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The dynamics-independent structure of collinear reactions involving particles of arbitrary
spins is investigated. The constraints on the M matrix are discussed and the consequences
on the experimental observables are derived. These consequences simplify the tests of many
conservation laws and make it also easier to determine experimentany the invariant ampli-
tudes in the M matrix. A generous supply of examples is worked out in considerable detail.

I. INTRODUCTION

In this paper we will derive the nondynamieal
structure of collinear reactions of particles with
arbitrary splnsy that lsy of reactions ln the fox'-

ward and backward directions. In a general sense,
the study is an application of a number of papers'
in which the nondynamieal structure of completely
general particle reactions mas described. The
special study of forward and backward reactions
seems especially topical nowadays. Most recent
models of high-energy reactions (e.g. , the peri-
pheral or Regge models) concentrate (perhaps by
default) on the near-forward and near-backward
directions, and correspondingly experimental in-
formation is also less scaxce in that angular region
than in other regions. It is plausible that a listing
of nondynamieal features of particle reactions in
the formax'd and backward directions will also help
in deciding on the merits of the various dynamical
schemes proposed to explain particle reactions in
that region.

Another motivation for this study is the fact that
since the number of invariant amplitudes for a
given reaction decreases sharply in the fox ward
and backward directions, the tests of conservation
laws and the methods of determination of intrinsic
quantum numbers of participating particles, which
are direct consequences of the relationship between
invariant amplitudes and the experimental observ-
ables, can be expected to simplify considerably.
To be sure, this theoretical simplification does not
necessarily mean greater experimental aeeessibil-.
ity, since the requirement of eollinearity might, in
px'Rctlce, be R diff lcult one to satisfy. Neverthe-
less, it is possible that new methods of testing
conservation laws and of determining intrinsic
quantum numbers (for instance, of the type of the
Adair test) might emerge from such a study.

In Sec. II me will discuss the constraints on the
M matrix for collinear processes, and mill count
the number of invariant amplitudes that survive
these constraints. This counting is impox'tant since

it is the difference between the number of bilinear
products of invariant amplitudes on the one hand,
and the number of linearly independent observables
on the other, that is directly responsible for creat-
ing tests of conservation laws and methods for de-
termining quantum nuInbers.

Section III lists the changes in the structure of
observables in terms of the bilinear combinations
of invariant amplitudes that are br'ought about by
the results of See. II for the reaction 0+ s-0+ s'.
Section IV further extends these results for com-
posite reactions, i.e., reactions of the type s+s'-s"+s"'. Finally, See. V gives a number of con-
crete reactions as examples of the results devel-
oped in the previous sections. Section VI is the
summary and conclusions. An Appendix clarifies
some of the notation used here.

II. STRUCTURE OF THE N MATRIX AND THE

NUMBER OF AMPLITUDES

Consider a collinear reaction of four particles
of arbitrary spins s„s~, s„and s~,

(2.1)

I et us choose the angular momentum quantization
axis, z, in this one preferred direction. Since the
orbital angular momentum has no component in this
direction, the conservation of the z component of
the total angular momentum can be written as

Sug+ Sbz Scz+ Sds

Equation (2.2) places a constraint on the invari-
ant amplitudes and decreases their number from
Q. . .(2s, + 1) which is the number in the gener-
al case in the absence of any conservation laws ex-
cept rotation invariance. The number of remain-
ing amplitudes ean be counted by remarking that a
given value of

~
s„+s~, j

= s, + s, -Q can be realized
@+I mays if Q ~ 2s~ —1, and in 2s„+I ways if
Q ~ 2s, . A similar statement can be made about the
final state, and matching the tmo to satisfy Eq.
(2.2), after some calculations, gives the following

S36
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+ (2s, + 1)(2s~+ 1)(2s, —2s~+ 1)

lf 8~ + sg & sg —sg & Sc —spy and

X,"=(2s, +1)(2s„+1)(2s,+1)

If Sg —Sy & Sq + Sg & Sc —Sg.

Here

(2.4)

(2.5)

Q =- 8++ 8~ —Sc Sd (2 6)

results for No~', the number of amplitudes for col-
linear processes in the presence of rotation invari-
ance only:

X,"= (2s, + 1)[1—(s.'+ s,'+ s.'+ —,'s, ')
+ (sg + sg + s~ —

g sg) + 2(sassy + sos~ + sos)j
(2.3)

lf S~ + Sg & 8~ —Sg & 8~ —Sg',

X,"=2{2s,—n)(2s, —n+1)(-,'s, + ~~n+ —,')

+ 2(2s, + 1)(2s, —2s, + n)(s, + s, ——,'n + )

subelasses mill vanish. This fact has immediate
and interesting consequences. Let us remember
the relationship between the product sets and the
various conservation laws, as given in Table IV of
Ref. 4. It will be recalled that tests of conserva-
tion laws arise from the fact that the assumption of
a conservation lam knocks out certain pxoduct sets.
We see, however, that the two remaining product
sets are not among those which are knocked out by
invarianee under 8, TP, TPB, CB, CTP, or
CPTB and hence these invaliances cannot be tested
in collinear reactions.

In terms of the characteristic quantities, ~ we can
express the above results by saying that for collin-
ear reactions the characteristic quantity consists
of the pair p, ~, v~. Thus any transformation whose
characteristic quantity is p, ~, v~, or p, „+v„, can-
not be tested.

III. CONSTRAINTS ON THE 0+ 0+s'
REACTION

Sg+ sg & sq + sg q and Sg & sy ~ s~ & sg . (2.V)

%'e mill nom further study the constraints of col-
linearity on the M matrix and the observables, in
the case of the reaction

Since the number of amplitudes is invariant under
the interchange of the tmo sides of a reaction, Eq.
(2.'l) does not represent a restriction of the most
genera, l ease.

As one would expect, having imposed one linear
constraint on the amplitudes, the resulting expres-
sion is trilinear in the s,.'s instead of the quadri-
linear expression

(3.1)

which will then help us to discuss the most general
four-particle reaction in Sec. IV.

We mill talk explicitly about formard reactions.
Backward constraints are very similar.

The form of the M matrix for (3.1) in the for-
ward direction mill be'

S +S

X, = (2s, + 1)(2s, + 1)(2s, + 1)(2,+ 1) (2.S) M= Q a, S(,)(s', s): Ti,)(l„l„.. . , l,) .
A=s'-s

(3.2)

for the general nonlinear case. Both cases are
tabulated for the first fem values of the spins in
Table I.

Nom let us see how we can decide which of the in-
variant amplitudes survive in the collinear case.
For the notation used here, see also the Appendix.

The basic condition we must satisfy in this case
is that the Imatxlx be axially symmetric ax'ound
the collinear direction (which we will call the z
axis). Thus, it can contain only z and x'+y'. We
nom have to ascertain mhieh of the unit vectors
tÃ, and n col x'espond to z. Using the deflnitlons of
these three unit vectors for an almost collinear
situation and then going to the limit of collinearity,
we see that for the collinear case

(2.9)

The requirement of collinearity, therefore, con-
sists at least of having only eee or oee term sets. '
Consequently, the only product sets surviving mill
be eee and oee. Since these contribute only to the
eee, oee, eoo, and ooo subclasses, the othex four

Hexe we assumed s' & s, which does not restrict
the generality of our results. The quantity
T&»(l„.. . , l, ) is the irreducible tensor of rank
0 containing exclusively /'s.

The form given by Eq. (3.2) follows easily from
the constraints discussed in Sec. II. In particular,
it is a consequence of the requirements discussed
in Sec. 11 in connection with Eq. (2.9), which allow
only terms with l's or with mm+nn's. The latter,
however, by the relationship

(3.3)

can be transformed into terms containing only /E's.
Thus we have 28+1 terms. Every second one of

these is in the eee term set and the othexs in the
eeo term set. For bosons, if s' —s is even, me
have 8+1 terms in eee and s in oee; if s' —s is
odd, it is the other way around. For fermions, we
have s+ ~ terms in each of the two term sets.

If me then look at the corresponding product sets,
we have for bosons in either case (s+ 1){s+1)+s'
=2s +2s+1 products in product set eee and
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8(2s+1)'(2s'+1)' for see,

8[(2s'+1)'-4](2s+1)' for ose. {3.1)

%'8 see that except for s = s' =0, there is always a
reduction (i.e., simplification) through collineari-
ty. We also see that the larger s' and s are, the
gl 8Rtel the simpliflcRtlon but the reduction ls Qot

a function of s' —s as one might possibly believe
intuitively.

As we have seen in Sec. II, the restrictions due
to.collinearity correspond to having characteristic
quantities p, and v. The restrictions are therefore
the same as those which would follow from tseo

symmetries together with charaeteristie quantities
p and v (or p and p+ v, or p, +v and v), respec-
tively. In this sense, therefore, collinearity in the
forward direction is equivalent to B and PT, or B
and PBT, or PBT and PT. The analogy is only
formal, of course, since collinearity can be ap-
plied to any reaction, while the restrictions for PT
and B make sense only for reactions which are
self-transforming under these symmetries. The
formal analogy, however, is useful, since one can
immediately list the restrictions due to eollineari-
ty by giving the combined list of restrictions, e.g. ,
for PT and B.

Such a list, however, would not be quite corn-
plete, since the constraints for forward collineari-
ty are not given fully by the characteristic quanti-
ties p, and v. The reason is that these quantities
would still allow separate terms of nm and nn,
while we demand that they appear only as mm+nn.
Imposing this extra constraint in addition to those
obtained from characteristic quantities p, and v

does give the full restrictions. Thus we see that
collinearity simplifies the structure of the reaction
even beyond what one would expect from the simul-
taneous imposition of two symmetries.

Examples for these results, given in Sec. V, will
illustrate the somewhat abstract considerations of

(s+1)s+s(s+1)=2s~+2s in product set oes. For
fermions, we have 2(s+-,')'=2s'+2s+-,' in each
product set.

The total population in product sets has been
given previously' for the general (noncollinear)
case. Subtracting from it the collinear population
of product sets, we get the amount of reduction
brought about by eollinearity. This reduction is for
bosons

q(2s+1) [(2s'+1) —lj+8(2s'+1) -s for eee,

(3.4)

8 (2s+ 1)'[(2s'+ 1)' —3j - 8 (2s'+ 1)'+ —', for oee,

{3.5)

and for fermions

this section.

IV. COMPOSITE REACTIONS

0+B 0+a, (4.3)

respectively. %'8 will denote by the two super-
scripts the behavior with respect to charRcterlstlc
quantities v and p, , respectively.

Then M", will have contributions from two differ-
ent types of terms. One is the type in which the
component superscripts multiply out to ++. These

(3M,
' . In the other type the superscripts multiply

t to--, th t i, M (3)M, M t3M, M '(3M'
and M2 (SM3'. The reason why both types make
contrlbutlons ls that 1Q the tensor-coIQposltlon tR-
bles' in the expansion of one particular product,
terms with a certain signature and terms with the
conjugate signature alternate.

In addition, we must also impose the constraints
due to the requirement that only mm+nn be present.
This can be done on the constituents and then be
carried over to the composite reactions also.

An example for composite reaction will be given
ln Sec. V.

V. EXAMPLES

A. 0+1~0+0

The M matrix ln genel aly assuming only rotRtlon
invarianee, is

I=a,S l +a,S m S+.an. (5.1)

For collinear processes, the number of terms is
one. In particular, we have

M, =a~S ~ l . (5.2)

The remaining term is of the Oee type, hence the
remaining term set is oee and the remaining sub-
class is Oee. In fact we have

I (0) = lail', I («) =
3 lail', ~(~f) =-', la, l' (5 3)

Furthermore,

The realization that almost all constraints of col-
linear processes are given by the simultaneous as-
signment of characteristic quantities p, and v

greatly facilitates writing down the collineax M ma-
trix for composite reactions. Assume that we want
the M matrix for

(4.1)

which we will eall M, . Similarly we will call M, and

M, the M matrices for

4+0-C+0
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L(mm)+L(nn) =2L(nn) = —L(/I) (5.4) M =0. (5.15)

so that we really have only two independent observ-
ables and one relation between them,

Thus, for collinear reactions, PTB cannot be
tested, which is what we already know.

L(II) =. ——',L(0) . (5.5) 4. Other Tests

Now let us turn. to the conservation laws. If we
want to restrict ourselves to test in one reaction,
we must use self-transforming reactions. 0+ 1

-0+0 can possibly be such only for I, P, TP,
PTB, C, PC, TCB, and PTCB.

Parity Conservation

The tests XC (with X=P, TB, or PTB.) are the
same as of X, except on a different type of self-
transf orming reaction.

B.0+2~0+21 1

Here the M matrix in general' consists of four
terms,

In general we have M bp + byo' l + b20' m+ b,o' n (5.16)

M'=a, S m,

M =a,S ~ l +a,S n.
(5.6)

(5.7)

In the collinear case this will be reduced to two.
We have

Thus we have for the collinear case M, =bp+b, o ~ l . (5.17)

Mc=0

M, =a,S ~ l .
(5.8)

(5.8}

The characteristic quantity is A.„+p, „. Thus in
general we have

M'=a, S n, M =ayS l +a,S m .

For the collinear case we have

M,'=0,

M, =a,S ~ l .

(5.10)

(5.11)

(5.12)

Thus we get the result that for the positive parity
product there are no collinear processes at all,
while for the negative parity product there is no

difference between the parity-conserving and par-
ity-nonconserving cases. Thus, in this example,
measurement in the collinear directions yields the
following information (nondynamically):

(i) If the observables are all zero, parity is con-
served and the parity product is positive.

(ii) If the observables are not all zero, there is
no way to conclude anything about whether parity is
conserved, i.e., we can then have either parity
nonconservation, or parity conservation with a
negative parity product.

2. TB Invari ance

L, (0, 0) =L(l, I), L(l, 0) =L, (0, I},
L(m, m) =L(n, n), L(n, m) =-L(m, n).

(5.18)

The second and the fourth relations are the more
trivial type, which can be obtained from the trans-
formations of the type n —m, l —l. The first and

third, however, are not of this type.
Now we turn to the conservation laws. The reac-

tion in question can be a self-transforming reac-
tion for I, p, TP, PTB, B, pB, T, pT, CB, pCB,
TC, and PTC, but not for C, PC, TCB, and PTCB,
since a spin-~ particle cannot be its own antipar-
ticle. Of the eleven possible transformations (not
counting I), the ones that can be tested in collinear
reactions are P, PTB, B, T, CB, and TC.

The remaining terms are of the eee and oee type.
Thus the product sets will be of the same type and

therefore the surviving subclasses will be eee,
oee, and eoo.

The complete structure of these remaining sub-
classes has been given in Ref. 7, Table II. In view
of Eq. (5.17), however, there will be relations be-
tween the observables even in these subclasses. In
particular, we will have four relations among the
eight remaining observables, since they will de-
pend only on four bilinear products of b, 's.

We have

Thus if TB inva, riance holds, all observables
should vanish.

3. PTB Invari ance

The characteristic quantity is p, „+v„. Thus in

general we have

1. Parity

We have in general

M '=b, +b,o'm,

M =b,o ~ l +b,o n.

(5.19)

(5.20)

M'=a, S /, M =a,5 m+a, S n.
For the collinear case then we have

A

M,'=a,S ~ l,

(5.13)

(5.14)

In the collinear case

M,'=b„

M, =b,g ~ l. .

(5.21)

(5.22}
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Thus tests of parity conservation in collinear reac-
tions are

3. I'Tc Theorem

The self-tx'ansforxnlng reaction ls of the type
L(l, o) =L,(n, m) =0. (5.23) (5.31)

These are all the independent tests.
To determine the product of intrinsic parities,

we have

and it is hard to think of a plausible physi. cal ex-
ample. Fox mally, however, we can proceed to
write

L(0, 0) =L(l, l) =+L(m, m) =+L(n, n) . (5.24)
bo+bxo ' l +b2O m (5.32)

In general we have

M' = bo+ b2g m+ b,o

and in the collinear case

M', =b

(5.25)

(5.26)

L(l, 0) = L(0, l) = 0,

L(n, m) =L, (m, n) =0,

L, (0, 0) =L(m, m) =L(i, l) =I.(n, n) .

(5.2V)

(5.28)

(5.29)

Again, these are simpler than the general tests.
The Eq. (5.2V) says that two mirror relations van-
ish and the third simplifies the general nonmirror
x'elation of

L, (0, 0) =L(m, m) —L(l, l)+L(n, n) . (5.30)

This is a simplification over the noncollinear case,
since it permits us to compare either of L(0, 0) and
L(l, l) with either of L(m, m) and L, (n, n) (the last
two heing indlstingnishaMe in collinear reactions)

so that

M,' = bo + b ~o' l . (5.33)

C. 0+1~0+1

The M matrix in general, ' assuming only rotation
invariance, is

M=AO+A, $I-,) m+A2$(, )
~ l +A3$'l, j n

~Ih

+A„St,].l l +A228[21. nn+A238[2]. l n

+A24S„). lm+A25S„, :nm . (5.34)

Thus, as expected, PTC cannot be tested in collin-
ear x'eactlons.

A similar discussion can be carried out for the
other tx ansformations. The M matrices are given
in Table II.

We see from that table that in this simple case
in collinear reactions all testable symmetries have
the same tests as time-reversal invariance. The
type of self-transforming reaction on which such
tests can be carried out may of course be different
in different cases.

TABLE II. M matrices for the 0+~ 0+2 reactions under various transformation lairs,
in the collinear direction.

Tran sforHlatlon
Nonzero coefficient

in M+
Nonzero coefficient

in M'
C

B

PB

FB

bo b~*b2 b3

bo b2

bp, b2, b3

bp, b3

bp, bg, b2

bo bi

bp, b2, b3

bo, bg, b3

bo, b3

bo, bg, b2

bp

bo

bp

bp

bo, b

bo
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For collinear processes this reduces to

M, =Ao+A28t, )
~ L +A„S)2) '. E / . (5.35)

I, - =0, I, - =0. (5.46)

We see then that (2s+ 1) =3 terms are left, as ex-
pected. Since the example was worked out in detail
in Ref. 8 in terms of the form of this reaction
viewed as a composite reaction, we have to convert
the constraints into this notation. This will give us
an opportunity to check some of our results on
composite reactions.

%'e have the constituent reactions

M", =C„r(n):S'r(n): S+C„r(m): S'r(m): S

+c„r(l):s'T(l): s, (5.4V)

=C,r(m): S'7'(n): S+C T(n): S'T(m): S.
(5.48)

%e actually expect only three terms, and indeed
we get C„=C„,C„=-C„. So we finally have

0+ 1-0+0

0+0-0+ 1,

and their Imatrices

(5.36)

(5.3V)

M'=8 [T(n). s'T(n) S+T(m) S'T(m) S]

+e,r(l}:s'r{l):s
+ e,[r(m): S'r(n): S —T(n): S'r(m}: S].

(5.49)

M, = a,T(l):S'+ a,T(m): S'+ a,T(n): S' (5.36)

M, = l,r(l): S+5,r(m): S+ l, r{n):S.
Then we have for the composite reaction

C22 —-Ao —3A21 —3A22 ~ C13 —-»1+ 2A23 ~

Ca, =zA, + 2A2, ,

C31 zA1+ 2A

C11 0 3 A21 3 22

C32- -»2+ 2A25 (5.41)

C33 Ao 3A21+ 3An ~ C12 —zA3+ 2A24,

C2, —-zA3+ 2A24,

=C„r(l):Sr(l): S'+C„r(m): Sr(m): S'

+C„r(n):Sr(n}:S'+C„r{n):Sr(l): S'

+C„T(l):ST(n): S'+C„T(l):ST(m): S'

+C„r(m): ST(l):S'+C„r(n): Sr(m): S'

+c„r(m):sr(n): s'. (5.40)

The relationship between coefficients A,.& and C,,
are

In general, the reaction 0+1-0+1has the full
observable structure of a composite reaction, con-
sisting of 3I subclasses. The great simplification
due to Eq. (3.2) in the collinear direction reduces
the number of subclasses to seven. They are given
in Table III. Many of the general subclasses van-
ished entirely, others fused together.

The remaining subclasses contain 39 observ-
ables, but clearly only 32, or 9, can be linearly
independent. So we must have 30 relationships
among them.

If we had imposed only the constraints due to
characteristic quantities v and p, , we mould have
had not three but four amplitudes (because C» =C»
would not be valid). In that case we would have
had 4' or 16 linearly independent observables, and
thus 39-16, or 23, relationships. Thus the re-
maining seven relationships in the forward direc-
tion are specific consequences of the additional
constraints due to the requirement that only vv

+sits can appear and not vv or tÃps separately.
The 30 relationships which hold for the forward

collinear case can be constructed immediately
from Table III. They are the following:

or

+0 3(cll C22 C83}1 +1 3 {C18 ~$1) &

&2= 2'(C32-c») +ax-c» -c»
A23 = C,3+C3, , A,s-C,3+C,2,

A»=C33-C22 A~= ah(C2i-C„},

A24 =C21+C1'

(5.42)

I,(0, nn) =I,(nn, O), I.(0, ll) =I.(ll, 0),

L(0, nn) = 3I.(0, ll), —L(nn, ll}= -2L(ll, nn),

L(0, 0)+ 3L(0, nn) = -QI (nn, ll),

L(l, l) =2L(0, 0) —6I (O, nn),

2L(nm, nm) = -~~L (0, 0}+ 2L (nn, nn) —,'L (0, nn), —

I.(nl, nl} =-,'I, (m, m), L(m, nl) =-L(nl, m),

M',"= a,T(l) S'

M+, =a,T(m):S',

M '=a T(n) S'

M =br(1):S,
M', - =f,r( ):Sm,

M '=b, r(n}:S,

We have, using Eq. (4.14),

(5.43)

(5.44}

(5.45)

L(n, n) =I,(m, m), I.(m, nl) =L(lm, n),

L{lm, lm) = —,'L(m, m), L, (lm, n) = -L(n, lm),

L(0, nm) =0, 6L{nn, l) = -L{0,l),

(5.50)
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I (0, 0)
3I (o,nn)
3L(0,E l )
3L(nn, O)

3L(l E, o)
9L(nn, nn)
9L,(nn, l l )
9L, (E E,nn)
9L(l l, E E)

L(l, l)
2L(Em, lm)

2
-1

2
-1

2
5

-1
2
2
1

1
1

1

1

—2

0
0

Re8&6~&

2L(En, En)

I (m, m)
L(E,E)

2L(nm, nm)

Subclass y

TABLE III. Observables for collinear reactions of
the type 0+1 0+1.

2

2
-1

2

—1
—1

2
2

-1

L(ll, nm} =0, 3I.(ll, l}=I,(0, l},
L(nm, 0) = 0, L(l, 0) = L(0, l),

L(nm, ll} = 0, 6L{i,nn) = -I (0, l},
I.(nn, nm) =-L(nm, nn), 3L(l, ll) =L(0, l),

4L(nl, lm) = -L(m, n), L(m, lm) =I,(nl, n),
I (n, m) = -L(m, n), L(lm, m) = I, (n, nl),

4I (lm, nl) =I (m, n), I (n, n l) = L{nl,n) .
For the sake of valiety, instead of looking at the

tests of conservation laws, let us explore this time
the consequences of collinearity for the determina-
tioneof the M matrix. We see that in the collinear
reaction the set L{0,0), L(0, l), L(n, n), L{l,l), and

L(m, n) is sufficient for a complete determination
(apart from possible discrete ambiguities). Thus
in this case measurements of tensor polarization
is not necessary. If in addition parity is also con-
served, only three measurements will suffice and
L(0, 0), L(n, n}, and L(l, l} will do the trick.

L(m, ln)
L(ln, m)
L(lm, n)
L(n, lm)

L(o,nm)
3L@n,nm)
3I (El,nm)
I (nm, O)

3L(nm, nn)
3L(nm, E l)

Subclass e

L(0, l)
3I.(nn, E)

3I (E l, l)
I (l, o)

3L(l,nn)
3L(l, l l)

Subclass g

0
~ww 3

0
0
3
0

Re626~3

VI. CONCLUSION

We have seen that the structure of reactions in
the special case of collinearity simplifies substan-
ti.ally. As a result, certain symmetries are auto-
matically satisfied, provided the kinematics of
spin are properly handled and hence their true val-
idity becomes untestabie. Therefore, dynamical
models, with applicability mainly in the collinear
directions, need not take special pains to incor-
porate explicitly those symmetries, since collin-
ea.rity will take care of it automatically. The sim-
plified structure also permits an easier determina-
tion of invariant amplitudes in the collinear direc-
tions. The extra relationships among observables,
brought about by collinearity might also be useful
a,s checks on complicated types of polarization ex-
periments.

I am indebted to Paul Csonka for many stimulat-
ing discussions.

L(m, n)
2L(En, lm)

L(n, m)
2L(Em, En)

Subclass g

L(m, lm)
L(ln, n)
L(lm, m)
L(n, ln)

In this Appendlxp I suIQmalize soIQe of the nota.
tion in this paper that has been taken over from
previous papers.

The unit vectors used to span the momentum
space a.re defined as

where q is the momentum of A and q' the momen-
tum of C in the center-of-mass system of the reac-
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The Imatrix for the reaction

(A3)

(where 0 denotes a particle with spin 0) is written
in the form

M = Q a)St~)(s, s'): T t~i, (A4)

where SL~~(s, s') is a Jth-rank spin tensor, depend-
ing on the spins 8 of A and 8' of C; T«& is a Jth-
xRQk momentum tensox, containing l's, ttl's, Rnd

n's, and in it the superscript x serves to distin-
guish the various tensors Gf the same r'ank. The .

colon denotes complete contraction of tensorial in-
dices. The a~'s ax e zero-rank tensor amplitudes,
functions of the lDvRx'lRQts thRt cRQ be constructed
out of the momenta characterizing the kinemati. cs.
The indices J and x on the a's indicate that each
8:T combination has its own amplitude.

The various a's in the sum (A4) can be classified
into term sets as follows: (a) Count the number
of l's, the number of rn's, and the number of n's in
the 7 i~~ that belongs to a certain a~. (b) Define
the signature of the a~ by determining whether the
three numbers found in (a) are even or odd (there
will thus be eight different signatures: eee, eeo,
eoe~. . .

y oooo where e denotes even Rnd o de-
notes "odd*'). (c) All a's having the same signa-
ture belong to t e same term set.

The experimental observables (denoted by I,) are
eharaeterized by the preparation of the initial
state, and the measurements carri. ed out in the
final state. Each of these two specifications can be
given in terms of a spin-momentum tensor similar
to those appearing fn Eq. (A4) for M [except that
they will involve S(s, s) and S(s', s'), respectively].
Thus, using R shorthand notation, the experimental
observables can be characterized as I,(t, u), where
t is the collection of l's, m's, and n's that appea, rs
in the 7 i~i describing the initial state (the order of

the f's, m's, and n's does not matter), and u per-
tains to the final state in a similar way. The actual
experimental quantities measured in the laboratory
are either these I (t, I)' s, or linear combinations
thereof, depending on the details of the experimen-
tal setup.

The I (t, ~)' s can be classified into subclasses as
follows: (a) Count the number of /'s, m's, and n's
in f and u together. (b) Define the signature of
I.(t, u) by ascertaining whether the three numbers
obtained in (a) are even or odd (thus one obtains
eight types of signatures: eee, eeo, eoe, . . . , ooo,
where e denotes "even", and o denotes "odd"). (c)
Obsex'vables with the same signature belong to a
given subclass.

simllarlyq blllneRx' comblnatlons Gf Rmplltudesy
that is, az, a&2 's, ean be classified into product
sets according to the evenness or oddness of the
total numbers of l"s, m's, and n's in the two T's
together which go with the two a's in Eq. (A4).

Finally, the notation fox' the symmetries is self-
evident except for B, which denotes detailed bal-
ancing. Under 8, initial and final particles are in-
texehanged, l and 6 tuxn into Ininus themselves,
m x'ema. ins the same, and the spin vector 8 changes
sign. B is of course not a true symmetry, but
rather R transformation under which for dynamical
reasons~ the x'8Rctlon remains lnvRx'lRDt undel cex'-
tain circumstances.

Under various symmetries, l, ns, n, and the
spin vector 8 go either into themselves or into mi-
nus themselves. Whether a term i.n the M matx'ix
ls lnvRrlRnt uQdex' R syxnxnetx'y tx'Rnsfox'IQRtlon Gx'

changes its sign will therefore depend on whether
the number of those ingredients (i.e., l's, m's,
n's, and S's) which change their signs under that
transformation is even or odd. This number of the
crucial ingredients is called the eharacteristies
qUantity, ,and lt caD be composed of some sum of
A.~, ILL.„, and v~, which are the numbers of l's, the
number of m's, and the number of n's, respective-
ly.

*Work supported by the U. S. Atomic Energy Com-
mission.
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Several relativistic models are presented vrhich are based on local currents and combine
nontrivial internal-symmetry groups vnth q-number Schvringer terms. Each model is given
by specifying a Lie algebra of equal-time current commutators together arith a consistent
expression for the Hamiltonian as a function of the currents.

I. INTRODUCTION

Several authors have been pursuing the idea of
writing nonrelativistic and relativistic models with
local currents as the basic dynamical variables. '
Sugawara proposed such a model, with internal
symmetry and finite c-number Schwinger terms. 2

its simplicity and internal consistency inspired
considerable investigation; but Dashen and Frish-
man shoved that it possessed "too much symme-
try", leading to consequences not observed in the
physical world. Simultaneously, Dashen and
Sharp proposed a quark model based on local cur-
rents, but for which they were unable to identify
the Schwinger terms. ~

In this paper we present some relativistic mod-
els, based on local currents, with nontrivial in-
ternal-symmetry groups and q-number Schwinger
terms. The models we discuss xesemble Suga-
wara's model in that the equal-time current alge-
bras reduce to his if the Schwinger terms are re-
placed by c-numbers. However, the Hamiltonians

we write in terms of the local currents are not
generalizations of Sugawal a s Hamlltonlan but
resemble more closely the HamBtonian in a mod-
el proposed by Sharp, which ve discuss in Sec.
II.'

For each model we present a Lie algebra of
equal-time cux'rent commutators, togethex with
an expression for the Hamiltonian as a function of
the local currents. Concrete representations in
HQbert space have not yet been obtained for such
Rn algebx'Ric system, except for nonrelatlvlstlc
models', but some things can be said without mak-
ing a commitment to a particular representation.
Fox example, the generators of the internal-sym-
metry group G (the "charges"), obtained formally
by integrating the time coxnponents of the local
currents over all space, cannot be represented
as operators in the physical Hilbert space. '
Nevertheless, the invariance of the Hamiltonian
with respect to C can be specified by requiring
eqlla'bons of colltilllllty, sllcll as Eq. (3.20) below,
to follow from the cul.x ent algeblR. Relatlvlstlc


