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We establish that the Abelian gauge theory first considered by Higgs in which the gauge
vector boson acquires a finite mass due to the spontaneous breakdown of symmetry is re-
normalizable, in the sense that the Bogoliubov-Parasiuk-Hepp program can be executed in
such a way that the Ward-Takahashi identities are satisfied. This paper contains the global
study of the Ward-Takahashi identities and low-energy theorems of the model. We show
that the Goldstone boson and the scalar excitation of zero mass associated vrith the Landau-
gauge vector propagator are unphysical, and disappear from the S matrix.

I. INTRODUCTION

The Goldstone theorem" states that in a theory
with a conserved current, but in which the vacuum
(or the ground state) is not invariant under the
symmetry usually associated with the current con-
servation, there must exist massless particles or
excitations whose energy tends to zero in the long-
wavelength limit, provided that the theory is man-
ifestly relativistically invariant, or, in nonrela-
tivistic cases, provided that forces in the theory
have short ranges. ' Nonrelativistically, the con-
version of the phonon (Goldstone particle) into the
plasmon (a massive particle} in the presence of a
Coulomb interaction is a mell-known evasion to
the theorem. ' Higgs' and Guralnik, Hagen, and
Kibblee pointed out that in a gauge theory quantized
in the radiation gauge, manifest covariance is lost
(while the theory is still relativistically invariant),
so that when the vacuum is not invariant under the
gauge transformation there is no Goldstone boson.
Higgs' and Kibble' have studied the spontaneous
breakdomn of Abelian and non-Abelian gauge sym-
metry, respectively, and have shown, in both cas-
es, that the would-be Goldstone boson and the
gauge vector particle, which would have only two
transverse polarizations in the normal case, com-
bine together to produce a massive vector boson.
In a manifestly covariant formula, tion of gauge
theories, for example in the Landau gauge, the
GoMstone theorem can be proved, but due to the
lack of positivity in the Hilbert-space structure,
the Goldstone boson can and in fact does decouple
from the physical states.

The author's recent interest in this phenomenon
stems from Weinberg's model of leptonse in which
electromagnetic and weak interactions are both
mediated by Yang-Mills vector bosons, and in

which the mass of the vector bosons mediating
weak interactions is due to the Higgs-Kibble mech-
anism. Weinberg suggested that the theory might
be renormalizable since the equations of motion
of this theory are formally the same as those of a
Yang-Mills theox y.

Subsequently, 't Hooft" examined the question of
renormalization of theories of this genre, and
came to a conclusion affirming Weinberg's con-
jecture.

In this paper I propose to give a proof that the
model originally studied by Higgs'- scalar elec-
trodynamics in which the normal vacuum is un-
stable —is renormalizable. We choose to study
an Abelian case first, because it is simpler and
because all tools we need are available. We at-
tempt to untangle the difficulties associated with
the Higgs phenomenon peg se from those that have
to do with a non-Abelian gauge group. By "renor-
malizable, "we mean that the theory can be ren-
dered finite by specifying a finite number of val-
ues of primitively divergent vertices at subtrac-
tion points in such a may that the Ward-Takahashi
identities are satisfied by the Green's functions of
the theory. The Ward-Takahashi identities are
the precise mathematical statement of gauge in-
variance in terms of the Green's functions, and
allow us to explore the consequences of broken
symmetry. They enable us to demonstrate both
that there is a Goldstone boson in the theory and
that it is unphysical. The part of the theory that
has to do with the stability of an asymmetric vac-
uum is completely analogous to the U(l) version of
the g model, "whose renormalizability we have
studied previously. "" In fact the present discus-
sion makes an essential use of the technique de-
veloped by Symanzik" in this connection. We shall
consider a set of gauges characterized by a con-
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-i(g„,—k„k,/m')(k' -m') ', (1.2)

and, second, that the ultraviolet behaviors of the
Green's functions are the same as those of a theo-
ry with symmetric vacuum. This fact manifests
itself in that the same regularization method makes
divergent integrals finite in both theories. The
negative-metric zero-mass pole in the propagator
(1.1) is canceled exactly by the positive-metric
pole due to the Goldstone boson in the S matrix,
making both particles associated with these poles
unphysical.

This paper is organized as follows: Section II
is a brief exposition of the Higgs model. In Sec.
III we quantize the model by the functional integra-
tion method of Feynman, '~ with the modification
necessary for gauge theories as pointed out by
Popov and Faddeev. " I found this method particu-
larly appealing, since we can dispense with the
technique (but perhaps not with the spirit) of the
Gupta-Bleuler formalism. " The Feynman rules
are derived and the necessity and the method of a-
gauge-invariant (Pauli-Villars)" regularization of
divergent integrals are discussed. These sections
contain nothing substantially new, but they are in-
cluded here partly for pedagogical purpose and
partly from my desire to have this paper reason-
ably self-contained.

Section IV is a discussion of the Ward- Takaha-
shi (WT) identities. These are discussed global-
ly in terms of the generating functional of the
Green's functions. The identities for the irre-
ducible vertices are then derived by constructing
the generating functional of the irreducible ver-
tices. Section V gives the prescription for deter-
mining the values of primitively divergent irre-
ducible vertices at subtraction points. The pre-
scription is derived from the WT identities. This
prescription, together with the finiteness of the
number of primitively divergent vertices, the ex-
istence of a gauge-invariant regularization method,
and the Bogoliubov-Parasiuk-Hepp (BPH) theo-
rem, ' ' then establishes the renormalizability
of the theory as we defined above. Section VI
gives the proof, based, again, on the WT identi-
ties, that the Goldstone boson and the massless
ghost associated with the longitudinal part of the

tinuous parameter o. , all of which gives a relativ-
istically invariant theory, and all of which gives
the same $ matrix.

The reasons why theories of this type can be re-
normalized are, first, that because of gauge in-
variance the vector propagator may be taken, for
example, as

i(-g» k—„k„/k')(k'-m') ',
instead of

vector propagator decouple from the physical
states (i.e. , disappear from the S matrix) and that
the S matrix is independent of the particular gauge
chosen.

II. MODEL

P(x) = (-,')' '[v+ y (x) + iX(x)],

so that

(y(x))0= (-,')' 'v

and

p *(x)=
tj (x), X*(x)= X(x) .

The Lagrangian (2.1) may be rewritten as

(2.2)

(2.3)

2 [A„,y, X] = ,'(s„A,--s,A„)-'+-,'(e )'Av„'
+-,'(s„q+eA„X)'+-,'(a„X eA„y)'—
—evA„(s"X—eA" q)

~(Xv + AX —,(3Xv'+ p')g'
—Xvg(g +X ) —~X(g +X )

—v(Xv'+ g')y. (2 4)

In Eq. (2.4) the mass of the vector boson appears
as m' = (ev)'. The vacuum expectation value v is
determined by the condition (2.3). In the tree ap-
proximation, this requires the absence of the lin-
ear g term (the last term) in Eq. (2.4):

v'= -p, '/X. (2 5)

[In higher orders, the term -iv(A. v'+ g') should
cancel the t)t-to-vacuum diagrams. This condition
gives an eigenvalue equation for v. The similar
problem in the o model is discussed in Ref. 20.]
Thus the mass of X is zero. In this sense y is the
Goldstone boson. The mass of g is 2Xv', which is
positive.

In the case p,'&0, there are two scalar degrees
of freedom and two polarizations associated with

A model which exhibits the Higgs phenomenon,
without the complications due to non-Pbelian gauge
invariance, is the Abelian gauge generalization of
the model first discussed by Goldstone. ' Follow-
ing Higgs, ' we consider the Lagrangian '

g = ——,'(s„A„-s„A„)'+(s„+ieA„)y*(e"—ieA")y

(2.1)

If p, '&0, the Lagrangian describes charged scal-
ar bosons interacting with the radiation field. If
p,
' &0, on the other hand, P must develop a. vac-

uum expectation value so as to make the physical
masses of scalar bosons non-negative. The situ-
ation here is very similar to that of the g model. '0

We can adjust the phase of the g field so that the
vacuum expectation value is real. Let
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a massless vector boson. Equation (2.4), for
p,

~ &0, appears to describe two scalar degrees of
freedom and three polarizations associated with a
massive vector boson. %'hat really happens, how-
ever, is that one scalar degree of freedom, X, de-
couples from the rest and disappears from the
physical spectrum. To see this we shall para-
metrize the complex field p somewhat differently
from Eq. (2.2). We write, following Kibble, '

III. QUANTIZATION

A. Quantization by Functional Integration

Following Feynman, '4 we express the vacuum-
to-vacuum amplitude by the functional integral,

(. t
~
.)-~f[dA„][dq,][dq,].~~ S[A„,q„q,]],

(3.1)

0 (x) = (-.')'~'[v+ p(x)1 exp[1 r(x}/v l,
and transform the vector field according to

B„(x)= A„(x)——a„g(x).
1

The Lagrangian is then transformed into

Z [B„,p] = =,'(a„B,-a,B„)'+-,'(ev)'B„'

(2.6)

(2.7)

where 8 = Jd4x g(x) is the action, and the measure
[dA„]of the functional integration is the usual one
for the vector'field,

(3 2)[dA„]= II IIdA„(x).

Popov and Faddeev" pointed out that in a gauge-
invariant theory, the action is invariant under the
substitution

+ —,'(a„p)'——,'(3zv'+ p, ')p' --,'Xp'

+-,'e'B„'(2vp+p') —v(Zv'+ p, ')p, (2.8)

from which the would-be Goldstone-boson field g
has been completely transformed away. The trans-
formation (2.7) shows that the massive vector bos-
on with three polarization degrees of freedom is
made up of the two transverse polarizations asso-
ciated with Au and the would-be Goldstone boson
X as the longitudinal degree of freedom.

The Lagrangian in Eq. (2.8}, while advantageous
in not containing redundant fields, is not renor-
mal. lzable, Rs R simple power-counbng ofFeyn
man integrals indicates, if we treat

g,[B„,p] = --,'(a „B,—a„B„)'+-,'(eu)'B„'

+ —,'(a „p}2——2(3zu'+ p, ')p'

as the, unperturbed Lagrangian density.
The renormalization program we shall develop

is based on the Lagrangian (2.4), which makes
reference to the redundant field y. Our task is
therefore to show that Rll divergences in the the-
ory can be removed by the redefinition of parame-
ters of the theory, and the T' matrix so renormal-
ized does not contain poles corresponding to the
unphysical X-field excitation. Both of these ob-
jectives are attained thanks to the invariance of
the Lagrangian under the local gauge transforma-
tion,

Q, - Q,
' = Q, cos8- p, sin8,

Q, -Q, =f, cos8+Q, sin8,

(3.3)

where A. eu, for example, is a result of performing
an element 8 of the gauge group to the field Au.
In other words the action is constant over an orbit
of the gauge group, which is formed by all Ae(x),
@,(x), P, (x) for fixed A„(x),P, (x), P, (x) and 8

running all over the gauge group. Hence the inte-
gral (3.1) is proportional to the infinite factor
flI„d8(x}.In order that the formula (3.1) be not
more singular than those of the usual theories
without gauge degrees of freedom, this factor
should be extracted before proceeding to quanti-
zation.

The extraction of this infinite factor can be ef-
fected by the following device. Let the gauge con-
dition

x lI5&f[A'„(x}1).", (3.5)

f[A„(x)]= 0

be such that the equation f[Ae„(x)]=0 has a unique
sollltioll 8(x) fox' a glvell A~(x). We Illay wl'1'te Eq.
(3.1) as

(ou&i &-J[«lftd&. lfdv Ifds. l ~,l&I

1
& "&u' —e

e

p, - y, cosa —Q2 sin8,

Qg.cos 8+ Q1 81118,

(2.9)

where

~,[A] = detl af[A'(x)]/8 8(x')]

dg 5 A. eu x (3 8)

y( )=(l)"[y,( )+ '0, ( }] (2.10)
is independent of 8, Le. , A&[A ]=&&[A].
tegrand of Eq. (3.5),
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[dA„][~/,][~$2]~f[A]II «f [A', (x)l)~*',
4 x

is independent of 8, due to the gauge invariance of
S and the functional measure. Therefore, after
removing the factor f[de], we can write Eq. (3.5)
as"

(o«( in) -)"[dA„][dy1[dy.]~,[A] II 5(f [A „(x)])e"
(3.7)

A convenient gauge condition is

(3.8)f[A„(x)]= s "A„(x)—c(x) .
With this choice, be[A] is simply a factor inde-
pendent of A and may be dropped from Eq. (3.7).
Equation (3.7) is in fact independent of c(x), so

(»«II x»&-f [dx] exp(-de fd xx (x')) ['[dd „][dd1[ed.}IIe(e "d„(x)-x(x)) x'* = [dd„][ed,1[ed.]x",

where

(3.9)

S =»[de, d„d,] ——d'x[exdx(x)]'=fd'xI»(x) —
e [x"d„(x)l'I. (3.10)

Equation (3.10) forms the basis of a quantum theory of the Lagrangian P. We define

exp[id [x„d„d,]} f„[ddx][ddt l[dd, ]exp i S„+]d'x[d(x) d(x)-x, (x)d"(x)] (3.11)

The quantity Z„[i)„,Z„Z,] is the generating functional of the connected Green's functions. For }i' 0, we

have

gn+m+l g
Ot

5J,(x,) ~ ~ ~ 5Z, (xp)582(y, ) ~ ~ & J2(y~)5& i(zi) ~ ~ 5i) r(z, ) z d

= (i)"'" '((y, (x,) ~ . y, (x„)(t),(y, ) P, (y )A„,(z,) A„i(z,)),&()'"" "'.
(3.12)

In particular, the free vector-boson propagator is

i[g„„-k „k„-(1 u)/k'] /k'—,

so that the choice a = 1 corresponds to the Feynman gauge, while a =0 corresponds to the (transverse)
Landau gauge.

For p,
' &0,2i we translate the variable p, by a constant v:

(t)i = ]I' + v, . (|)z = X x

where v is determined from the condition

(3.13)

(3.14)
&~a =V

5Z, (x),1 2 p

[the left-hand side of Eq. (3.14) is independent of x due to translational invariance], which is the func-
tional expression for Eq. (2.3). Equation (3.11) now takes the form

f
d I»„,d, dl=-()» lddx][ddldX]e»P() d'x[X[dx, d, XI-& (exdx)'x(x+d)d xdd, -e»A»}),

where Z [A„,p, X] is the expression in Eq. (2.4). Analogously to Eq. (3.12), we have

(3.15)

gn+ m+1 Z
Z

CX

5Z, (x,) ~ ~ ~ 5Z, (x„)5Z,(y, ) 5Z, (y„)5q (z, ) 5q i(z, ),
= (i)"'" '((0(xl) ' ' 4(x.)X(yl)' ' 'Xb' )AI, (zi)' 'Al, (zi)).)0

except for n=1, m =L=O. (3.16)
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An important feature of Eg. (8.16) is that this formula gives the Green's functions of the field g whose vac-
uum exyectation value is zero, rather than those of the field $,.20

B.Perturbation Theory

Perturbation theory of the Higgs phenomenon is
based on the formula (3.15). We divide the gauge-
dependent Lagrangian

i' =g[A„,y, }t] —(—a"A„}2 {8.1V)

lntot oparts, Z., and Z, :
(8.18)

J d'xe""((y(x)y(0)), )~ '=i(k'-2xv'} ', (3.22)

8„0=-4(eqA„—B„A~)— (sqA ) + ~(ev)2Aqm

+ 2(s,4)' r(»—v') g'+ '.(8„}-t)' ev A-„&"y, .

(3.19)

&s = eA&(X&"0 0&"X}—+ l e'A'„*(4*+X'}+e*vA, 'e
+X vy(y' +X')--,'X(y' +X')'

(8.20)

where 5m' = A.~g'+ p, m, and treat- Z„oand gr, re-
spectively, as the unperturbed and pexturbing La-
gx'angian.

The terms proportional to 5m' in Eq. (8.20} are
to be treated as counterterms. Since p.

' has been
eliminated from the Lagrangian, g may be treated
as a free parameter. Eguatlon (8.14)~

'the condi-
tion that the field g have no vacuum expectation
value, then serves to fix the value of 5m'. If ve
denote by ivE(v~) the sum oi' all loop diagrams for
the g-to-vacuum transition, Eq. (8.14) requires'0

v[E(v') -@e']=0

which fixes the size of Sg . A successful x'enor-
malimation program requires that the divergences
in the g and }t self-energies be removed by the
same 5m'.

%'e may expand the T matrix and various Green's
functions in powers of e and X'~, xegardlng ev
and X'~'e as fixed numbers. This is equivalent to
ordering the perturbation series by the number of
loops each term in the series contains.

The various bare propagators may be evaluated
from Eg. (8.16}by keeping only g~o in g„.The re-
sults are

J
"d'x e" "((A„(x)A„(0)),)b"'

= -i(g„„-k„k„/k')[k'—{ev)'] ' —iok„k„/(k')',
(8.21)

» d'xe""((X(z)x(0)},)0~"= i(k') ' -ie(ev)(k') ',
(3.23)

d'xe"'"((A„(x)x(0)),}ob
'= n(ev)k„/k'. (8.24)~

~

~

~

The most convenient gauge is obtained by setting
o. =0 in which case the decoupling of A.„andX oc-
curs and the (k') ' terms in the propagators dis-
appear. [ln the T matrix the (k') ' terms should
cancel regax'dless of the value of e.22 The actual
Feynman-diagram calculation is greatly simpli-
fied by setting n =0.] The vertices implied by
Eq. (3.20) are listed in Pig. 1.

A power-counting argument shows that irxeduci-
ble two-point vertices (such as self-energies) are
quadratically divergent; all irreducible three- and
foux'-point vex'tlces are logarithDlically divergent~
except the A„xgvertex which is linearly divergent.
Thus, the theory is renormalimable, meaning that
the introduction of a finite number of subtractions
makes the theory finite according to the BPH the-

R-2-i (gp, ~-khaki /k ) k -(ev) -ia k~k„(k )

i(k ) -io(ev) (k )"

i(k -2' )

e(ev) k~(k )

i2e vg+~

PIG. 1. The Feynman rules in the 0, gauge. The wavy,
straight, and dashed lines stand for, respectively, the
Ap s Qs and X lines'.
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orem. Gauge invariance of the theory relates cer-
tain of the subtraction constants, and these rela-
tions assure us that the negative-metric scalar

excitation implied by the vector-boson propagator
and the X-field excitation disappear from the S
matrix.

C. Regularization

Divergent Feynman integrals can be regularized by the Pauli-Villars" technique in a gauge-invariant
way. That such a procedure is possible can be seen best if we write down a Lagrangian which includes
regulator fields".

4

+Q $ 8~+18+A~ f+ 8" -ac+A'" Q
—

p 2(p+p ) ——g
i=o - i=o 5=0 j=o

+gg Bq+ie+A'q f"(E~ —ieger'~ f —p' (f f I,
A=O k=0 i=o

(3.25)

where Ao =A„,p, =p, and q, , $„and $,
' are the

signature factors +1. The fields f, and f„*are to
be quantized according to the Fermi-Dirac statis-
tics. '4 Equation (3.25) is invariant under the gauge
transformation

'o 1
Ap -Aq+ O' —Bp8,e

e &e

f~-& fa.$6

If we choose the g,. and m, ' such that '

1+Qq,. =0

the A„propagator is regularized sufficiently to
behave like k for large k. If we further choose

$~ and g,.
' so that

1++ ),. =0,

u'+E t, u
j=l

all loop integrations are made finite except those
loops with two or four external 4„lines and no
other external lines. The latter are made finite
by the intervention of the fermion loops of the f„
which have the relative negative signature.

With this regularization, the Feynman amplitude
becomes finite, and because of the gauge invari-
anee enjoyed by the regularized Lagrangian (4.1},
the Ward-Takahashi (WT} identities hold for the
regularized Green's functions. The subtracted
amplitudes (i.e., the amplitudes one obtains by the
R operation of Bogoliubov and: Shirkov" and Hepp")
are then finite (i.e., independent of m, , p, &2, and

g„'~ as they go to infinity) and satisfy the WT iden-
tities. Thus if we choose the subtraction con-
stants in accordance with the WT identities, then
the full amplitudes satisfy the WT identities.

IV. WARD- TAKAHASHI IDENTITIES

A. WT Identities for Green's Functions

Since a transformation of integration variables
does not change the value of an integral, we may
put the variation of Z with respect to 0 equal to
zero. In this way we obtain"

1 2 5Z 6Zfif 6Za—s'a„"—8 J,(x) (") -J,(x} (")

+8"q„(x)=0.
(4.1)

Equation (4.1} summarizes all the WT identities
which connect Green's functions of Eq. (3.16).

For example, if we differentiate Eq. (4.1) with
respect to q"(y) and J'2(y), respectively, and then
let J,= J2 = g~ = 0, we obtain

o. 5q"(x)nq" (y),
(4.2)

All Ward-Takahashi identities can be studied
globally if one considers the response of the gen-
erating functional Z to the gauge transformation
(2.9). We perform the gauge transformation (2.9)
on the variables of integration. Due to the invari-
ance of the action this transformation will change
only the source terms and the gauge term:

1 2O"A„2+8, , +82 2
—q"Aq

)
1 1 2=- ——a's A"-e(Zy -Z y)+st'Z

2~ jf 1 2 2 1



1 ~ 2 5Z~ 5Z„
u 5q„(x)5Z, (y), 5Z, (x),

= -ev5'(x —y), (4.3)

where the notation ~, means the limit in which the
external sources are turned off. Equations (4.2)
and (4.3}specify uniquely the o. -dependent parts
of the propagators:

d'xe"'"((A„(x)A,{0)),),= i-g„„—"," F(k')a%„
4

the functional Legendre transform of Z:
w.[a„,e„e,] =z.[q„,z„z,]

-~~d'gZ, (x)e,(x)+Z, (x)e,(x)

—q "(x)a„(x)]. (4.7)

We have the "Max&pell's equations" dual to Eq.
(4.6):

6W~

( )
--J,(x),

-fo'krak, (k'}

(4.4)

(4.5)

&~'a

( )
—-J,(x),

NVO

( )
=+g"(x).

(4.8)

Thus, in the limit 0.-0„the A„propagator is pure-
ly transverse and the fields A„and X decouple.
[Note also that Eq. (4.1) holds whether or not p,
has a nonvanishing vacuum expectation value. The
difference arises solely from the value of 5Z /
5J,(x) (,.]

Actually what we need for the determination of
subtraction for primitively divergent vertices are
the WT identities for (single-particle) irreducible
vertices. We shall derive them by first construct-
ing the generating functional for irreducible verti-
ces, and then by deriving an equation satisfied by
it.

B.Generating Functional for

Irreducible Vertices

Let us define the "p fields" @„@„andC„by
~Za

( )
=e,(x),

Z, (x)i„=O, ~,(x)(„=0, a„(x)i„=O,
where the notation ~„means the limit (t), = v, p, =a„
—0

From the first of Eqs. (4.8) we obtain

5'W. 5e,(x)
5e,(x}5e,(z) 5Z, (y)

or (4.9}
-- (-)J 5e,(x)5e,(~) „5~,(e)5Z, (y),

5 Zct

~(„)~q()
=~((4(x)e{0)).&0

=-aq(x-y),
we see that O'W„/54,(x)54, (y) is the inverse of the
propagator for the (I field:

5Za
( )

42(x) 7

~Za„() = a„(x).

(4 8) 5 S'0(

5e, (x)5C, (y),
„

J
d'e a~ '(x-s)Z~{e -y)=5'(x-y). (4.10}

We have e,(x)i, = v, 4,(x)i, = 0, a„(x)io=0.
After Schwinger" and Jona-Lasinio, 28 we define

Likewise, from the la.st iwo of Eqs. (4.8), we ob-
tain

5 8'fx

())e.(x)))e,(z)
„

cf 8

5a „(x)54,(e)
„

5 8'~

54,(x)5a„(e)
„

5 W~

))a„(x)))a,(z) .) I

&'Za

5 Z, (z)5 Z, (y),
&'Ze

qp~ &Jay o

~ Za
5Z, (x)5q„(y),

~'&a

))gq(z)))g. ()) )
Equation (4.11) is somewhat simpler in the momentum space. Define

{4.11)

5Z, (x)5Z, (y), (2v)'
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5q~(x)5Z, (y), J (2x)' (4.12)

(y)eik (x-y)
5q"(x) 5))'(y), J (2v)'

P()2)e(k (x y)

54, (x)M, (y), (2w)'

5a"(x)M. ,(y) „(2s}'
5e"(x)Ve"(y)„.(2v)'

Then, Eq. (4.11}gives

(4.18)

Fq k 1"p~k -g p hp k'
(4.14)

The utility of 8' lies in that it is the generating functional of irreducible vertices. Thus, if we define

gn+m+fg
C»"'" ""'"'y"'"'y" ""' ' 5e"~(x) ~e""(x)M. (y) 5e (y )5C (x) M (x) '

{4.15)

(2r) 5 (Q~ Q+P Q+)(ff '((' (( (~1 ' ' )t tP1P ' ' ' lP l 719 ' ' ' 0 lj) 0i

I'„,...„{k„.. . , k„;p„.. . ,p„;q„.. . , q, ) is the single-particle irreducible vertex for n A„'s,m (I('s, and

E X's. The proof is rather simple, but clumsy in notation, and I refer the reader to Jona-Lasinio's ele-
gant paper. "

C. WT Identities for Irreducible Vertices

The statement of gauge invariance, Eq. (4.1),
may be translated into an equation for W . Making

use of Eqs. (4.6) and (4.8), we write

QVct 5lVct--8's„e"(x)-ee, (x)
(

)-4,(x)
( )

+ S~[5W„/I"(x)1 =0.
(4.1V)

Equation (4.1V) stands for an infinite number of
WT identities relating irreducible vextices of Eqs.
(4.10), (4.13), and (4.15). For example, by differ-
entiating Eq. (4.1V) with respect to e "(y) and 4,(y),
respectively, and setting g„=4,=0, C, =v, we ob-
tain

M, (x)5C,(y) 5e~(x)M, (y)
(4.19}

5ev(x)
— (.) 54, (x)

— (.) 54,{x)
(4.21)

which also shows the fact that 8' has no explicit
dependence on n. Equation (4.21) is the state-
ment that S' is invariant under the local gauge
transformation of the c fields:

Equation (4.1V) can be cast in a more useful form.
Define S' by

w. = w — td'x[s&e„(x)]'.1

Then W satisfies the equation

6 5'0{

5e,(x)se „(y)
(4.18)

e„(x)-e„(x)+ s„8(x),—1

4(,(x)-C, (x) cos 8 -42{x)»n8,

C, (x)-e, (x) cos8+e, (x) sine,

so it can be written compactly as

(4.22)
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( )
W[60, 4)„42]=0. (4.22}

Thus the totality of the WT identltles 18 seen to
imply the structure of W„expressed in E(I. (4.20}
wherein 8' is a functional of the e fields invariant
under the local gauge transformation (4.22). Fur-
thermore, this is all that the totality of the WT
ldentltle8 implies.

V. LOFTI-ENERGY THEOREMS AND RENORMAI. IZATION

, k I'q(k;; -k) =21' , ,Ip

a=a

F( e0)01 ) F020 e

6i„,I (;k, k; ) -=I„,-',

I'( e eoeo}=-I"002e

d„2r(;;k, -k) = I'002',

d I'u( PeP;0) =--21'.ug 0u e
dP p p-0

Construction of a renormalized perturbation ex-
pa,nsion according to the BPH program requires
prescribing values of primitively divergent ver-
tices (for which the overall superficial degrees of
divergence are ~0} at subtraction points. Choos-
ing as such the points of all external momenta
equal to zero, we require the following 17 con-
stants:

I'
[) u (0 e 0) ) ) =g]( ul 2oo e

d„,Iu(k, -k;; ) -=-&I'„,'-—,
k=o

I'„„(0,0;0; ) =g„,l'2M,

I'„„(0,0;0, 0; ) =g„„l'220,

I'„„(0,0;;0,0) =g0„1'202,

I"(;0,0, 0; ) =I'(„0,

F012 e

I"(;0,0, 0, 0; )= I', ,

I'( ) 0)0) oeo}= I"022

I'(;;0,0, 0, 0) = I'0~.

Before proceeding further, a remark is in order.
The BPH procedure involves expanding a regular-
ized Peynman integral in a Taylor series of ex-
ternal momenta p,. about- p& =0. Because of the
singularities of the propagators a(k')e a„(k),and

6„,(k) of E(I. (4.12) at k2=0, such a power-series
expansion is not always possible. To circumvent
this difficulty, we shall replace the factors k' in
the denominators by k' -a'+ ic. At the very end
of the calculation, but not before, the limit a -0
should be taken. %hile Green's functions depend
nonanalytically on a' (through, for example, the
factor lna ), the T-matrix elements are indepen-
dent of a in this limit as we shall show (see Sec.
VI).

The 1V constants specified in E(I. (5.1) are not
all independent. To explore the consequences of
the WT identities (4.1V) on these constants, we
shall wxite down the most general expression for
S' which is gauge-invariant and which contains no
more than two derivatives of the q fields. The gen-
erating functional S' so constructed will give ex-
actly the first two terms of the power-series ex-
pansion in external momenta of the irreducible
vertices (4.15). We have

Fu( fe0e 7) 21)gg gu e
q=0

(5.1)

u [8„,u„@]fe «[--(ee=a -e 8 )'A(u, eu, )e[(eueese@ )'+(eeu —cue@) ]u(u, +@ )

+-', (C,e„e,+e,s„e,)'C(4, '+C, ')+D(C, '+4, ')j(x)+0(s'), (5.2)

where A, 8, C, and D are nonsingular functions of their arguments. The condition for the spontaneous
breakdown of symmetry,

5$'
5e, (x)

„

implies that

'(Dv') = 0 (5.4)

Since irreducible vertices are the expansion coefficients of 8' about (t), = 2), $2 = e„=0,it is more conven-
ient to express W„in terms of g = p, -v, y=4„and I„.[We are using the symbols which we previously
used as variables of integration. ] Expanding A, B, C, and D in the form
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we have

w [8„,(, x) f d'x(--,'(aiba„-s,aq)'r a(('+me(+y')"-((/)n)(sn„)'

+-,'[(a„y+ee„x)'+(S„xe-e (t) +2el)a„(a"X ea"-q)+e I) I„I Z P.(g +21)/+X )

+-' (»&4 +4&&t+xs&x) Z ~.(t'+»0+x'}" + Z 6.(0'+x'+»t)")+0(&').
n=O n=l

(5.5)

Eqllatloll (5.5) emhodles all the low-ellel'gy 'the-

orems of the theory which follow from gauge in-
vR1'1Rnc e.

We can prescribe the values of the constants
(5.1) in accordance with the WT identities. We
IQRy set

~020 2~~ & ~002

~ill

(5.6)

Equation (5.2) defines three fundamental para-
meters e, A. , and g, and is equivalent to the state-
ment no = P, = 1 and 5, = —,'X. Equation (5.4) implies

I'002 = 0 (5 &)

which is the GoMstone theorem. The fact +0=1
leRds to

I'lol (5.8)

I'120 = &'(I +»'Pl +4&'Pl»

I' = e'(1+ 21)'P, ),
I"030= -6Am+48@ 53,

I Ol2 2Ãg

I', = -6x+ (12x 24)I)'5„

I'(n2 = -2A. + (12 X 4 }I) 5~,

Equation (5.5) also tells us that

2 1
e PI 4„4,(»1-0.+I'1~»

(5.9)

The remaining ten constants are expressible in
terms of e, A. , and I/. From Eq. (5.5) we find that

I'020' = &+ &'&0 ~

I'Ill' = -e(1 4~'Pl)—

Iaido=

28 "{I 21/ PI) )

xo =
2 d 2 I'(

~ ~ P, P, o, o-)
P p-0

(5.Io)

I'(8) = tPx(n'),

I „(n}= Ie~x(u'), {5.11)

I'I„{k)= -(k gI„-krak„}F(k)
+g„„(em)*x(x') I „u„. ——2 2 1

From Eqs. (5.5) and (5.6), we learn that the low-
energy limits of I', I'&, I'&„arenot renormal-
1zed

5, = -'I'(;;0, 0, 0, 0, 0, 0),
where I'„,(0, 0;;0,0, 0, 0}=g„„l',«and similarly
fol I2«slllce 'tile 1 lgllt llalld sides of Eqs (5,10)
are not primitively divergent, P„P„y„and5,
can be COIQputed 1n terms of 8& A.

&
Rnd 'p.

A perturbative construction of the constants de-
fined in Eq. (5.9) may proceed in the following way.
If we expand an irreducible vertex with F. external
lines in powers of e, with el) and X'~'/e fixed, then
the n-loop terms are of order e~ 2'2~. Therefore
we see from Eq. (5.10) that

P =e'(P +P c'+ )

P =e'(P +P.e'+ ),
&0

= e'(~01+ ~lie'+

5, = '(5„+5„'+~ ),
where the second subscript of the expansion coeffi-
cient refers to the number of loops of the dia-
grRIQS to which 1t 18 assoclRted. The coefflc1ent
53„,for example, is computed froIQ the n-loop
approximation to I'«6, which is primitively con-
vergent; the construction of I'00, for up to n loops
requires the knowledge of primitive vertices of
Eq. (5.1}up to at most n —1 loops.

Finally we see from Eqs. (4.18), (4.19), and

{5.V) that I', I'„,and I"„,of Eq. (4.13) are con-
strained to the following forms:

x(0}= r(0) =1. (5.12)
22

& I)*Pa=4X4 (I'2«1'«0} %'e see therefore that ~, ~„,and g„„aregiven by
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(eu)
I},„(k)= -in(, ), k„, (5.13)

k'=0 of the Green's function G„,. . .„(k„..., k„):
G„,...„„(k„..., k„)(2}I)'5Ek}

t d4+ eNI xI
Sq»(x) "5q~ (x)

F(0) = -(elt) '.
VI. UNITARITY AND GAUGE INDEPENDENCE

OF THE 5 MATRIX

(5.14)

By the regularization procedure of Sec. IGC and
the renormalization of Sec. V, finite irx'educible
vertices can be constructed which satisfy the WT
ideniities (4.17). Green's functions, Eq. (3.16),
can then be constructed from irreducible vertices
by the rules of tree diagrams. " The Green's func-
tions so constructed, of course, satisfy their own
WT identltles (4.1). We wish liow to delIIGIlstl'Rte,
by means of Eq. (4.1), that the T-matrix elements
between two physical states of the A„and p Iluanta
are independent of the gauge ry, and that the T ma-
trix does not have a pole at k'= 0, the residues of
the poles of the X propagator and the longitudinal
part of the vector propagator (of negative metric)
cRncellQg.

Since the P propagator has a branch point at k'
= 4g'-0, it is in practice inconvenient to locate
the mass of the Il} particle from its propagator.
The vector propagator h„„doesnot suffer from the
infrared divergence. From EII. (5.13}, we see that
the mass of the A.„particle, I', is given by

I'(I')M'-X{M')(e~)'= 0. (6.1)

Vfe.suggest that the most coQvenlen't way of getting
at the P mass and the physical T matrix between
states coQslstlng of RQ arbitrary number' of Q~ Rnd

Ii} Iluanta is to consider first the T matrix for the
PX'OC8SS

W„(k,)+A„(k,)- (s -2) X,'s, (6.2)

and look for the pole in the variables s = (k, + k, )'.
The location of the pole, s = m3, gives the mass of
the I} particle, and the residue gives the product
of the AAg coupling constant and the T matrix for
the process

II(k, +-k, )-(n-2) X„'s.
By repeating this procedure, we can obtain all ele-
ments of the T matrix from those for the process-
es (6.2). We shall carry out our program by show-
ing the n independence Rnd the lack of the pole at

a„,( k) = -(g„,—k„k,/k')[k'Y(k') —(eI})'X(k')] '

—nk„k„/(k')'.
The e-dependent parts of ~, A„,Rnd ~&„areQot
renormalized to all orders [see also Eels. (4.4)
and (4.5)], and F(0) of EII. (4.4) is given by

(6.3)

We shall further show that G~,. ..+ has no infra-
red divergence (i.e., is finite as a'- 0) and no
branch point at any (subenergy)' = 0. Since the T
matrix for the process (6.2) is obtained from the
Green's function by the process of "amputation, "3~

lim g (k,' —I') G„,...„„(k„.. . , k„),
N2 .-

the Rbove properties Rx'8 transmitted to the eQtlre
T-matrix elements. In particular, the determina-
tion of the g mass does not suffer from the infra-
red difficulty. This might seem paradoxical How. -
ever, experiment with lower-order perturbation
calculations suggest the following resolution: The
g propagator has the form

I},q(k') = F(k')G(k')F(k'),

where F(k'} has a branch point at k' =0 and no
pole, and G(k') has a pole at k' = m' but no branch
polIlt R't k =0. Tile fRctolF(k ') ls canceled by the
inverse factor from the vertex to which this propa-
gator is attached.

From Eq. (4.1), we obtain

n "I 5q„,(xI} ~ ~ ~ 51}„(x„), (6.4)

If we wl1 te Gp '. .'.p„(klan ~ ~ ~, k„)Rs

G„...„(k„.. . , k„)= i},„,"(k)a„,~...p (k; k„.. ., k„)
+ I}„,( )kJ'~. ..„„(k;k„.. . , k„)

„

(6.5)

then Eq. (6.4) implies, by virtue of Eqs. (4,2) and
(4.3),

ik "a„,1,... l„(k;k„.. . , k„)
+evil ... 1 (k; k„.. ., k„)=0.

(6 6)

Let us consider a part of the G which is reducible
with respect to an A„orX propagator. Suppressing
all inessential labels, such a term can be written
as (see Fig. 2)

aiP(k; " )i},""(k)a't„'}(-k;~ ")
+a"'(k; ")~"(k)z"}(-k; ")

+a "}(k;".)I},"(-k)a&2}{-k; ")
+Zb}(k .")~(k')Z~'}(-k ~ ")

(6.V)
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If we substitute Eqs. (5.13) in Eq. (6.V), the coef-
ficient of a is

which is identically zero due to Eq. (6.6). Now
consider the residue of the pole at k'= 0 in Eq.
(6.V). It is

1

I
I
I

i)t, "H~~(n ~ ~ ~ )E(k')(-i}t")H~' (-0' )

+z"&(u. "} zt'&(-n " )
1

x(u')

which is zero, due again to Eq. (6.6) and to Eqs.
(5.12) and (5.14).

Let us now consider the o, independence in the
general case. The generating functional T„[A~(I),X]

FIG. 2. Diagrammatic representation of Eq. (6.7).

of the Green's functions, from whose extexnal lines
the propagators of Eqs. (3.21)-(3.24) have been re-
moved~ may be %'ritten as

exp(i T [A„,(I), X])= exp(ic(V[5/64„, 6/5X])

d xd p Ap„x-p ++~ g-y'2$g2

~.(.-~), , ', .~( fd" ~,(.))ax& ax(~}
(6.8)

where n,z(x, p') and D~(x) are the usual Feynman
propagators and

~~"" I 2 }~'-(e~)2+i~

The interaction Lagrangian gI' is the sum of gI in

Eq, . (3.20) and renormalization counterterms which
ensure the renormalization conditions of Eq. (5.6).
The operator U generates the gauge-dependent part
of the off-shell T matrix; it is given by

v[5/w. „,6/ax]

d'xd'yd'zD x-s D ~-y Vx V y,
(6.9)

from w'hich follow's the a independence of aD on-
shell physical T-matrix elements.

Let us now consider the unitarity in the general
case. An absorptive part of a 7'-matrix element
is given by the Landau-Cutkosky rule. We may
w'rite it abstractly as

~bsT-g To&p„T&„", (6.13)

where n labels intermediate states, and p„is the
metric factor associated with the intermediate
state n. Since we are concerned only with the can-
cellation of the contributions of the Goldstone bo-
sons and the massless scalar excitations associat-
ed with the longitudinal part of the vectox' propaga-
tor, vrhich goes as

where V is the functional differential operator

" 5&„(z) 6X(~)

Equation (6.4) and its generalizations give

(6.10)

d
exp(iT~[&) (I) X])

~ /=X =0
(6.12}

~(,) ~ ~ ~ I ( .)T.[~„~,x]I.„-.„., ~-,—.=0, (6.»)
where 2„'"=(g„"-a„a"/a')A„is the restriction of A,

„

to the transverse components. %'e therefore have

'Ve may dispense wiUl any 1 efex'ence to massive
particles in the sum ovex' intermediate states. Let
us consider an. intermediate state of N massless
particles of both kinds. Let

(6.15}Tg "~i (pl& ' ' 't pN)

be the T-matrix element 'for N zero-mass bosons,
mhere i denotes the kind of particles: i= 0 is for the
(positive metric) Goldstone boson' and i = 1 for 'the

(negative metric) scalar excitation associated with
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the expression (6.14). The metric p„in Eq. .(6.13)
is given by

Pg =eXp l1T $g (6.16)

We may separate Eq. (6.4) into parts, which are
either longitudinal or transverse with respect to
each x, , i = 2, . . ., N. In this way, we obtain alto-
gether 2"- I equations, which are of the form

(6.17)

where the operation 9 is defined as summing over
the indices belonging to a nonempty subset of(i„.. . , i~) and setting the rest of the indices equal
to 1. In deriving Eq. (6.17) from Eq (6.4. ) we used
the fact that p,

' = 0. Equation (6.1 I) allows us to
express the 2N components of Eq. (6.16) in terms
of one function T. %e can write

T, ...;„(it„.. . , it )=Tsxp in pi, ).

Therefore we see that"

which shows that an intermediate state with any
number of massless particles of any kind does not
contribute to the unitarity sum. We see further
that the T-matrix element cannot have a branch
point at any subenergy = 0, and therefore there
cannot be any singularity as a'- 0.
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