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P. L. Csonka and M. J. Moravcsik, J. Nat. Sci. Math.
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classes, see P. L. Csonka, M. J. Moravcsik, and M. D.
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ff.

4P. L. Csonka and M. J. Moravcsik, Phys. Rev. 167,
1516 (1968).
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Proceedings of the Williamsburg Conference on Inter-
mediate Energy Physics, 1966 (Ref. 1), p. 517.

This example eras discussed. , for example, in P. L.
Csonka, M. J. Moravcsik, and M. D. Scadron, Rev.
Mod. Phys. 39, 178 (1967).

SThis example has been used in a number of previous
papers, such as M. J. Moravcsik, ln Proceedings of the
lVilliamsburg Conference on Intermediate Energy Phys-
ics, 2966 (Ref. 1), p. 517, or in P. L. Csonka and
M. J. Moravcsik, Particles and Nuclei 1, 337 (1971).

M. J. Moravcsik, Phys. Rev. 170, 1440 (1968); M. J.
Moravcsik and Wing-Yin Yu, J. Math. Phys. 10, 925
(1969). For the reconstruction of the M matrix in the
forward direction for a fear special cases, see L. I.
Lapidus, Yadern. Fix. 7, 178 (1968) |Sov. J. Nucl. Phys.
7, 129 (1968)).
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Several relativistic models are presented vrhich are based on local currents and combine
nontrivial internal-symmetry groups vnth q-number Schvringer terms. Each model is given
by specifying a Lie algebra of equal-time current commutators together arith a consistent
expression for the Hamiltonian as a function of the currents.

I. INTRODUCTION

Several authors have been pursuing the idea of
writing nonrelativistic and relativistic models with
local currents as the basic dynamical variables. '
Sugawara proposed such a model, with internal
symmetry and finite c-number Schwinger terms. 2

its simplicity and internal consistency inspired
considerable investigation; but Dashen and Frish-
man shoved that it possessed "too much symme-
try", leading to consequences not observed in the
physical world. Simultaneously, Dashen and
Sharp proposed a quark model based on local cur-
rents, but for which they were unable to identify
the Schwinger terms. ~

In this paper we present some relativistic mod-
els, based on local currents, with nontrivial in-
ternal-symmetry groups and q-number Schwinger
terms. The models we discuss xesemble Suga-
wara's model in that the equal-time current alge-
bras reduce to his if the Schwinger terms are re-
placed by c-numbers. However, the Hamiltonians

we write in terms of the local currents are not
generalizations of Sugawal a s Hamlltonlan but
resemble more closely the HamBtonian in a mod-
el proposed by Sharp, which ve discuss in Sec.
II.'

For each model we present a Lie algebra of
equal-time cux'rent commutators, togethex with
an expression for the Hamiltonian as a function of
the local currents. Concrete representations in
HQbert space have not yet been obtained for such
Rn algebx'Ric system, except for nonrelatlvlstlc
models', but some things can be said without mak-
ing a commitment to a particular representation.
Fox example, the generators of the internal-sym-
metry group G (the "charges"), obtained formally
by integrating the time coxnponents of the local
currents over all space, cannot be represented
as operators in the physical Hilbert space. '
Nevertheless, the invariance of the Hamiltonian
with respect to C can be specified by requiring
eqlla'bons of colltilllllty, sllcll as Eq. (3.20) below,
to follow from the cul.x ent algeblR. Relatlvlstlc
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II. MODEL FOR CHARGED SCALAR MESONS

Sharp originally wrote down a model for charged
scalar mesons in terms of the local currents
j„(x), S(x), and S(x).' These were defined from
canonical fields by the equations

j„( }=(4*( ) „4( )-( „4*( )N( )]

S(x) = 4*(x)4(x),
S(x}=P*(x)v*(x)+ m (x}Q(x),

{2.1)

(2.2}

(2.3)

invariance demands some additional constraints
on the Hamiltonian density, such as Eq. {3.26) be-
low, which was first pointed out by Schwinger. '

In Sec. II we review the model due to Sharp men-
tioned above, and examine its relationship to
Sugawara's model. In Sec. III we incorporate the
symmetry group SU(2) by including additional un-
derlying real scalar fields. In Sec. IV we gener-
alize the model of Sec. II to the symmetry group
U(n) by including additional underlying complex
fields» In each case we px'opose R form fox' the
Hamiltonian which satisfies the appropriate equa-
tion of continuity Rnd the constrRlnts of relativity.
Oux' conclusions Rx'8 summarized ln Sec

[&o(x) &0(y)l =&f.M80(x)5(x —y), (2.9)

[g(x), & l(y)] =ff.M8&(x)~(x —y) +I«, ,+5 (x —y),

[&;(x),&l(y)] =0,
(2.10)

(2.11}

where a, 5, and d range from 1 to N, N being the
number of infinitesimal generators of G; j, k =1, 2,
3; and c 0 is a finite constant. Sugawara showed
that a satisfactory choice for the Hamiltonian den-
sity is

gebra. The important requirement is that the in-
verse operator-valued distribution always appear
sandwiched beAeeen a pair of ordinary operator-
valued distributions. These distributions in the
numerator must be pyopogtiogol to the distribution
in the denominator in the representation in ques-
tion, in a sense which can be defined.

It is interesting to compare the models discussed
in this paper with the Sugawara model, which can
be written down for a general compact intex'nal-
symmetry Lie group 6 whose Lie algebra has
structure constants f,~.l' The Sugawara current
algebra is

with m*(x) = so/(x), and satisfy the equal-time
commutation relations

N 3
H(x) =—P g 8'„(x)g'„(x),2c, x„.o ~ (2.12)

(2.4)

[S(x), S(y)1 = 21S(x)5(x —y)
I

[j,(x), S(Y)]=»j,(x)6(x —y)

(2.5)

(2.6}

H(x) Kg(x) S +Jf', (x)

3

+ K~ x ~E„x +m'S x,
where

(2.V)

K„(x)=-,'[S„S(x)-ij„(x)] . (2 6)

A rigorous interpretation has already been of-
fered for the "inverse distributions" which appear
in expressions such as Eq. (2.V), in the context of
a specific representation of the local current al-

k =1, 2, 3, where all of' the other commutators van-
ish.

Once Eqs. (2.4)-(2.6) have been obtained, the al-
gebra of local observables is taken as the starting
point of the theory, and Eqs. (2.1)-(2.3) are
dropped. It is important to realize that in a par-
ticular representation of Eqs. (2.4)-(2.6) underly-
ing cRnonical fields may not eveD exist, RDd Eqs.
(2.1)-(2.3) may no longer hold. '

The HamBtonian density in this model, without
the interaction term, is"

which leads to the current-conservation equations

sop;(x) = p &„ga(x) .
0=1

(2.13)

Let us look at the x'estx'iction imposed on Eqs.
(2.4)-(2.6) by requiring S(x) to be represented by
a constant multiple of the identity —,'cE. k(x) then
equals zero, and the commutation relations
(2.5)-(2.6) must be abandoned. If S=O, Eq. (2.V)

implies that [H, S(x)]= 0, so that we have a con-
sistent model. This is in fact the Sugawara model
for the case of a trivial internal-symmetry group;
the Hamiltonian density becomes

3
H(x) =—g j„(x}j„(x)P (2.14)

when m' approaches zero, which is the same as
in the Sugawara model.

The choice S(x) =-,' cI might at first be regarded
as a way to make unambiguous sense out of 1/S(x)
in Eq. (2.V), since the inverse of a nonmero con-
stant can scarcely be iQ-defined. But we know
that products of distributions at a point need not
make mathematical sense. In fact, the expression
(2.V) may be less singular than a bilinear expres-
s10+ lf the facto1' 1/S(x) callcels somethillg slll-
gular in the numerator.

In Secs. III and IV we seek to generalize the
charged-scalax model to admit internal symme-
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HI. GENERALIZATION TO SU(2)

A model with the internal symmetry group SU(2)
may be written using three underlying real fields
4'= (9'u 9'2~ 9's)~ with

[y„(x),w, (y)] =i5„,5(x —y) . (3.1)

Letting p = (Ii~2)(mx —
imam) and p* = (1&~2)(%i+i%2)

the relationship between this model and the model
of Sec. II becomes apparent vrhen q3 is set equal
to Zero.

%'8 define the local currents

tries. %8 vanish to obtain models which have their
commutation relations patterned after those of the
Sugawara model, except that the constant (o-num-
ber} Schwinger terms will be replaced by operator
(q-number) Schwinger terms. In order to do this,
it is necessary to introduce additional underlying
fieMs-either real (Sec. Ill) or complex (Sec. IV).
Finally, we seek to ferrite a satisfactory Hamil-
tonian in terms of the local currents for each mod-
el thus obtained.

[8„,(x), J;(y)] = ,(6(x —y)[o', 8(x)]„,j
-i5(x-y)Qfo', o'] J",(x),

T' =-,' (S„+8„), (3.13)

vrhere a, b, c are a cyclic pex'mutation of.the in-
dices 1, 2, 3; and let

z'=-'(s 7"-iJ') .
P (3.14)

(3.11)

where all of the other commutators vanish.
With cp and cp* defined as above we can identify

j„(x) of Sec. II with J'„'(x), and 8(x) of Sec. II with
—,'[S,~ (x) + S»(x)].

The free Hamiltonian density

H(x) =-,' Q [w.(x)w. (x) + Vy, (x) Vy. (x) +m'y. (x)']
a=1

(3.12)

cRQ be %'rltten ln more than one vfay Rs an expl3clt
function of the local currents. For example, let

J'(x) =-. s 4(%)to'4(x)
P

8(x) =4(x)4(x)t,
where, for example, Eq. (3.3} is an abbreviation
for 8„(x)=y, (x)y,(x). In this section the o' are
the generators of the regula~ representation (or
adjoint representation) of BU(2):

H'(x) =pe'„*(x), X„(x)+mnT (x) . (3.16)

H'(x) corresponds to a part of the Hamiltonian
density contributed by the underlying fieMs y~ and
q, only, and may be rewritten in terms of these
fields as

1 . 1H'(x) -Zs„~2 (V, +im. )s„~2 (q'& —im. )
a

bc ~~abc ~ (3 4) 21 1
+m'~&(cp, +iy, ) ~2(y, -imp, ) . (3.16)

[J;(x),8„,(y)] =5(x —y)[8(x), o']„, ,

[J';(x),J,'(y)] =is,~J,'(x)5(x —y)

(3.V)

+i,„,k&(x —
yr) tr[o'8(x}o']],8

(3 6)

(3 9)[J:(x),8,.(y)1 =6(x —y)[8(x} o'I,.
[8„,(x), 8,„(y)]=i5(x- y)[5„8~(x)+5,„8,„(x)

+ 5,„8„,(x) + 5„„8„(x)]
(3.10)

(3.5)

%here the supex script T denotes the tx Rnspose.
The following commutation relations obtain

among the local currents J'„(x), 8(x), and 8(x):

[J;(x),J,'(y)] =is,M6(x —y}J',(x), (3.6)

The total Hamiltonian density is noir easily seen
to be

H(x) = —,'QH'(x) .
a=i

(3.17}

(3.18)

Vfe may noir ferrite the Hamiltonian density as

H(x) =- QQQK~~(x) ~K~~(x)+2m'trS(x) .
%=I g=l /=0 ~f8

(3.19)

Inverse distributions appear in both forms of
the Hamiltonlan density only 'When sand%iched be-
tween other distributions, as is required from the
discussion in Sec. II.

For a Hamiltonian to be acceptable, it must

A second way to %rite the Hamlltonian resembles
more closely the method used in Sec. IV." Define
Ep = Qgepp~ = epp~p~. Then

Hjk L(s 8 +~jklJt)
p ~ p jk
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lead to the equation of continuity

(3.20)

[K";(x), 4,'(y)] = 6 (x —y}[o', K,(x)]„„
[Z~"(x), J0'(y)] = 5(x —y)[o ', K~(x)]„

(8.21)

and the identity

+, , [5(x —y)(S(y}o')„], (8 22)
Bp

[H, ~:(y)]=Z, ,~;(y),

where H = fdsxH(x)
For H(x) defined by Eq. (3.19), for example,

this result follows from the current commutation
relations

8 ~jk ~jk+gjk gjk + ~jk Elk1 -1 . 1 . 1
Pv 6 P S v P S P PIJ K Sk,j jj jj jj

+ —,'g„,nz' trS. (3.2V)

IV. GENERALIZATION TO U{n)

Instead of adding more veal components to the
two real fields which underlie the model defined
in Eqs. (2.1)-(2.3), we can achieve a different
generalization by adding more complex fields to
the single complex field of this model. Let
y„.. ., y„be complex scalar fields, m,*(x)= S,y;(x),
v, (x) =B,tp,*. (x), and

[9;(x),v;(y)] = [9; (x), ~,*(y)]=i5;;5(x —y}
1

A' A ' A'B=——[A B]

In addition, one needs the identities

(3.23}
with all other commutators vanishing. We can then
define the currents by

and

g jk glk1
p pjj

(3.24) ~'„= (2i) '~ (S„V,*o';.V. —m,*o';,Sp,),j,k

or more succinctly

(4.2)

jkK'„Sj,=K„' (3.25)
and

J'„= (2i) '(s„Wo'V —V*o's„m}, (4.3)

[ (xH), (H)]~=i+ —
~ [6(x—y)80~(x)],

where

(3.26)

(where no summation is implied by repeated in-
dices) to complete the calculation. Hopefully,
there exist representations of the current algebra
such that (3.24) and (3.25) are satisfied. We
therefore regard Eqs. (3.24) and (3.25) as con-
straints on the choice of representation of the cur-
rent algebra, just as the requirement that the in-
verse distributions in the Hamiltonian make sense
imposes a constraint on the choice of representa-
tion.

When one makes the substitution S(x)--, cI, Eqs.
(3.6}-(3.8) reduce to the Sugawara current algebra
given by Eqs. (2.9)-(2.11) for the internal-symme-
try group SU(2). However, Eqs. (8.1V) and (3.19)
both reduce to

—gg J'„(x)J„'(x),1
4c

which differs from Sugawara's Hamiltonian by a
factor of 2 and is incompatible with the equation
of continuity for the Sugawara currents.

The same identities (3.24) and (8.25) that were
used to establish the equation of continuity are
needed to demonstrate the validity of the Schwin-

ger condition

Sjk q & q k . (4.4)

~„'= (») 'Z(8„9,*5;,~, —
m,*5;,s„~,)j,k

= (2i) ' Q (s„rp,*cp& —
cp&*. s„cp&.)

(4.5)

(4.6)

The currents now satisfy the Lie algebra

[Jo(x), ~,'(y) ] = if,&„~;(x)~ (x —y),

[J;(x},J„'(y)]=if„,J;(x)6(x —y)

(4.7)

i+, (5(x —y}tr[S(xeo'r, —,'o' r].]),

[S„,(x), 4;(y)] = |& (x —y) [S(x),—,
' o' r]„„

[S„,(x), J;(y)] =5(x -y)[S(x), —,'o' r]„„
[S„,(x), S,„(y}]=i5(x —y)[5„S„„(x)+5„„S„(x)].

(4.8)

(4.9)

(4.10)

(4.11)

We shall choose the generators —,'o' in such a way

In order to be able to write a Hamiltonian in terms
of the local currents in a model of this kind, we
must let —,'0' range over the infinitesimal gener-
ators of U(n) instead of merely the generators of
SU(n) in Eqs. (4.2) and (4.3). That is, in addition
to the currents J„', a = 1,. . . , n' —1, defined by the
traceless Hermitian n & n matrices which generate
SU(n), we must include



tr{2o'-,'(r')=d '6„, (4.12)

=du'„. /2. Thus Eq. (4.19) becomes
n -1

K*"-K"=idg-'o' Z .p p 2 kj p (4.21)

where d is a constant depending on x. This allows
us to write the final equation of the Lie algebra

[S„(x) J& (Y}]= &~ (~ (x - y) [S(x) 2
o' ]„)

n~

-i6(x-y)p, {-',~",—,'c"]J„'(x).
(4.13)

In the above the f„,are the structure constants
of U{n). All of the other commutators vanish.

For the case n =I, the only generator is —,'a
the constant d equals 4, and the anticommutator in
Eq. (4.8) has the value —,'. With j„(x)= 2J„(x), the
algebra is identical to that of Eqs. (2.4)-(2.6).

For the case n =2, the genexators are —,
' times

the Pauli matrices o', 02, a'3 which satisfy

In the case n =1, K„=,'(&„—S 2i-Z„) =~(B„S-ij„),and
we recover the model of Sec. II. In the case n =2,

Kq = ,'[s—qS11-i(Jq~+Jq)],

K'„' =-,'[s„S„-i(J'„+ i'm„)],

K'„' =-,'[&„s22-i(J'„-J'„')],

K~ =-,'[s„s„-i(J'„-iJ2„)].

(4.22)

(4.23)

{4.25)

Now we can write the Hamiltonian density in
terms of local currents, for the case of the group
U{n), as

n n 3

H(x) = -QQQKg"'(x} K'„'(x)+m'trS(x),
&&=1;=11=0 " ~gg(X) "

Pggr 1 pre 16 (4.14) (4.26)

together with —,'o'=-,'. The sub-algebra of Eqs.
{4.V)-(4.11) and (4.13) corresponding to the group
SU(2), i.e., omitting J'„, is the same as the Lie
algebra of Eqs. (3.6)- (3.11) based on three under-
lying real fields transforming according to SU(2);
however, one writes a different Hamiltonian.

In order to define the Hamiltonian density in
terms of the local cuxrents in each model, we ob-
serve that the objects

which follows directly from

H(x} = QQS~y„*(x}&~@~(x)+mmpy1*(x)p~(x) .
k p k

Again we need to check explicitly that the Hamil-
tonian H = 1d'xH(x) satisfies the continuity equa-
tion

(4.2V)

g+Jk Q +0]'q7
p p j

ggk q7 +8

(4.15)

(4.16)

and thus displays the internal symmetry of the
group U(n). We must also verify the Schwinger
condition

can be wrltteQ Rs linear combh1atlons of the cur-
rents:

[H(x), H(y)]=i+ + —,[6(x-~)e~(x)],

ne

Kp*' = ~ pSjk+id a&'kjj „a

a=0
(4.1V) where

(4.28)

n -1

a=O
(4 18)

g JC +++Ij~+jg g )f(fj g afjj
. 1

pu + ~
p ~ u ujj jj jj

For example, +gpum tr8. (4.29)

Q+ jk g Jk Q 'qyQy y+Q qp p p j k j p k

(jk)
sm+n +r P smep+nt ~

where P "k' is the projection matrix given by

(4.19)
In order to do this, we make use of the commuta, -
tion relations

[K*~"(x),J'(y)] =6(x-~)[K,*(x),—,'(r' ], , (4.30)

(4.20)

P jk' can be written as a linear combination of the
generator s g

0'

tP ~1
P(jk) ~ ya 1 ga(jk)2

a=0

Usi11g Eq. (4.12), it ls easy to see that A. ( ~1

[K,",(x), J;(y)]= 6(x —y)[K,(x), —,
' v'r],.„

[K1*' (x), Jo(y)] =6(x- y)[K,*(x},—,'v'
]q

(4.32)
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—,, [(S(y)-,'v")„5(x—y)],

lg g /P p (4.34)

Sqq x) ~' (4.85)

(where no summation over j is implied) enable one
to complete the computation.

In order to retrieve the Sugawara-model Lie al-
gebra from Eqs. (4.V)-(4.9), we must have

S~~(x) pdc5.»,

since

(4.36)

tr {Loar x oar] (4.8V)

However, this substitution causes the Hamiltonian
density (4.26) with m =0 to become

Z ZJg(x)J'„(x).2cn , (4.38)

We thus recover the Sugawara Hamiltonian only
in the case n=l; i.e., only in the model of Sec.
II.'4 For n greater than 1, the Hamiltonian den-
sity (4.38) combined with the Sugawara Lie alge-
bra does not satisfy the equation of continuity.

V. CONCLUSIONS

We have developed some new relativistic models
based on local currents, with internal symmetry,
in which q-number Schwinger terms appear in the
equal-time Lie algebra. While we do not regard

(4.83)

and Eq. (3.23) for computing commutators with
I/S„. . In addition, the identities

these models as candidates for nontrivial physical
theories, they provide a richer algebraic structure
than was provided by earlier models.

The current algebras themselves resemble the
algebra in the Sugawara model except for their re-
spective Schwinger terms; but the Hamiltonians
in the present models have a different form from
Sugawara's Hamiltonian. Except for the case of a
trivial internal-symmetry group, the Hamiltonians
in these models do not reduce to the Sugawara
Hamiltonian when the Schwinger term is replaced
by a c-number. "

We have defined the currents formally in terms
of underlying fields, and computed their commuta-
tion relations on this basis; likewise, we have ob-
tained identities which must hold in order for the
Hamiltonian to be satisfactory. Nevertheless, we
believe that it will not in general be possible to
represent the algebra of currents and the algebra
of underlying fields simultaneously. We regard
the current algebra as the algebraic starting point
of the model, and identities such as (4.84)-(4.35)
and the existence of the Hamiltonian as constraints
upon the allowable representations of the algebra.
In this we hold a different point of view from that
expressed by Preundlich and Lurid. "

Clearly the next step in pursuing relativistic
models based on local currents must be to obtain .

bona fide representations of the current algebras,
or of the groups obtained by exponentiating the
current commutator s.
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ought to appear in the last equality for p, =0; this was
already assumed in the defining equation (3.2). - The
justification for the Hamiltonian expression obtained in
this manner lies in the fact that it can be shown to sa,tisfy

the desired continuity equation and Schwlnger condition
using the current eommutators.

~4The Sugawara constant c in Eqs. (4.36) and (4.38) for
the case n =1 is one-fourth the constant c in Eq. (2.14),
since we have defined J „=~j„.

5Thls result differs from an analogous statement in
a slightly different context by Y. Freundlich and D. Lurie,
Phys. Rev. D 1, 1660 (1970).

~68ee Freundlich and Lurie (Ref. 15).
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The effect of a field redefinition on the dilatation transformation is considered, It is pro-
posed that the generator of the dilatation transformation is modified if the divergence of the
dilatation current can be expressed in the form of the divergence of a local current as a con-
sequence of field equations. The notion of the dimensional transformation is introduced to
generalize the case when the dilatation current does not satisfy the above condition. The
dimensional transformation is worked out in detail in the case of a massive neutral scalar
field.

I. INTRODUCI'ION

In this paper an attempt is made to clarify some
fundamental points with regard to the definition of
the dilatation transformation, and also to show ex-
plicitly a close relation between the dilatation
transformation and dimensional analysis.

The first problem arises in the following situa-
tion. We consider some dynamical system de-
scribed by field variables Q (x) (K= 1~ 2, . . . ) and
some constants such as the mass and the coupli. ng
constant with some dimension. In the dilatation
transformation, the field variables Q~"~ are trans-
formed according to their dimension whereas the
dimensional constants are held fixed. ' Hence, the
appearance of the dimensional constants results in
the violation of invariance under the dilatation
transformati. on in the dimensionally consistent the-
ory. Let us suppose, however, that the dimension-
al constants can be eliminated by a field redefini-
tion. In terms of new field variables thus intro-
duced, we now have a dilatation-invariant theory.
Which of the two dilatation transformations, in
terms of the oM or new variables, is the legitimate
one'P Or, can we define the dilatation transforma-
tion irrespective of the choice of field variables'

We shall discuss this point in the following two
sections. The argument presented is further gen-
eralized in Sec. IV to clarify the relation between
the dilatation transformation and the dimensional
analysis. For this purpose, we intx oduce the no-
tion of the Qfsesstoplcl ftQ'Nsfot'tarot'Lon, associated
with dimensional invaxiance. Dimensional invari-
ance can never be violated in the sense that any di-
mensionally consistent theory must be invariant
under the dimensional transformation.

It may be admitted that the above generalization
looks trivial at a glance. Indeed, the dimensional
transformation does not provide us with anything
new except to show that our theory is dimensionally
consistent. We point out, however, that the dimen-
sional transformation plays a vital role in the dis-
cussion of the spontaneous breakdown of the dilata-
tion transformation. This will be the subject of a
subsequent paper, in which we shall show that the
dilatation transformation of Heisenberg operators
turns into the dimensional transformation at the
level of physical (or asymptotic) fields.

Our argument makes use of the following five re-
lations.

2ilelatiog P). For a spatially closed function E,
it holds t at


