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quently, the relation (5.15) holds true for free fields with any spin, i.e.,

0

[ ¢™(x), D]= ‘("u 8, +1 ) - m W) »(x) .

(5.19)

It should also be pointed out that the relation (5.19) is true even for any c¢-number function of x, and m
(in this case, both sides of the equation are identically zero). Hence, for any functional F(x,, m, ¢(K)(x)),

i{F(x,, m, ¢'(x)), D] = —(x,, o, +l-m 8—8”7> F(x,, m, »(x)),

where

[F]=L"%.

(5.20)
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Singularities of expansions in the symmetry-breaking parameters of chiral- and scale-
asymmetric theories are studied, in the tree approximation, in polynomial Lagrangian mod-
els. The singularities are related to the appearance of zero-mass scalar fields, not neces-
sarily Goldstone particles, at the radius of convergence of the expansion. Methods of avoid-

ing these singularities are presented.

I. INTRODUCTION

Analyticity of Nambu-Goldstone symmetry real-
izations® and the possibility of expansions? in sym-
metry-breaking parameters have recently been
studied in the context of pion loop diagrams® and
the solution, in the tree approximation, of specific

polynomial Lagrangian models*~” built on (3, 3%)

@ (3%, 3) fields.® In the latter approach, with which
we are concerned here, linear but spontaneously
broken realizations of chiral and scale symmetry
result in partial-conservation conditions with pseu-
doscalar masses determined quite simply by the
symmetry nature of the ground state and the form



5 ZERO-MASS DIVERGENCES IN EXPANSIONS ABOUT... 859

of the symmetry-breaking part of the Lagran-
gian,®!! whereas the scalar masses, as well as
details of the spontaneously broken solution, are
highly model-dependent. Such models have a wide
variety of solutions but are limited by such gener-
al considerations as those of Okubo and Mathur,'?
or, apparently equivalently in the tree approxima-
tion, by positivity requirements®'*! on the square
of the masses. An actual fit to all meson mass-
es?~"1L.18 fyrther limits the Lagrangian and its
spontaneously broken solutions by constraining the
coefficients of the various symmetric and symme-
try-breaking terms. Thus if one arranges the
number of such terms to be small enough, all co-
efficients may be determined, resulting in a com-
plete theory whose analytic properties may be
studied in various limits. It has been suggested
that the properties found may be more general
than the specific models from which they come.
Here we wish to point out some general notions
regarding analyticity in the symmetry-breaking
parameter of the one-point function (and hence,
usually, of the n-point functions) which guide one
in constructing Lagrangians and imposing analytic
structure, and apply these notions to current mod-
els of chiral- and scale-symmetry breaking. In
general, we find that a singularity appears when .
a scalar mass vanishes, associated perhaps with
an infrared divergence. (Consequently, the Nam-
- bu-Goldstone mechanism as applied to scale sym-
metry usually fails to have a power-series expan-
sion in the scale-breaking parameter.) Exception-
al cases exist, however, which allow a smooth
limit when, by careful planning, the singularity is
canceled by a zero. In particular, we wish to dis-
cuss analytic properties of the case in which
(0|ug|0) =0 where bilinear (nonpole) terms are re-
quired®s™ in the symmetry-breaking part of the
Lagrangian, allowing (1, 8)@® (8, 1) contributions,®:!*
and nonunique ¢ parameters.

The variety of symmetry-breaking structure and
analytic behaviors possible in these models sug-
gests that while it may be very difficult to abstract
from them, a priori, detailed predictions on the
possibility of expansions in the symmetry-break-
ing parameters or even predictions of the symme-
try-breaking form of the non-pole terms, they will
remain useful probes of chiral breakdown provided
external input beyond scalar masses and PCAC
(partial conservation of axial-vector current) con-
ditions are imposed.

II. CONNECTION BETWEEN SINGULARITIES
AND ZEROS OF THE MASS MATRIX

Let us consider a Lagrangian £({¢}, 6) which is
a polynomial in a set of scalar and pseudoscalar

fields ¢;, ¢=1,2,... and linear in a symmetry-
breaking parameter 6. Then

dog b 028dy; © 0L 1)
dddg; 8p; dp, d6 809,

For fields @;(6) which are solutions of the extre-
mum equations’®

- oL _
$:(0): 55;({90}, 6)=0 (2)
we have
a8 _
dé g,
and thus
a2 g ag; <a a£>
+H{===—) =0 3)
<3cpj8¢{>5 dad 96 8¢, % (
or
4Ps o1 (B 3L\ 40 (8 38
das _[M] ij(aé 5<P,~ ¢~M ii 96 a(pi)?p’
4)

where M?,; is the (mass)® matrix, assumed here
to have been transformed to the diagonal repre-
sentation. For normal fields, @;=0, Eq. (4) re-
quires

3 9L\ _
(ec a¢¢>5"0

For the fields we are interested in, $;(6)+0,
M?;;=0 <> a singularity in d$,(6)/d6, unless the
singularity of M ~2,, is canceled by a zero of
[(8/26)(8£/2¢,)]5 or, conversely, the singularity
in d@;(6)/d6 is carried by [(3/85)(8£/0¢,)]5. In-
tuitively, the singularity in d@,;/d6 associated
with a zero of M?;; occurs when the theory is
about to become unstable as a (mass)? passes from
a positive to a negative value.

More specifically, suppose we characterize the
leading behavior of a vacuum solution!® @o(6) near
a possible singular point § by the power law

(D) @(8)=a+B(6=3)", 7>0
or
(i) @(8)=p(6-3)", n+0,

which includes the root, pole, or regular behavior
possible in polynomial Lagrangians. For case

(i) @#0, >0, we have ¢,’(6)=0((6 - 8)""). With
£=Lym +0L5,

3 0L (8535) A=1 -
——) =[] = >3C(6-0)",
(35 8%>ao 390 /3, 2000
where N is the highest power of ¢, in £,, where

£p is the symmetry-breaking part of £. If C,#0,
and this is always the case if only linear breaking
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is allowed so that operator PCAC conditions are
exactly implemented, then a zero of M?,, requires
a singular @,’ and conversely. Otherwise M?,
=0((6 = 3)P~V*+1), where p is the lowest p for
which C,+0, and M2, vanishes (5 >0) irrespective
of 1) but a singularity of ¢,’ is not implied. For
case (ii), Eq. (4) requires M2, =0((6 - 5)7(¢"2)*1),
where ¢q is the lowest (highest) power of ¢, in the
expansion of £,(@) when >0 (y<0). For the inter-
esting cases g=1, 2, 3, 4 the requirement M3, ~0
is equivalent to n<1, n unrestricted, n> -1, n>-3,
respectively. Thus with only linear breaking, n<1
and ¢,’ is necessarily singular at M2, =0, and
conversely. M2, - const requires n=1, n=c,
n=-1, n=-%for g=1,2,3, 4, respectively. For
g=1, M?,, -~ O((6 - 5)*~") and poles of §, are associ-
ated with zeros of M?y, a regular @, with a non-
zero mass, and root-type behavior of ¢, with root-
type vanishing of M?,, for n<1. For ¢=2, M?,

- 0(6 - 8) independent of 1 and there is no neces-
sary connection. For ¢=3 and 4, the analysis pro-
ceeds in a similar manner.

To summarize, when the Lagrangian symmetry
breaking is linear in fields, a vanishing mass of
one of these fields implies a singularity in its
vacuum expectation value and conversely. When
higher powers of the fields are contained in the
symmetry-breaking part of the Lagrangian, it may
be possible to avoid the connection between singu-
larities and mass zeros.

In the following section, we study a number of
simple models. The emphasis is placed on mod-
els which have symmetry breakers with two or
more powers of the basic fields because this type
of breaking has received comparatively little at-
tention in the literature and because cases in which
zero mass <& singularity can be studied in detail.
The SU(2) models are, of course, for illustration
only, and no physical applications are implied.

III. SINGULARITIES IN SU(2)-, CHIRAL SU(3)-,
AND SCALE-BREAKING MODELS

The following examples illustrate the phenomenon
discussed in Sec. II. Let ¢, ,,; be scalar fields
with 33;¢0;¢;=¢? Then with

£=30408,0; - B¢* - @) +5(¢s* +p¢* @)
= £s + 5£’B ) (5)

£¢ has SU(2) symmetry and £ and £5 have
I, symmetry. The extremum condition has the
Goldstone solution

@,=0, $,=0,

neggos{(%) ()

(6)

5
which is singular at 5, where
= (45) +4(zm)-
o: +4( = +a*)=0, 7
(39) +4(z5 @
- 3p -
QDS(E) =§E 5. (8)
The mass-squared matrix is diagonal with
M211=M222=5(P¢3+%),
)

M2, =3p6¢, +46+8Ba>.

M?,,=M?%,~0 as 60 as required by the Gold-
stone theorem and M?,,(6) =0 as required by (4)
because

9 8L
— =) =2¢,+3pp,’
(35 ""/’s)as @3+ 0Py

does not in general vanish at the singular point.
The special case p=0, §=-28a% @,(5)=0 behaves

like
By’ =0((8 = 5)7?),
M?%,=0(6 -73), (10)
9 3£ 1/2
(55 5 ), =00 =81,

so that near §, Eq. (4) requires again a zero mass
because [(3/36)(3£/8¢)]; does not diverge or,
conversely, (4) requires a singularity in ¢,(5) be-
cause [(3/286)(0£/8¢,)]; does not cancel the zero
of M?,,. The interesting special case 5=0, a®*=0
with @,(5) =0 satisfies (4) in exactly the same way
(see below). That exceptional cases exist in which
a singularity of $(8) does not imply a vanishing
scalar mass is illustrated by the Lagrangian

£=%8u(pi3"(pi —ﬁ(<P2 _a2)2+6¢34s (11)
which has a Goldstone solution

172
510, 3,20, and G,(6)= (ﬁ 6)

with both dg,(5)/dd and [(3/25)(8L/2¢,)]; of
O((6 = 8) /%) near &= but with M?,;=48a? inde-
pendent of 6.

Let us now consider the implications of (4) for
@(8)#0 realizations of scale symmetry. In this
case, |M?|-~0, whether the scale symmetry is
realized conventionally or in the Goldstone man-
ner, when the scale breaking (proportional to 6)
is shut off. Thus |[M?| is necessarily zero at 56=0,
requiring @; to be singular at the symmetry point
unless [(8/86)(2£/8¢,)]; carries the singularity.
Consider for example the Lagrangian (5) with
a?=0. Then £ is scale-invariant when 6=0. A
spontaneously broken solution is

3p6 1[/3pd +ﬁl_§ 1z
8g *2|\ap ) 28|

$,=0, @,=0, and @,=
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which has a branch point at 6=5=0, where @,(5)
=0. Here

M 233 =0(%),
dg, =1/2
=3 05 12

B 38 _ i
EY) 3¢3—O(6 ))

so that the zero of M ~%,; (where ¢, is coupled lin-
early to 9“#, the energy-momentum stress tensor)
requires a singular @,(6) and conversely.

That the necessary singularity in M ~2;; can be
canceled, by careful planning, is illustrated by the
Lagrangian

£=130"9,9,0, - Bp* +50,° (13)
which has an asymmetric vacuum

@,=0, $,=0, §,=36/48,
with
M?,,=0(6%),

9 0L\ _ 2
(5 r%)a =0t
In this case, both scale-symmetry and SU(2)-sym-
metry breakdown are realized smoothly in the
symmetry -breaking parameters.

We now discuss the SU(3) o0 models in the light
of this analysis. The basis fields are the 18 sca-
lars and pseudoscalars (;, v;), i=0,...,8, which
span a (3, 3*)& (3%, 3) representation of SU(3)
xSU(3). With I,, I}, and I, the usual'” bilinear,
trilinear (positive parity), and quartic scalar
SU(3)xSU(3) invariants, the original model of
Lévy® restricted to SU(3)xSU(3) [but not SU(2)]
linear breaking is

(14)

£= %a“uiauui + éauvia"v, -a,I, - a,I,?
-BI =yl +du,. (15)

The extremum conditions have a solution ;(5)
=,(8)0;5, 7;=0, where

7 - 0=2%
@y O_Buo
= —u(day +32 ¥) = u24V6B - uy(2a,) +6.
(16)

With a, =48%/(a, +4/3y), @,(6) has a branch point
at

5=-1/27[V6 8/(a, +4/37)F,
where

2o(8) = =V6 B/3(ay +4/3y) = +(B)'/3.
At this branch point

2 8L\ _
(85 a“o)i'o—l

so that (4) requires a singularity of M =%, which
is indeed the case, as a simple calculation will
verify.

Suppose we now drop the gI7 and 6u, terms in
(16) and consider the approach to the scale limit
a,=0. Then we have a solution

o )"1-1- 20,
ol =*9\a, +4/3y
with a Vo, branch point. Here

(ra-22). -otay),

o0, du,
so that (4) requires M2, to vanish like O(e;). In
this case, the scale limit is accompanied by a
singularity of the theory.

Again, special cases exist in which the zero of
M?,, does not require a singularity of #,. Con-
sider for example the case @, =0 in (15), discussed
extensively by Carruthers'® and by Carruthers
and Haymaker.*™® With no chiral SU(3)xSU(3)
breaking (6=0), we have a solution #;(B8) = 6,,#,(8),
2;(B)=0, with #,(B) a solution of

u 2(2V6 B+ (ay +4/37)uy)=0. amn

As pointed out by Carruthers and Haymaker,® the
#1,=0 solutions are unstable against chiral pertur-
bations.'® For #,(8) = -2v6 8/(ay +4/3y) =0(B), we
have a nonsingular theory because M2, =0(32)
[which never develops a negative (mass)?] and

9 8L
(3B auo)ﬁ'o O(BZ)

so that the necessary zero of M2, in the scale lim-

it is canceled by [(a/a;s)(a.,c/auo)],,o.

We stress that the scale limit, because of (4), is
a delicate one which, barring cancellations, is
singular in the scale-breaking parameter.

This analysis of the relation between singular-
ities and mass zeros was motivated by and has )
been a useful guide in a numerical study, in the
tree approximation, of spontaneously broken solu~
tions of the Lagrangian (15) and its generalizations.
In the simplest cases

2

L) £2 -0

99y" | 3,
is equivalent to the statement that @, is a multiple
root of the extremum condition if £ is a polynomi-
al. The analysis is not, however, restricted to
polynomial Lagrangians, but is equally applicable
to systems like

£=3040,0,0; -’ +ag? + 592 (18)
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with a ground-state solution @, =[In(a+5)]'/2 and
M?, =M?,, =25, M?,=4(a+06)In(a+6). Itisun-
clear whether such branch points are related to
those of Li and Pagels.® We are currently study-
ing this question in the chiral SU(3) context.

We close by discussing several cases in which
the expression (4) itself fails because of an im-
plicit dependence of £ on 5, not only through the
fields ¢;, but also through the coefficients of the
various terms in £. For example, with

L=8;,— al, = pI5 = y1,+8[a(uy + cuy) +d(U, + CU,)] ,
(19)

where U, and U, are the (3, 3*)® (3%, 3) decompo-
sition of the tensor product of the basic multiplet
with itself,?® we have a solution #,;(6) =%,(5)5;, 7,
=0, provided the constraint

6(ca - 4(3)/2dCn,) =0 (20)
is maintained, with #(5) a solution of
0 =2au, + 4V 6Bu2 +2 yu,® - da - 86d(5)"2u, .
(21)

These two equations can be regarded as determin-
ing #%,(5) and a(8). Thus* the form (4) is modified

to
dfog) _
dﬁ(auo)ao_o
_(EL) 9 (o&da B 0g
“\oug/y 45 "\ 3a d6 " 35 u, )y,
(22)
or
dao_(a,eda iﬁ) 2 y=1
do \da do 9% ou, ,,O(M 00) - (23)

The singularity analysis then proceeds as above,
but from (23) rather than (4). (In this Lagrangian,
for example, there is a spontaneously broken solu-
tion in which M2, #0 at the branch point of #, and
#, does not have a singularity at M?,,=0.) Consid-
er now the situation in which scale symmetry and
chiral symmetry are realized simultaneously; that
is,
£=8,, = 0,17 = vI,+8[a(u, + cug) +d(Uy+ CU,) + eG,],
(24)
where for generality we have included a (1, 8)
® (8, 1) nonpole term G =dg;;(u;u; +v,v;). The ex-
tremum equation is

88
duy,

== (4a, +5y) + ba + 8(3)"/20du,, (25)
subject to the constraint
8(ca — 4(2)2Cdu, +2e(2)?uy) =0, (26)

fon

which is necessary to maintain
9L
g5
Thus,
a=u,cT' [4(3)M2Cd - 2(3) 2],
and we have the solutions
(1) 4a,+3y=0, u,=a/8(3)'2d
=ca/2(3)"*(2dc - ¢),
(i) 4a,+¥y+0, #,=0, a=0,

(i) 4a,+%y#0, @20, 27

7, ={20(3)*2[d(2C/c +4) — e/c]} 2.

In special case (i), there is no unique C parameter,
#, is a nonzero constant, and (23) is satisfied by

M2, =0(5)

and
3L da 9 L\ _ dw,
%a do*(ac au(,>%=0’ a0

Special case (ii) goes through similarly. The more
interesting case (iii) satisfies (23) in the form

M2, =0(5),
di, i OLda 8 8L
@ 00T, 335t auo‘o(‘/?’)’

that is, the mass zero induces again a singularity
of the theory. Note that solution (iii) is singular
at ¢=0, C+0. The following expressions isolate
the effects of the bilinear breaking terms on the
pseudoscalar octet (ps) masses. With ¢=C, e <0,

(M2 ;) ps = 6[2(4dc = €) /][ (3)/25,; + cdyy, ], (28)
and with ¢ 2C, e=0,

(M3;)ps =80a{(3)/2[2(C/c +2) =316, + Cdyy;} .
" (29)

It is clear that, so far as the pseudoscalar masses
are concerned, the effects of bilinear (1, 8)® (8,1)
breaking terms (nonpole) are largely invisible.
This cannot be said for the bilinear (3, 3*)® (3*, 3)
breaking term, which is not surprising because
the bilinear U,, V; have terms linear in the fields
u;, v; when expanded about the ground-state solu-
tion.®

Finally, we wish to mention a variation of the
Lagrangian of Eq. (24) which can be used to illus-
trate the scheme recently proposed by Mathur.??
We write

£=8 = L% = vl +56[alu, + cug) +d(Uy+ cUy) + L],
(30)

which can be written in the form proposed by

Mathur,??* where 61, breaks scale invariance but
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not chiral invariance and 6 -0 produces the com-
bined scale- and chiral-invariant limit. (Note that
the n’ — 7 degeneracy,?® which afflicts the linear
breaking model if I; is absent, is lifted here by
the bilinear breaking terms.) Requiring 7%, =(u,)
=0, we have a solution #,(5) =#,(6)6,,, ?,=0, with
a constraint

ocla — 4(3)2dn,] =0, (31)
where 7%,(5) is a solution of
0 =(4a, +%29)a,® - 207, — ba — 86d(3)"?%,.  (32)

When 4, +3y =0, a possible solution to Eqs. (31)
and (32) is the following:

@,=-3%a, independent of &
S

c#0,
(M?0) s ~00),  (M2),~0O(0), i=1,...,8
(33)
(Mzm)ps~0(6), (M“’iizcm~0(1), i=1,...,8.
Now since )
(M2,), =80d[(3)*% +cdy,,], i=1,...,8
==2(3)26[ ()2 + cdy, ], (34)

the usual value for the ¢ parameter,?*

2 2

c= \/_——Mz T

~=1.25, (35)
is found. This model contains the basic features
of the Mathur scheme and, as a result of the form
of the constraint equation, has a vacuum solution
with trivial dependence on §, ensuring a smooth
scale limit which avoids the singularities which
usually accompany the necessary zero mass in the
scale limit.

Investigation of extended models of this kind, es-
pecially with regard to expansions in symmetry-
breaking parameters and smoothness of matrix
elements of symmetry-breaking parts of £ in pseu-
doscalar states is in progress. For a discussion
of how low-mass scalar poles necessarily inter-
fere with such smoothness in a current-algebra
approach with pole saturation, and a motivation
for considering such models, see Ref. 25.
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Refs. 9 and 23. %33, Gasiorowicz and D. Geffen, Ref. 8.

“The subsidiary constraint of Eq. (20), necessary for 2y, Gell-Mann, R. Oakes, and B. Renner, Phys. Rev.
a solution with #3=0, imposes a relation among the 175, 2195 (1968).
parameters (¢,a,d,C) and #,(6). When the solution % ) "D, McKay and W. Palmer, Phys. Rev. D 4, 1018 (1971).

of (21) is then inserted in (20) this implies a relation
among the Lagrangian parameters and 6 which may be
solved for any one [say a(6)] regarding the others as
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Axiomatic field theories suffer from a lack of nontrivial examples and especially of real-
istic ones. This paper explores an enlarged system of basic assumptions that encompasses
the case of external fields. Then the Dirac theory of the hydrogen atom, for example, be-
comes both an example and a clue for further postulates. For nonrelativistic (Galilean) phys-
ics, a set of assumptions called presymmetry was found to account for the general features
of empirically verified theories. In this paper those assumptions of presymmetry that seem
reasonably extendable to the case of a Poincaré-covariant algebra of observation procedures
are found to agree with properties of the theory of an electron-positron field in an external
electromagnetic field. The full structure of the algebra 0 of observation procedures remains
to be explored, with the hope of finding additional structure in theories of interacting fields.
Another motivation of more immediate interest is the desire for a general set of constraints
in describing systems, typified by the hydrogen atom, in which one part of the system is
sufficiently heavy to be idealized as a source of an external field, while the other has rela-

tivistic velocities.

I.. INTRODUCTION

The Dirac theory of the hydrogen atom is a great
improvement on the Schrédinger theory. This suc-
cess has stimulated work on relativistic wave
equations with external fields and on their quanti-
zation. None of these theories for spins other than
3 has had an empirical success similar to that of
the Dirac theory, and recent research shows that
they have disturbing internal inconsistencies or,
at least, “undesirable features.”

The success of Dirac’s hydrogen theory is as-
cribed to its relativistic nature. Yet, is it really
relativistic? Surely not in the most obvious sense
of the word, because the fixed nucleus privileges
one frame. It then becomes important to under-
stand in what sense it can be termed relativistic,
because theories of that kind may in general be
expected to be in better agreement with experi-
ment. Hoping that a precise set of principles will
aid us in constructing theories, we ask the ques~-
tion: What constraints does relativity impose on

a system in an external field? ,

Instead. of proceeding in this systematic manner,
one can try to make the source of the external
field — in this case the proton —a part of a larger
system that is relativistically invariant in the
usual sense, and go to the limit v/c -0 for the
heavy particle. But the example of a meson inter-
acting with a static nucleus shows that such a
limiting procedure is ambiguous: One has to in-
troduce a cutoff to make the theory meaningful.

Is the resulting theory relativistic in the same
sense as the Dirac hydrogen theory? There
seems: to be no way to avoid the question: What
does the theory of relativity require in the pres-
ence of external fields? It will be seen that ap-
parently obvious and simple answers raise new
puzzling questions. )

For a heuristic discussion, the.classical case
is enlightening. Relativistic invariance of a clas-
sical theory means, in the simplest sense,' that
the set. of world lines predicted by the theory is
stable with respect to transformations induced by



