in Eqs. (21a), (21b), and (25) we see that
the bound-state condition for three quarks in a
spin-2 state reduces also to 6-A ', while the pre-
cise equation will be quite, complicated and will de-
pend on.M*. It is not necessary for our purpose
to write down this equation since we are not inter-
ested in the explicit vaIue of M~ but merely in its
existence. We only argue here that our modeI has
splB-2 and splQ-2 ggg bound:states~ but all %'e

might:be able to compute is M/A", M*/A",
t"„A'", and G„*A'". Here A" is the cutoff param-
eter. in the integrals I, and I,. Thus, we are not
able to compute M or M* but only M/M*, G„M$,
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and Q„~M'. Elaborate numerical calculations
might allow us to determine those quantities. But
even if our approximations are well justified (up
to, e.g. , 1'f~), the tremendous mass of the quark
can imply an error of several times the mass of
the bound states in the computed masses I and M~
and render these values meaningless. Therefore,
we do not undertake any numerical calculations
here.

Q~ and Q@aj can be determined from the residues
Rt tile poles of Eqs. (21R) Rnd (21b), 1'espect1vely.

V. SU(3)

A. The Additive QUS1'k Model'

When, we generalize our model to include three
distinguishable quarks (but degenerate in mass)
we have to rewrite the basic 4-f.p. i. in such a way
that any pair q;q,. (s,j = 1, 2, 3) will be bound. For
simplicity @re wiB discuss here only the qqqq term
of the interaction. (The same discussion will ap-
ply tl'1vlRlly to tile qpsqqpsq term. ) Ill the pl'es811't
discussion q represents

where each q, (a =1,2, 3) is a Dirac spinor. If the
interaction ls given: by

g: qqqq "'=g: (qsqsqxqx+ qaqaqaqa+qsqsqsqs

+ 2qgq1qaqa+ 2qaqsqsqs+ 2qaqaqsqs) .
it can be seen that the bound-state condition of
q,.q,. in our approximation is: 2'(P = p,a) = 1 for
i gj or 8'(Pa= p,') = 1. for i = j, where/(P') is the
analytic expression of the q;.q, bubble, P is the
total momentum, and p, is the mass of the bound
state. The factors 2, and 8 come from the diHerent
contractions prescribed. by Wick's theorem and
from the conservation of isospin and hypercharge.
(E.g., only q,q, bubbles contribute to q,q, scatter-
ing, but qiq» y q2q2 y and qsq3 bubbles contr~bute to
q,q, scattering. ) Notice that in this section we do
not prove that our model implies SU(3), but we
simply show that our formalism can be generalized
to include SU(3).

We see that with a simple. generalization of the
basic 4-f.p.i. it is impossible to have q,q,. bound
states both for i =j and i gj . In order to have the
same bound-state condition for the case i = j and
for the case ig j, we must choose as our basic in-

teractionn

g: [qqqq —a(qAsqqAsq+qApqA, q)':, —

where A, and A, are given by

100 1 0

0-10 i, A= —:0—10
0 0 0 0 0 2

B. The Cutkosky Relations

We mill examine the quark-meson bound-state
condltlon ln the latMer approxlmatlony assumHlg
that we have three distinguishable quarks of the
same mass m. Before reducing the relevant
graphs into bubble chains according to the pre-
scription of Sec. IH, we mill stop the reduction
process at the ladder level and only later will we
replace the exchanged quark propagators by 1/m
In the ladder approximation, the bound-state con-
dition i.s given by the Bethe-Salpeter equation:

Z~.",zs,~s, f=~A ~„ (30
BN.

which Is illustrated by Fig 8,
In (30) S, represents the corresponding quark

propagator, && the meson propagator. The inte-
gration is over internal momentum. g,", are the
qq p coupling constants which are obtained from
the qq bound-state condition. The indices ~, j, 4,
and I are quark indices and take the values 1, 2,
and 3; e and P are meson indices and take the
values 1-8 or 1.

Lurie and MacfarIane' have shown that a theory
wi.th a; 4-fermion. point interaction in which qq
bind into a, meson is equivalent to a Yukawa theory
in which the renormalization constant for the me-
son propagator is zero. Kaus and Eachariasen
have shown that in this ease we have

~'(~')Z ,gs,';g=&"', (31)

FIG. 8. The quark-meson bound-state condition
(Bethe-Salpeter equation) in the ladder approximation.

%'ith this interaction the bound-state condition for
q,q,. is 4g&(Pa = p.') =1, whether i =j or i g j, thus
we can choose (29) (plus its pseudoscalar counter-
part) as our basic interaction, and all the results
previously obtained for a single quark wHl remain
valid. We notice that (29) commutes with A, and
A„ therefore the isospi. n and hypercharge will be
conserved as expected. Therefore, the SU(3) quan-
tum numbers of a bound state of quarks will be the
sum of the SU(3) quantum numbers of the compos-
ing quarks. We thus see that the present generali-
zation of our formalism is compatible with the a,d-
dltlve quark model
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~'(I ') =,p.~(p')

and J'(P'} is the qq bubble. We reserve to a forth-
coming publication the discussion of the validity
and the significance of all g =0 conditions in our
model.

Equations (30) and (31) are precisely the Cut-
kosky4 relations which imply that g,".

z are propor-
tional to the structure constants of SU(3).

(32)

C. The Exclusion of Exotic Quarks

Let us consider again the q p. bound-state condi-
tloQ ln the laddel' approxlIQatlon Consider first
the scattering amplitude of 6' (where (P is the "pro-
ton" quark) and v'. At each q exchange in the lad-
der approximation we have the two possibilities
illustrated by Figs. 9 and 10, where 9t, is the "neu-
tron" quark.

From Fig. 9 we see that the effective 6'6'm'm'

coupling constant in the ladder approximation,
where the exchanged q propagators have been re-
placed by 1/m, is given byg~~, ,'/m =g'/Rm,
whex'e g 18 the t%1F coupling constant+ Also from
Fig. 10 we see that the 6'gw pro coupling constant is
g~z„+g~~„o/m =g /mv 2 . Therefore, the sum of

bubble chaln8 wlB be

C'/[1 -C'J,„(p')],
where

6'=g2(1+ v 2 )/2m

(33)

(34}

and Z,„(P') is the analytic expression of the quark-
meson bubble. The bound -state condition will be

[(1+ v 2 )/Rm]g'Z, „(p'=m') =1. (35)

In the same way we ean see that the Rn' bound-
state condition is precisely Eq. (35). Consider now

the 6'm- scattering amplitude. It is easily seen
that at the first 6'm- interaction the system will
transform into gtvro. Since Xmo has a bound state,
so will (Pm, but with a different residue at the
pole. All the q p. bound states considered so far
are regular quarks. Consider now the tm' scat-
tering amplitude. It is easily seen that the only
interaction which will contribute is the one illus-

FIG. 10. The effective &6'7(+7( coupling constant.

trated by Fig. 11 which determines the 6'6'p'g cou-
pling constant to be g'/m. The 5'm' bound-state
condition is thus

(g'/m)J, „(p' =m') =1. (36)

But since (35) is satisfied, (36) cannot be satisfied
and we cannot have any 6'm' bound state. An iden-
tical argument goes for all systems with exotic
quark quantum numbers. It is also seen from (36)
that the 6'm' interaction is stronger by a factor of
(1 + MR)/2 than the (Pv' interaction, explaining why
tm' is not a bound state. It can be argued that the
above argument is incorrect since (36) might be
satisfied if the mass of the d'm' bound state is dif-
ferent from m (the regular quark mass). However,
since the 6'm' coupling is weaker then the 6'mo cou-
pling, 6'm' cannot be bound strongex than 6'mo.

Therefore, if a 5'm'bound state exists, it is heav-
ier than the quark. However, if 6'm' ean form a
true bound state, the mass of the bound state
should be less then the sum of the rest masses of
6' and v', i.e., less then m (1+10 ') (see Sec. III).
Obviously, it is very unlikely that a decrease of
g in Eq. (36) by 0.116g will cause an increase of
m, in the same equation, of only 10 'm. We there-
fore conclude that there are no stable exotic quarks
in the bubble-chain approximation, but there is a
possibility of havlQg hlgMy unstable exotic qual k
resonances. In what follows we will ignoxe those
possible x esonances.

D. Exclusion of Exotic Baryons

So fax we have avoided the question of possible
bound states of four and five quarks. In principle,
we ean write a Bethe-Salpeter equation for the
scattex'ing amplitude of four quarks, in some gen-
eralized ladder approximation, using our initial
4-f.p.i. and investigate under what conditions poles

FIG. 9. The effeetive6'tm x coupling constant. FIG. 11. The effective6'(Px+x coupling constant.



develop in this scattering amplitude. This pro-
gx'am, however, is too difficult to be considered
seriously. Vfe can instead try an easy explanation
for the absence of foux-quark bound states: As-
sume that the quarks obey an exclusion principle
which forbids four quarks (or antiquarks) to pro-
pagate through the same point in space-time. Be-
cause the interactions between quarks (exceyt for
meson exchanges which we neglect here) have very
shoxt range in our theory, four quarks simply can-
not interact. This "explanation" for the absence of
foux -quark bound states is of course more a re-
statement of the fact xather than the answer to the
question. However, this assumption, in our for-
malism, will have the extra benefit of explaining
the absence of exotic baryons. Indeed, as we have
no exotic quRx'ks ln oux' formalism, the only way
to produce exotic [e.g., in the 10 and 2'I represen-
tations of SU($)] baryons is to consider at least
four quarks and one antiquark. It is easBy seen,
using the new exclusion principle, that the only
acceptable graphs for qqqqq will be a nucleon
(nonexotic) and a meson (nonexotic) propagating
without interacting; ox', if the appropriate quarks
are available, three quarks (nonexotic) which will
bind into a nonexotie baryon.

A similar argument holds for mesons. The only
possibility to cl'ea'te exotic nlesolls ls 'to stal't with

two qq pairs. %'8 then see that in the bubble-
chain approximation we can have either two Qonin-
teracting mesons (nonexotic) or q and q which will
combine into one nonexotic meson. -

TraditionRlly, pRx'tlcles Rx'8 dlvlded into t970

classes: elementary and composite. In bootstrap
theories, however, democracy is installed among
the particles and all are composite. The theories
based on quarks take a slightly different view: All
observable particles are composite of quarks, but
quaxks form an aristocracy of truly elementary
paxticles, thereby breaking the democracy. Our
point of view is of partially consexved democracy:
All particles are composite, including quarks; the
quarks, however, conserve some of their aristo-
cratic character since they are made only out of
themselves and do not depend on other particles
for their existence. All other particles are made
out of quarks. Those particles ean still be di-
vided into two classes: those which are "essen-
tially" bound states of quarks (lowest-lying bound
states, like those discussed in this note), and
those which can be considered as bound states of
other observable particles (e.g., a vector meson
might be composed of two spin-zero mesons). The
x'ule of partiaQy conserved deIQocx'Rcy cRQ hs be

stated: "All particles Rx'e composite, some more,
and some less." The advantage of this theory is
that lt contRlns the other three as different desex'lp-
tions, with different points of emphasis, of the
same situation» Indeed~ lt Rccepts the bootstl Rp-
type philosophy that all particles are composite,
lt coQtalns the orlglnal quRI'k idea since all ob--
servable particles are made out of quarks (in our
case, this is true, even for the quarks), and it
should allow R yhenomenological description where
some particles can be considered as composed of
some othex observable particles. Vfe emphasize
howevex', that even though all particles ax e com-
pos. te x odel, th t a al bootst p
because not all parameters are determined by the
self -consistency condition; e.g., the strength (g)
of the initial 4-f.p.i. is a free yarametex which we
adjusted arbitrarily to ensure that qq bind into a
scalar meson with no other qq nor qq bound states.
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COQsldex' R 2s fermloD point-intel action Hamil-
tonian. (For our purpose the cases 2n =4 and 6
are sufficient, but we prefer to state the theox'em
in a more general form. ) Consider a Feynman
graph in momentum space, due to this interaction,
which has R simple vertex such that if we cut the
graph at this simple vextex, then the gxayh falls
apart into two disconnected graphs. %'8 will call
those disconnected graphs A and 8 (see Fig. 12).

FIO 12 A F8~Man graph 1n monmntum spRce %1th R
factoriERMe vertex. The Mack boxes represent RrbitrarJJ
Fe~man graphs
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Then the factorization theorem teQs us the foQow-
ing: (1) The analytic expression in momentum
space of the above-considered graph will be the
algebraic product of the analytic expressions of
the two graphs A and B. By algebraic product we
mean that if in the original graph l fermion pro-
pagators from A are contracted (through their Di-
rac indices) with I fermion propagators from 8 at
the considered point, then the product of A and B
will consist of l contractions over Dirac indices.
(2) Each of the two graphs A and 8 will be indepen-
dent of the relative momenta of the fermion pro-
pagators of the other graph. To prove this theorem
we use the notation and conventions of Bjorken and
Drell. ' %e consider the most general graph that
satisfies the conditions stated above (Fig. 12)
where external as weQ as internal fermion lines
are connected at the considered vertex. %e notice

that a graph which satisfies the topological condi-
tions of this theorem in momentum space also
satisfies them in coordinate space (but the factori-
zation holds for momentum space only). We will
write the analytic expression corresponding to Fig.
12 in coordinate space; -then we will make a Fourier
transformation into momentum space and show that
the result agrees with the theorem. The analytic
expression of Fig. 12 will include an integral over z
(which is the considered simple vertex) ~ The func-
tions of z in the integral are the following: (a)
From each external line such as x,z we get (after
applying the appropriate Dirac operator)

(m/Z, )'"(27I)"2k,(p„s,)e'"1'»a(z -x,).
Because we also integrate over x~y x2y n ~ ~ y x
..., y~, from aQ external lines we will get

(+m+k/E ...E Er . ~ .Et)lI2(2v)-2(m+k)lnm(P s )~, ,+(P s )

x u(pk s') ~ u(p' s') exp[iz {p + ~ ~ ~ +p —p' —... —p')] .
(b) From every internal line such as x„z we get a factor iS„(z -x„). When we write each Sr(z -x;) as a
Fourier transformation of S(q, ) we get (from internal and external lines)
i2n- -m(2k)v2(m+k)I2~(m+k)/2(Z Z Ef E 1) w/2+{P s ) M(P s ) +(Pf sI) +(P t s I)

Jtdq, ~ .dq,„,dz (2v) e" "exp[iz(p, + * ~ ~ +p„-p,'-. . . -p,')]exp[-iq, (z -x ~)] exp[-iq, (z -x„~)] ~ ~

x exp[-2q2. .~(y. -z)]S(q1)S(q.) "S(q.. ~) .
Integration over g gives

m n~ 2n~-k
5 Q p; —gp', +Qq, — g q,.

i 1 i 1 s1 i nm+ I,

If the time axis in Fig. I2 is horizontal, then conservation of total 4-momentum implies that the sum of
4-momenta carried by fermion lines connected to the point g of graph A is equal to the sum of 4-rnomenta
carried by fermion lines connected to the point g of the graph B and is equal to the total 4-momentum of the
system. (If the time axis in Fig. 12 is not horizontal, the proof of the theorem for arbitrary n becomes
quite complicated and will not be given here. ) Thus, for the special case that we consider in this proof
(notice that whenever we use this theorem in this paper, the special situation considered for the proof is
llldeed sa'tlsf led) we llave

{p1 ' '+pm+q1+ ' '+ qn~ ptn~~)~(pk+' '+pk+qn~+1+ +qkn-m-k -pt.tg) ~

This can be obtained by performing all the integrations corresponding to the considered graph (including
whatever might be inside the black boxes of Fig. 12) and using the 5 function that we got from the integra-
tion over z. Thus we see that the integrand of the integrals over the q's is the product of a function of q~
to q„and a function of q„+~to q~„~ and hence the integration factorizes. It is easily seen that the
first (second) factor corresponds to integration over the internal momenta of graph A (8). Notice that the
contributions from the external lines already appear as simple factors in front of the integral. Now it re-
mains to show Rat the numerical factors attached to the graph also factorize.

Each Feynman graph of order r contains a factor (r!)~. This factor results from the conversion of r
time-ordered {convolution) integrals into r regular integrals. When the time-ordered integral over r var-
iables breaks into two time-ordered integrals over k and r-k variables (we have just shown that it does),
(r!) ' is simply replaced by (k!) '[(r-k)!] ' when we go over to regular integrals. Therefore, for the
"bubble chain" every bubble will contribute a factor 1/2! So, a chain of k bubbles will have, a factor (2!) "
and not 1/(8+1) . (&+1 is the order in the coupling constant of the considered contribution). The symmetry



factor resulting from counting all possible contractions at a vertex in a bubble chain is n. at each vertex
if me have a 2n point interaction. If me factor out of the series n. then every bubble mill contribute one
factor ~ f. %'e finally notice that the theorem can be generalized to point interaction by any number of
fermlons and xIlesons ~

APPENDIX 8

The three-quark bubble is given by

A

+6 gt (P) 3~( gC (2 wt2 d old ad qS~ (@l ~2 '6 ~) 2 2 2 2 22K) lpga
—?S fP Q'2 -'ffl g~ Q3 -'PFg

=SG qq (rn (mbpebq 5~&)+P(t";5q 5~&})I,+ fm5pg(Xq)qi(Fq)~&i}+/pe(Fp)q (7 )&)]I~)(2&)

where f ) means symmetrization of the indices inside.

d qgd q2d qadi (pi+/f2+ q~ -p)
(gg -tÃ + tE)(gg -tB + tf )((fan -tlat + fe)

�

71 72d 78~ ( 7l q2 q3 P) 71 72

(q~ tPl + lE)-((7 2-'m + Se)(gs -m + Sf)

The sum of the bubble chains is defined by

which gives

*Based on work supported in part by a grant from the
Nationa1 Science Foundation.

)Present address: Department of Physics and Astron-
omy, Tel-Aviv University, Ramat-Aviv, Israel.

~M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig,
CERN Report No. CERN- TH-402, 1964 (unpublished).

2Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
(1961).

K. Nishijima, Euedemental PmAcles (Benjamin, New

York, 1963), p. 164.
4R. E. Cutkosky, Phys. Rev. 131, 1888 (1963).
SD. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816

(1964).
6P. E. Kaus and F. Zachariasen, Phys. Rev. 171, 1597

(1968).
~J. D. Bjorken and S. D. Drell, Relativistic Quantum

I'ields (McGraw'-Hill, New York, 1965).


