PHYSICAL REVIEW D

VOLUME 5, NUMBER 4

15 FEBRUARY 1972

Bound Geodesics in the Kerr Metric*

Daniel C. Wilkins
Institute of Theovetical Physics, Deparvtment of Physics, Stanford University, Stanford, California 94305

and Joseph Henvy Labovatovies, Princeton University, Prvinceton, New Jevrsey 08540
(Received 25 June 1971)

The bound geodesics (orbits) of a particle in the Kerr metric are examined. (By ‘“bound”
we signify that the particle ranges over a finite interval of radius, neither being captured by
the black hole nor escaping to infinity.) All orbits either remain in the equatorial plane or
cross it repeatedly. A point where a nonequatorial orbit intersects the equatorial plane is
called a node. The nodes of a spherical (i.e., constant radius) orbit are dragged in the
sense of the spin of the black hole. A spherical orbit near the one-way membrane traces
out a helix-like path lying on a sphere enclosing the black hole.

I. INTRODUCTION

Do effects of general relativity proper play a
central role in such celestial phenomena as the
pulsars and quasars? This question merits ser-
jous consideration if only for the reason that there
is no (macroscopic) device as effective as the
gravitational field of a collapsed star for the re-
lease of energy.!

At present, two sorts of energy-releasing pro-
cesses are known. In one, a particle falling into
a black hole emits electromagnetic or gravitational
waves; the hole does not participate actively. In
the other, a possible mechanism for which has
been proposed by Penrose, the black hole itself
provides a source of energy. A particle near the
one-way membrane breaks up into two particles.
One can arrange that one of the fragments will
escape to infinity with an energy larger than that
possessed by the original particle provided the
other fragment is captured by the black hole. It
may be that this mechanism, more contrived than
the radiation process, will have less direct impor-
tance for astrophysics.

The Penrose process does not violate conserva-
tion of energy. As shown by Christodoulou,® the
extra energy of the escaping particle is taken from
the rotational energy of the black hole. By re-
peating the Penrose process many times one may
deplete a black hole of its entire rotational energy,
which can amount for a charged black hole to as
much as 50% of its rest mass.®

The energy release possible through radiation
processes is equally remarkable. Christodoulou
and Ruffini® have shown that a charged particle
falling into a charged black hole can, under appro-
priate conditions, emit its entire rest-mass ener-
gy.

Preliminary to investigating the problem of
radiation, one must understand the kinematics of
test particles for which the effect of radiation is
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neglected. Darwin*5 has already considered the
geodesics of a particle in the spherically symmet-
ric Schwarzschild field. The Kerr-Newman field,
which describes a body having charge, mass, and
spin angular momentum, is richer in structure
than the Schwarzschild field. In this paper, we
study the bound geodesics or “orbits” in the charge-
free Kerr metric.® We have restricted ourselves
to the charge-free case both because this case can
be a very relevant one for astrophysics, and be-
cause we would like to distinguish the purely rel-
ativistic effects of the gravitational field from the
electrodynamic ones.

In Sec. II, we deduce a necessary condition for
binding to occur. Subsequently, we specialize to
spherical orbits, that is, orbits of constant radius.
In Newtonian mechanics, one can understand much
about the general orbit by studying the circular-
orbit case. Here, too, one believes that most fea-
tures of interest are present in the case of spheri-
cal orbits.

In the limit of large radius, a spherical orbit
goes asymptotically to a Keplerian circle. Con-
sidering a sequence of orbits of ever smaller ra-
dius, we find that as the radius decreases, the line
of the (ascending or descending) node is increas-
ingly “dragged” in the sense of the spin of the
black hole. (The line of the ascending node is a
line of constant azimuth in the equatorial plane
passing through that point at which the orbit, going
from negative to positive latitudes, intersects the
equatorial plane.)

At a certain radius, a horizon occurs. This
horizon, known as the one-way membrane, has
the property that anything penetrating the surface
from outside will be unable to escape again. The
most rapidly rotating Kerr particle for which causal-
ity does not break down’ has an angular momentum
equal to its mass squared (in geometrical units).
Stable orbits are possible down to its one-way
membrane. As the orbital radius approaches that
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of the horizon, the dragging of the nodes increases
without limit. During the time that a particle
makes one oscillation in latitude, it will be swept
through many complete azimuthal revolutions.
Consequently, an orbit near the horizon will have
a helix-like shape with axis parallel to the spin of
the black hole.

II. CONDITIONS FOR BINDING

Carter” has given the first integrals of the equa-
tions of motion of a particle in the Kerr-Newman
field. For the sake of a clearer physical inter-
pretation, we use his Eq. (9) to transform to Boyer-
Lindquist coordinates; in these coordinates, the
metric is symmetric under simultaneous inversion
of the axial and stationary Killing vectors. The
metric is

ds®=p?A~tdr? +p2d?6
+p~28in?0[ adt - (72 + a®)do ]
- p 2A(dt - asin?0do )?,
where
p?=7?%1+ a?cos?9, @
A=72=2mr +a’+ €2,

a, m, and e are, respectively, the specific angu-
lar momentum, mass, and charge of the black hole.
Specializing to the charge-free case, the equations
of motion take the form?®

p%7 =VR, (2a)

p2é=:t\/—9—, (2)

p%¢ = (& sin~26 — aE) + aA™'P, (2¢)

p*t=a(® - aE sin®6)+ (1 + a®)A"'P, (20)
with

6 = Q- cos?6[a?(12 - E?) + &*sin~20],

P=E(r*+a?) - da, (3)

R=P% - A[127%+ Q+(® — aE)?].

The dot denotes differentiation with respect to a
parameter A, defined in terms of the proper time
by

T=UA. 4)

The signs in (2a) and (2b) can be chosen indepen-
dently. The constant a denotes the angular mo-
mentum per unit mass of the central body. E, &,
and @ are three constants of the particle’s motion.
E and ® refer, respectively, to the energy and to
the z component of angular momentum; @ is re-
lated to the 6 velocity, 6.

We rewrite R(7) in a form independent of the
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masses, Writing R(7) out in detail,

R(?) = (E? = &) 7* + 212mr® + [a®(E? = 2) — 82 = Q]#?
+2ml(aE - % + Q7 - a2Q.

Dividing through by p2m?,

R(7)/12m* = (B2 = 1)74+ 273 + [@2(F% - 1) - 82 - Q)72

+2(aE - 87 + Ql7 - a2Q, (5)
where
E=E/y,
&=0/mp, Q=Q/m?2, (6)

We shall henceforth take
pu=m=1,

which is equivalent to using the caret variables.
Since p?=1 is greater than zero, the geodesics de-
scribed by (1), (2), and (3) are timelike.

One can determine the values of E, &, and @ for
which binding occurs by using the effective poten-
tials.

We first discuss the effective radial potential
V(7). V(7) is defined as that value of E such that
7=0 at radius »; by Eq. (2a) it follows that R(7)=0.
Rewriting R(#) in a more convenient form,

R(7)=[r*+a%(%+27)E? - 4advE
+a%®% = (724 Q+ %) (7% = 27 + a?), (7
a quadratic in E. R(») has not one but two roots:

4adr + VD
2[7%+a?(r2 +27)]

8)

V:t(”; o, Q) =

The discriminant D depends on ¢ only through &2,
In general, the reality of the radial velocity leads
by (2a) to the requirement that R(#) be non-nega-
tive. If D is negative, this requirement is fulfilled

TURNING
POINTS
~ /i _____ CEAL V=t
o o\ AS r—=oco
V,(r)
l~—— HORIZON
00 t + } } } ——
(r ="horizon)

FIG. 1. Sketch of an effective radial potential which
would bind a particle of energy greater than unity
(dashed line). There must be at least three turning
points. We show that such a potential is impossible by

proving that there may be at most two turning points
for E>1.
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for all values of the energy. If, however, D is
non-negative, the energy must satisfy either of the
following conditions:

E=V(7, %, @ (92)
or
E<V.(7, 9, Q). (9v)

Whether or not the effective potential is real, we
may always make the one-to-one correspondence,

E! q’} Q"’ —Ey —(I), Q- (10)

Inspection of the equations of motion, (2)and (3),
shows that with proper choice of sign, the 4-veloc-
ities of two such corresponding motions will differ
only in sign.

We now prove that if E2>1, and if the specific
angular momentum of the black hole lies in the

causality-preserving range 0 <sae<1, then the mo-
tion is unbound.

The proof depends on setting an upper limit on
the number of turning points. Consider a con-
ceivable V.(7) sketched in Fig. 1. Notice that by
(7) and (8), V.(7»)goes asymptotically to unity at
large radii. As indicated by the figure a bound
state with E>1 is only possible if there is a range
of energies for which three or more turning points
occur. We will prove in fact, that there are at
most two. E <-1 also satisfies E>1. By the cor-
respondence (10), however, if our theorem is
proven for E =1, it will necessarily also hold for
E <-1,

Let us reexpress R(7) in terms of the new co-
ordinate x, defined by

r=x+1.

Substituting this into (5) yields

R(x)=(E? = 1)x*+ (4E% = 2)x% +[(6 + a®)E? - a® — &2 — Q]x?
+[(4+2a2)(E% =1)+6+2a2E% = 4a®E]x + [(2aE - )% + (E2 + 1+ Q)(1 - a?). (11)

In the language of classical algebra, whenever a
term in the polynomial is followed by one of the
opposite sign, that is described as a “variation of
sign.”® A polynomial (with real coefficients) can-
not have more positive roots than there are varia-
tions of sign.!° If E>1, the first two terms are
non-negative. Write the last three terms as

2
X% %, c,.
As many as three variations of sign can occur if
Cyy € <0,

12
¢, >0. 12)

From (12),
¢, = (cy+¢,)>0,
or by (11),
Qa%>3E?-1>0. (13)

If a=0 (Schwarzschild), (13) is impossible. If
O<asl, (13) implies a positive @, whence ¢, is
non-negative; but ¢, non-negative contradicts (12).
Since (12) cannot be satisfied, . there may be at
most two variations of sign and hence two positive
roots. We have shown this for » =1, It must be
true a fortiori outside the horizon, since the latter
occurs at

r=1+(1=-a?}/2>1,

When E%<1, the first term is negative. Four
variations would be possible only if the succeeding
terms had the signs +, —, +, —. But if the second

T
term is positive, then
E%> 3.

Equation (13) continues to hold, showing that the
last three terms cannot have the supposed signs.
Hence, not more than three variations of sign are
possible. One sees then that for given @, ®, and
|E| <1, there may be at most one region of binding.

By considering the motion in latitude, and using
the preceding theorem, we will prove that @ must
be =0 for binding.

By analogy with V(7) the effective 6 potential,
V?3(6), is defined as that value of E? which makes
6=0 when the polar angle=6. By (2b) and (3),

0= 06(6)= @ - cos?6{a?[1 - V?(9)] + #*sin 20}

or

V2(8)=1+a~%(®*sin"20 — @cos ~26). (14)
The significance of V%(6) can be seen by writing

0(0) = a?cos?6[E* — V(). (15)
A particle at polar angle 6 can only satisfy

E%< V2(0) (16)

if it is confined to the equatorial plane and has
@=0. That @ is not negative follows from (14)
according to which @>0 implies

E?> V3(n/2) ==,
For all cases other than =0,
E2=V2(9). an)
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5
But (14) shows that if @<0, then 1600
V2(8)>1, (18) 1400
By our earlier theorem, (17) and (18) together 1200r .
imply that the particle is unbound. Thus, for 100.0
binding we require
) Ve 800
=0. 19
? ( 60.0
It follows from (2b), (3), and the theorem that an ‘ 400
orbit has @=0 if and only if it is confined to the )
equatorial plane. 200
Typical examples of VZ(0) with @>0 are shown 00
in Fig. 2.} A particle can only reach the axis ’ <
(6=0, 7) if ®=0. With the help of the figure we - 200
draw the conclusion: Every orbit either remains -400
in the equatorial plane (@=0) or crosses it re-
peatedly (@>0). -600
III. SPHERICAL ORBITS ~800 S
‘_IOO'O L 1 1 1 _cxo 1 I 1 L |

From here on we will treat the most interesting
3B T2 108 144 18O

case, the extreme Kerr case:
—08 (deg)—=
a=1.
" . . FIG. 2. Examples of the effective 8 potential with
In addition, we restrict ourselves to spherical @ >0. Only when &= 0 can particles of finite energy
reach the axis (6=0°, 180°). In this and subsequent

orbits. The particle’s radial coordinate will be
figures, the spin parameter, a, equals unity.

stable at some value 7, if R(#») vanishes at v =7,

14.0
12.0
10.0 & \
raWATR\
8.0 ;/ / ’l ,’ \
6.0 I~ / / I/ / \ 18.0
R - ? !
Ao, [ NGV ,'l 16.0
40 A & ] | | I
9, oo 14.0
7 ® | I | ! .
2.0 p ! ! |
S, Al 12.0
1 1
4.0 A © N & OPSJ qb-« |' o 'Iot-g? !09?9 {o 10.0
'/8(\45 Q,‘;\ oev oqo 0“« K S (5 {0_;_ _*\— k\— ! Q
i \ \
2. O\ 7ol NN \\\ 8.0
0.577 \\ \ \
0.0\~ N Y 6.0
\
-2.0 D B . 40
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T Y YN Y N,
: 0.962 \0.963 \0.964 \ 0.966 ’
0DV PV PV VNNV NN VY VNN NN
2.0 4.0 6.0 8.0 10.0 12.0
r

FIG. 3. Portion of the surface of stable spherical orbits. The energies of the orbits of least and greatest binding
are given for integral values of the radius. For small radii, only orbits revolving in the sense of the black hole (those

with &> 0) are stable.
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FIG. 4. Constants of motion of spherical orbits of
least and greatest binding. As seen in the plot of &
versus 7 and in Fig. 3, all orbits with radius 5.3 are
co-revolving (¢ >0). The discontinuity of slope at »=9
for the orbits of least binding is not puzzling in view of
the same discontinuity evident in Fig. 3.

and goes negative nearby. This will be the case if

‘R(7,) =0, (20a)
R

2 0, (20b)
2R (20¢)
87? r=rg )

Replacing (20c) by

2R ’
W rorg >0 (ZOC )

yields instead the conditions for an unstable spher-
ical orbit.

In the following we shall only be interested in
the plus-root solutions, that is, those satisfying
(92). The behavior of the minus-root solutions is
easily determined with the help of (10).

Solving Eqs. (20a) and (20b) simultaneously elim-
inates two of the four unknowns, E, @, ®, and 7,
Imposing the stability requirement (20c) and the
boundedness requirement (19) determines a subset
of this two-parameter set of trajectories.’* In
Fig. 3, the set of stable spherical orbits of small
radius is represented as a two-dimensional sur-
face in (7, @, ®) space. The intersections of the
surface with the @=0 plane are the equatorial or-
bits. For 7 =9, there are two such lines, stand-
ing for the co-revolving'® (® >0) and counterrevolv-
ing (® <0) equatorial orbits.

For a fixed radius the energy varies monotonical -
ly along the surface. The co-revolving equatorial
orbits have the largest binding energy, 1-E. For
a given radius =9, the counterrevolving equatorial

orbit has the smallest binding energy. For a ra-
dius <9, such an orbit is unstable (and thus not
shown in Fig. 3). Instead, the orbit situated at an
inflection point of the effective radial potential,
that is, with

R
or2

is the least tightly bound (for a given radius <9);
the set of these orbits constitutes the curved edge
of the opening in the surface. (See Fig. 4.)

For large radii, the surface goes to the Schwarz-
schild limit: :

Q)= 77’_2—3 - ®%=0,
r=—4 @1)
r(r=3)°

Stable orbits occur all the way to the horizon, at
¥ =1. The one-parameter family of horizon-skim-
ming orbits is

E¥(7r)=1-

2/V3 <d<V2, (22a)
Q=392 -1, (22b)
E=1®. (22¢)

The lower limit on ® results from the restriction
to @=0. To understand the upper limit one must
consider an orbit just outside the horizon. Setting
=1+, with 0<x «1, one can show that

2R

=2(%% - 2)x + O(A?). 23
55| _ =2(8" =20 00" (23)

Applying (20c) yields the upper limit, & =2,
Equations (22b) and (23) do not of themselves
rule out the alternative range

-2 <d<-2/V3, (22a')

Consideration of V.(7), however, shows that (22a)
describes a solution of (92), and (22a’) a solution
of (9b).

From (21), observe that in the Schwarzschild
case, the squared angular momentum, ®2+ @, de-
pends only on the radius. By contrast, it follows
from Eqgs. (22) that, for orbits at the horizon,
&%+ @ varies almost by a factor of 2 in the ex-
treme Kerr case.

IV. DRAGGING OF THE NODES

Lense and Thirring' have shown that in the
weak-field limit, the nodes of a circular orbit are
dragged in the sense of the spin by an angle

AQ = 2(a/m)(m/v)P/? (24)

per revolution. An exact expression for Af, cor-
rect for all distances, can be given in the Kerr
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case. place includes the equatorial value, z=0:
Assume, say, that 6 is decreasing. Dividing O0<z<z.. (30)

(2¢) by (2b) then gives

Equation (30) corresponds to one-quarter of a com-

in—20 o -1
Z_‘g = ‘PZS;I(II 9E2E ;f A Ty (25) plete oscillation in latitude. From (2¢) it is clear
[9 - cos®6(1 — E* + #* sin~26) that the azimuth changes by the same amount in
Setting each quarter oscillation; that is, one gets the
- cos0 26) same change whatever the signs of 9 and 6 - 7.
Z=cos Using a standard table of integrals,'® the change
and assuming 6 < 37, we integrate to obtain of azimuth during one-quarter oscillation of lati-
s f dz . PA - F f dz ) tude is cast into a more intelligible form:
=22 Ja vt 2 YR)’ L )]
A = ®Il(—z-, k) + (PA~! = E)K(R 31
where ¢W(,)( )K(R), (31)
- 3 2 1/2
Y(z)=[pz° = (@ +B)2*+ Qz]'2, (28) where
with ¢ =®%+ @ and 8=1-E2%, Turning points in 6 K=z_/z
occur when the denominator of (25) vanishes or, *
equivalently, when and

B2 =(a+B)z+Q=0. (29)

Since o, B, and @ are all non-negative and since
a =@, the roots, z,, of (29) are real and non-nega-
tive. The range of z for which the motion takes

/2 dx
K k = R e
®) J; (1 - k2sin%x)172’

/2
M(n, )= f dx
0

(1 +nsin®x)(1 - 2 sin®x)'/2

3,0
v R
%/a FOR ORBITS OF
2.5/ LEAST BINDING
100~ SLOPE — —1{
AS (r-1)~0
10 2.0
CO-REVOLVING
A v $ / Y
10'h s
Ay . FOR
oman?q OF LEAST
BINDING Vg, =1.162
16° V3 i ‘:)/1(1;,
10 j 1610 1398 0919 0224)/-0656 -1701 -2.897 -4.234
: $>0 $<0 -
SLOPE -3, Vgy,, =0.838 -—7”_———_
S| (@ ' | ASr—oo o COUNTER-REVOLVING
J
©os [ 100 1600 (b)
(r=1) 0.5 1 i 1 1 il 1 1 J
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 80

(r=1) —

FIG. 5. (a) Angle of dragging of nodes per revolution versus distance from the one-way membrane. Af increases

continuously as the orbital radius decreases. (b) Ratio of the ¢ and 6 frequencies versus distance from the one-way
membrane. This changes discontinuously from a value less than unity to a value greater than unity, in going from-
counterrevolving to co-revolving orbits.
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are elliptic integrals of the first and third kinds,
respectively.

An orbit is called co-revolving if A¢ is positive.
The first term on the right-hand side of (31) has
the sign of ®; one can show that the second term is
always positive for a spherical orbit satisfying
(9a). When & is negative the first term dominates
the second; even when & approaches zero, the in-
tegral by which it is multiplied blows up so that the
first term remains dominant. It follows that the
sign of & determines that of A¢ and hence whether
an orbit is co-revolving.

If the 6 and ¢ frequencies were equal, A¢ would
equal 7. Thus the ratio of the frequencies is given
in general by

V¢/Ve=|A¢V%77, (32)

Substituting values of E, &, and @ for various
orbits, one finds that

ve/vg<1l for &<0

(33)
>1 for &>0.

Equation (33) signifies that the nodes are always
dragged in the sense of the spin.

The angle of advance of the nodes per nodal peri-
od is

AQ=27TIV¢/V6—1|. (34)

One finds, as one would expect, that AQ always
varies continuously when the constants of motion
change continuously. vq,/ vy, however, undergoes
a finite discontinuity when & passes through zero.
Figure 5 displays the contrasting behavior of AQ
and v, /v, for the least tightly bound orbits. The
plot of v, /vg for the most tightly bound orbits does
not show the discontinuity since such orbits are all
co-revolving.

For large radii, one may replace E, ¢, and @ by.
their Schwarzschild values. From (21), (31), (32),
and (34), the leading term of AQ is just the Lense-
Thirring result, (24), witha=m=1.

Contrast (24) with the effect in Newtonian theory
of a mass quadrupole moment:

age L2 (35)

7
where i is the angle of inclination. The AQ of (35)
differs from that of (24) in these respects: (a)
higher-order dependence on the radius; (b) depen-
dence on the inclination of the orbit, e.g., the
nodes do not regress for a polar orbit; and (c) the
sense of rotation of the nodes depends on the mo-
tion of the orbiting particle —the nodes move con-
trary to the azimuthal velocity.

For small radii, only the term A™ in (31) di-
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FIG. 6. Sketch of path of spherical orbit near one-way
membrane (not drawn to scale.)

verges. Using Eq. (8), the effective potential at
7 =1+ (expanded about » =1) is
V., 18V

9
—A
ar?

hal} 2
o7 +2 AZ,

V(r)~ &+

Since the slope of V(7) vanishes at » =1+2,

LAy
T er/ or?c
Thus
32
E=V(r)~3®~ % 81}2/)»2=§<I>+O(A2).

Using this to evaluate P to order A, one finds

PA =& 4 0O(1). (36)
There results the asymptotic formula

ve 1 2K(k)

ve 7v=1 m(Bz)N/?" (37)

Substitution of the values (22) for orbits at the
horizon reveals that the coefficient of (»—-1)"!
varies from about 0.817 for &=2/V3 to about
0.835 for =2 . :

- SN

(deg)
NN
o o
o ©

15.0
10.0

o
o

1S T T Y Y N S B B

L1
125 130 20_/z

—_—H—
FIG. 7. Maximum latitude (= — minimum latitude) of
orbits at the one-way membrane.

—MAX. LATITUDE
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An orbital path close to the horizon is sketched
in Fig. 6. The particle traces out a kind of helix
lying on a sphere. As the particle approaches the
maximum latitude, the angular separation between
successive loops of the helix decreases. Reaching
the maximum latitude, the particle begins the
winding descent to the minimum latitude, located
below the equatorial plane symmetrically to the
maximum. Using Eqs. (22), (26), (29), and (30),
we have plotted in Fig. 7 the maximum latitudes
of orbits at the horizon.

It is known that there is a close resemblance be-
tween the linearized gravitational theory and class-
ical electromagnetism. This prompts one to ask
whether there occur orbits analogous to the spirals
of electrons in the earth’s magnetic field. The
best place to look for such exotic behavior is near
the horizon. From Eqgs. (3), (9a), and.(8) it fol-
lows that PA™! always diverges at the horizon.
Divide Eq. (2¢) by Eq. (2d) to obtain

a T2 for r=~1.

One can see from this that the retrograde motion
required for any kind of looping is impossible:
Dragging forces a particle near the horizon to re-
volve always in the same sense as the black hole.
Unlike the weak-field region it is not true in
general that AQ depends only on the radius. For

100001
8000r
600.0r

400.0+

(a)

2000} T¢

|
|
200} To :
I
|

Or

o COUNTER-_____
"oF<+—CO-REVOLVI NG_“"Y‘_REVOLVING
0

2.0r

53 B, ® PERIODS (COORDINATE)

%" FOR ORBITS OF LEAST
BINDING
0.2+
0.1 . Ll . M| . N
0.1 1.0 10.0 100.0

— (r—1) >

example, for » =9, AQ/27 decreases from 0.0814
for the counterrevolving equatorial orbit to 0.0607
for the co-revolving equatorial orbit.'¢

V. PERIODS
The proper 6 period is obtained by integration
of (2b). Squaring (2b), multiplying through by
cos?0 sin?0, and making the change of variables
(26), one obtains

. 4
S T

with Y(z) as in (27). Hence, apart from a sign,

(r2+2z)dz

dr = 2Y(z)

Integrating,
L _fz- (72 +2)dz
L1007 2Y(z)

or

- Gt 2 K -4 B>1 E®), 38)

where
/2
E(R) =f (1 = k2 sin®x)/2dx
o]
is the complete elliptic integral of the second kind.
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To obtain the coordinate period, divide Eq. (2d)
by Eq. (2b). Integration then yields

re,c=4[1v:<5ﬁi>l/2 + (ﬁzt)‘ & +PA Y (r2 + 1)—E]:|K(k)

2. 1/2
-4E (?> E(F). (39)
To find the proper azimuthal period divide 7, ,

by
Vy/ Vo =To/ Ty
which is given by (31) and (32); likewise for the
coordinate period.
The periods determined above refer to pu=m=1,
The scaling law for times is obtained in similar

manner to Egs. (6). Equation (2b) is to be cast
into the mass-independent form

pil
ax
where © is the function © expressed in terms of

caret variables. The polar angle is already scale
free. From (1), (3), and (6) one sees that

=(8)/2, (40)

ﬁz = m-zpzs
6 = (mp)~%0.

It follows that (2b) can be cast into the form (40)
by setting

dX =pm~tdx =m™dr.
The second equality results from (4). Putting

5
m=1,
dx=d?
or
di=m™dr, (41)
Similarly, from (2d), (3), and (6),
dt=m™at. (42)

Equations (41) and (42) together with Eq. (6) con-
stitute a general rule applicable to geodesics with
w2>0,

Figure 8 shows the periods for the least-bound
orbits with radii <30. Here we see that the dis-
continuity in u¢/ vy mentioned earlier is due entirel
to a discontinuity in v,.

Note added in proof. One can show from (7) that
D =4rA{@% %+ (r2+ Q)[r* + (v + 2)]}.

Equations (8) and (19) then imply that for an orbit
the effective radial potential is everywhere real
outside the horizon.
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