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The bound geodesics (orbits) of a particle in the Kerr metric are examined. (By "bound"
we signify that the particle ranges over a finite interval of radius, neither being captured by
the black hole nor escaping to infinity. ) All orbits either remain in the equatorial plane or
cross it repeatedly. A point where a nonequatorial orbit intersects the equatorial plane is
called a node. The nodes of a spherical (i.e., constant radius) orbit are dragged in the
sense of the spin of the black hole. A spherical orbit near the one-way membrane traces
out a helix-like path lying on a sphere enclosing the black hole.

I. INTRODUCTION

Do effects of general relativity proper play a
central role in such celestial phenomena as the
pulsars and quasars? This question merits ser-
ious consideration if only for the reason that there
is no (macroscopic) device as effective as the
gravitational field of a collapsed star for the re-
lease of energy. '

At present, two sorts of energy-releasing pro-
cesses are known. In one, a particle falling into

a black hole emits electromagnetic or gravitational
waves; the hole does not participate actively, In

the other, a possible mechanism for which has
been proposed by Penrose, the black hole itself
provides a source of energy. A particle near the
one-way membrane breaks up into two particles.
One can arrange that one of the fragments will
escape to infinity with an energy larger than that
possessed by the original particle provided the
other fragment is captured by the black hole. It
may be that this mechanism, more contrived than

the radiation process, will have less direct impor-
tance for astrophysics.

The Penrose process does not violate conserva-
tion of energy. As shown by Christodoulou, ' the
extra energy of the escaping particle is taken from
the rotational energy of the black hole. By re-
peating the Penrose process many times one may
deplete a black hole of its entire rotational energy,
which can amount for a charged black hole to as
much as 50%%uo of its rest mass. '

The energy release possible through radiation
processes is equally remarkable. Christodoulou
and Ruffini' have shown that a charged particle
falling into a charged black hole can, under appro-
priate conditions, emit its entire rest-mass ener-

gy
Preliminary to investigating the problem of

radiation, one must understand the kinematics of
test particles for which the effect of radiation is

neglected. Darwin" has already considered the
geodesics of a particle in the spherically symmet-
ric Schwarzschild field. The Kerr-Newman field,
which describes a body having charge, mass, and
spin angular momentum, is richer in structure
than the Schwarzschild field. In this paper, we
study the bound geodesics or "orbits" in the charge-
free Kerr metric. ' We have restricted ourselves
to the charge-free case both because this case can
be a very relevant one for astrophysics, and be-
cause we would like to distinguish the purely rel-
ativistic effects of the gravitational field from the
electrodynamic ones.

In Sec. II, we deduce a necessary condition for
binding to occur. Subsequently, we specialize to
spherical orbits, that is, orbits of constant radius.
In Newtonian mechanics, one can understand much
about the general orbit by studying the circular-
orbit case. Here, too, one believes that most fea-
tures of interest are present in the case of spheri-
cal orbits.

In the limit of large radius, a spherical orbit
goes asymptotically to a Keplerian circle. Con-
sidering a sequence of orbits of ever smaller ra-
dius, we find that as the radius decreases, the line
of the (ascending or descending} node is increas-
ingly "dragged" in the sense of the spin of the
black hole. (The line of the ascending node is a
line of constant azimuth in the equatorial plane
passing through that point at which the orbit, going
from negative to positive latitudes, intersects the
equatorial plane. )

At a certain radius, a horizon occurs. This
horizon, known as the one-way membrane, has
the property that anything penetrating the surface
from outside will be unable to escape again. The
most rapidly rotating Kerr particle for which causal-
ity does not breW down' has an angular momentum
equal to its mass squared (in geometrical units}.
Stable orbits are possible down to its one-way
membrane. As the orbital radius approaches that
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of the horizon, the dragging of the nodes increases
without limit. During the time that a particle
makes one oscillation in latitude, it will be swept
through many complete azimuthal revolutions.
Consequently, an orbit near the horizon will have
a helix-like shape with axis parallel to the spin of
the black hole.

II. CONDITIONS FOR BINDING

masses. Writing R(r) out in detail,

R(r) = (E' - p')r~+ 2p'mr'+ [a'(E' - p,') - 4' - Q]r'

+ 2m[(aE - 4)'+ Q]r a-'Q.

Dividing through by p,'nz4,

R(r)/p, 'm4 = (E' —1)r 4+ 2P +[a'(E' - 1)-4' - Q]r'
+ 2[(aE - C )2+ Q]r - a Q, (6)

Carter' has given the first integrals of the equa-
tions of motion of a particle in the Kerr-Newman
field. For the sake of a clearer physical inter-
pretation, we use his Eq. (9) to transform to Boyer-
Lindquist coordinates; in these coordinates, the
metric is symmetric under simultaneous inversion
of the axial and stationary Killing vectors. The
metric is

where

E=E/p, ,

4=4/mp, , Q= Q/m'g',

r = r/m, a = a/m.

We shall henceforth take

P, = 82= ly

(6)

p'r' =as R,

p28 =+We,

p'P = (4 sin '8 —aE) + ah 'P,

p't= a(4 —aEsin'8)+(r'+ a')6 'P,

(2a)

(2b)

(2c)

(2d)

with

8= Q-cos'8[a'(p' E')+4'sin-'8],
P =E(r'+ a') —4a,
R=P' - L[p'r' Q++ (4 —aE}'].

The dot denotes differentiation with respect to a
parameter A, , defined in terms of the proper time
by

dS' =p'g 'dr'+ p'd'I9

+p 'sm'8[adt —(r'+ a')dy]'
—p 'n. (dt- asin'8')',

where

p' = ~'+ a' cos'6I

—2' J'+0 +8,
a, m, and e are, respectively, the specific angu-
lar momentum, mass, and charge of the black hole.
Specializing to the charge-free case, the equations
of motion take the form'

R(r) = [r'+ a'(r'+2r]E' —4a4rE

+ a'4'- (r'+ @+4')(r' —2r + a'),

a quadratic in E. R(r} has not one but two roots:

4a4r + WD

2[r~+ am(r'+ 2r)] (6)

The discriminant D depends on 4 only through 4'.
In general, the reality of the radial velocity leads
by (2a} to the requirement that R(r}be non-nega-
tive. If D is negative, this requirement is fulfilled

TURNING
POINTS

V, {r)-i
AS r =ex&

V,{r)

which is equivalent to using the caret variables.
Since p.'=1 is greater than zero, the geodesics de-
scribed by (l}, (2), and (3) are timelike.

One can determine the values of E, 4, and @for
which binding occurs by using the effective poten-
tials.

We first discuss the effective radial potential
p'(r) p(r) .is defined as that value of E such that
r=0 at'radius r; by Eq. (2a) it follows that R(r) =0.
Rewriting R(r) in a more convenient form,

i=PA, . (4) 0.0
HORIZON

The signs in (2a) and (2b} can be chosen indepen-
dently. The constant a denotes the angular mo-
mentum per unit mass of the central body. E, 4,
and Q are three constants of the particle's motion.
E and 4 refer, respectively, to the energy and to
the s component of angular momentum; Q is re-
lated to the 8 velocity, 0.

We rewrite R(r) in a form independent of the

HORIZON)

FIG. 1. Sketch of an effective radial potential which
would bind a particle of energy greater than unity
(dashed line). There must be at least three turning
points. We show that such a potential is impossible by
proving that there may be at most two turning points
for E)1.
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for all values of the energy. If, however, D is
non-negative, the energy must satisfy either of the
following conditions:

E V,(r, c, Q) (Qa}

or

E&V (r, 4, Q). (gb)

Whether or not the effective potential is real, we
may always make the one-to-one correspondence,

E, 4, Q -E, -C', Q. (10}

Inspection of the equations of motion, (2) and (3),
shows that with proper choice of sign, the 4-veloc-
ities of two such corresponding motions will differ
only in sign.

We now prove that if E') 1, and if the specific
angular momentum of the black hole lies in the

causality-preserving range 0 &a(1, then the mo-
tion is unbound.

The proof depends on setting an upper limit on
the number of turning points. Consider a con-
ceivable V,(r}sketched in Fig. 1. Notice that by
(I) and (8), V,(~}goes asymptotically to unity at
large radii. As indicated by the figure a bound
state with E)1 is only possible if there is a range
of energies for which three or more turning points
occur. We will prove in fact, that there are at
most two. E &-1 also satisfies E') 1. By the cor-
respondence (10}, however, if our theorem is
proven for E)1, it will necessarily also hold for
E( 1,

Let us reexpress R(r) in terms of the new co-
ordinate x, defined by

r =x+1.

Substituting this into (5) yields

R(x}=(E'-I)x~+ (4E' —2)x'+[(6+ a')E'- a'- O'- Q]x'

+ [(4+2 a')(E2 —1)+ 6+ 2a'E' -4a4E] x+ [(2aE —C )'+ (E'+ 1+ Q)(1 —a2)].

Cay CO&Op

c, )0.
From (12),

c|—(co + c2) & 0~

or by (ll),

(12)

In the language of classical algebra, whenever a
term in the polynomial is followed by one of the
opposite sign, that is described as a "variation of
sign. '" A polynomial (with real coefficients) can-
not have more positive roots than there are varia-
tions of sign. " If E)1, the first two terms are
non-negative. Write the last three terms as

2c2x y c~x~ co.

As many as three variations of sign can occur if

term is positive, then

E2 1

Equation (13) continues to hold, showing that the
last three terms cannot have the supposed signs.
Hence, not more than three variations of sign are
possible. One sees then that for given Q C, and

~E ~
&1, there may be at most one region of binding.

By considering the motion in latitude, and using
the preceding theorem, we will prove that Q must
be )0 for binding.

By analogy with V(~) the effective 8 potential,
V'(8), is defined as that value of E' which makes
8 =0 when the polar angle = 8. By (2b) and (3),

0= 8(8) = Q-cos'8(a'[1- V'(8)]+4'sin '8)

or

Qa'& 3E' -1&0. (13)
V'(8)=1+a '(4'sin '8- Qcos '8). (14)

If a=0 (Schwarzschild), (13) is impossible. If
0 & a-l, (13) implies a positive Q, whence c, is
non-negative; but c, non-negative contradicts (12).
Since (12}cannot be satisfied, , there may be at
most two variations of sign and hence two positive
roots. We have shown this for r )1. It must be
true a fortiori outside the horizon, since the latter
occurs at

r =1+(1-a')'~'&l.

When E' & 1, the first term is negative. Four
variations would be possible only if the succeeding
terms had the signs+, —, +, —.But if the second

e(8) = a' cos'8[E —V (8)].

A particle at polar angle 8 can only satisfy

E'& V'(8)

(15}

(16}

if it is confined to the equatorial plane and has
Q=O. That Q is not negative follows from (14)
according to which Q&0 implies

E & V (n'/2)=-~.

For all cases other than Q = 0,

E V (8)

The significance of V'(8) can be seen by writing



160.0-,+ut (14) shows that &0, then

V'(8) & 1,

By our earlier theorem, &17 an)
e particle is unbound.un . Thus, for

140.0-

120.0-.
100.0-

(18)
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&0

It follows from (2b), (3), and the, and the theorem that an

equatorial plane.
x and only if it is cconfined to the

T e

ypxcal examples of V'(0' wi& with Q&0 are shown
particle can onl y reach the axis

d th 1

With the hei of
nc usion: Every orbit ei

th to'1 1ia p ane 'Q=O or
t dl (q 0).
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III. SPHERICAL ORBITS

From herere on we will treat the mos ng
reme Kerr case:

In addition, we restrict ours
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orbit has the smallest binding energy. For a ra-
dius & 9, such an orbit is unstable (and thus not
shown in Fig. 3). Instead, the orbit situated at an
inflection point of the effective radial yotential,
that is, with

ls the least tightly bound (for a given radius & 9};
the set of these orbits constitutes the curved edge
of the opening in the surface. (See Fig. 4.).

For large radii, the surface goes to the Schwarz-
schild limit:

I I I l I I I l I j

20 40|080 100t20 20 40 eo 80 00 QQ Q(x)= 3
-C' ~0,

(21)
FIG. 4. Constants of motion of spherical orbits of

least and greatest binding. As seen in the plot of 4
versus x and in Fig. 3, all orbits with radius &5.3 are
co-revolving (4&0). The discontinuity of slope at r= 9
for the orbits of least binding is not puzzling in vievg of
the same discontinuity evident in Pig. 3.

Z'(~) =1-r(r-3 '

Stable orbits occur all the way to the horizon, at
~ = 1, The one-parameter family of horizon-skim-
ming orbits is

Z{~,) =0, (20a)

and goes negative nearby. This will be the case if
2/IS «4 «&2,

Q= 44'-1,
(22a)

(22b}

(22c)

(20b)

8 B
Bf'

Replacing (20c) by

(20c)

Q2Q
&0 (20c')Br',=.

yields instead the conditions for an unstable spher-
ical orbit.

In the following we shall only be interested in
the plus-root solutions, that is, those satisfying
(9a). The behavior of the minus-root solutions ls
easily determined with the help of (10}.

Solving Eqs. (20a) and (20b) simultaneously elim-
inates two of the four unknowns, E, Q, 4, and r.
Imposing the stability requirement (20c) and the
boundedness requirement (19) determines a subset
of this two-parameter set of trajectories, " In

Fig. 3, the set of stable spherical orbits of small
radius is represented as a two-dimensional sur-
face in (r, Q, 4) space. The intersections of the
surface with the Q= 0 plane are the equatorial or-
bits. For ~ «9, there are two such lines, stand-
ing for the co-revolving" (4 & 0) and counterrevolv-
ing (C &0) equatorial orbits.

For a fixed radius the energy varies monotonical-
ly along the surface. The co-revolving equatorial
orbits have the largest binding energy, 1-E. For
a given radius «9, the counterrevolving equatorial

The lower limit on 4 results from the restriction
to Q~O. To understand the upper limit one must
consider an orbit just outside the horizon, Setting
x=1+X, with 0&%, «1, one can show that

$2g
= 2(C'-2)~+ O(~2).

'~=I.+X

Applying (20c) yields the upper limit, 4 = v 2.
Equations (22b) and (23) do not of themselves

rule out the alternative range

-&2 «4 « -2/v 3 . (2

{23)

IV. DRAGGING O]F THE NODES

Lense and Thirring'4 have shown that in the
weak-fieM limit, the nodes of a circular orbit are
dragged in the sense of the spin by an angle

nfl = 2(~/~)(~/~) ~ (24)

yer revolution. An exact expression for 40, cor-
rect for all distances, can be given in the Kerr

Consideration of V,(r), however, shows that (22a)
describes a solution of (9a), and (22a') a solution
of (9b).

From (21), observe that in the Schwarzschild
case, the squared angular momentum, 4'+ Q, de-
pends only on the radius. By contrast, it follows
from Eqs. (22) that, for orbits at the horizon,
@'+Q varies almost by a factor of 2 in the ex-
treme Kerr case.



case.
Assume say that 0 1S decreasing. D1vM1ng

(2c}by (2b) then gives

place includes the equatorial value, z =0:
O~z&z,

dp @sin '8-E+Pd '
d8 [Q- cos'8(1-Z'+ C'sin '8)]'~' '

Setting

z = cos20

and assuming 0 ~ —an, we integrate to obtain

(25)
Equation (30) corresponds to one-quarter of a com-
plete oscillation in latitude. From (2c) it is clear
that the azimuth changes by the same amount in
each quarter oscillation; that is, one gets the
same change whatever the signs of 8 and 0- m.

Using a standard table of integrals„" the change
of azimuth during one-quarter oscillation of lati-
tude is cast into a more intelligible form:

with a =4'+ Q and P=1-E'. Turning points in 8
occur when the denominator of (25) vanishes or,
equivalently, when

Since o., P, and Q are all non-negative and since
a ~ Q, the roots, z~, of (29) are real and non-nega-
tive. The range of z for which the motion takes

dx
(1 —k' sin'x)'& '

dx
(1+n sin'x)(1 —k' sin'x)'~'

2.5—
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(r-()
FIG. 5. (a) Angle of dragging of nodes per revolution versus distance from the one-vray membrane. ~Q increases

continuously as the orbital radius decreases. (b) Ratio of the p and 8 frequencies versus distance from the one-way
membrane. This changes discontinuously from a value less than unity to a value greater than unity, in going from
counterrevolving to co-revolving orbits.
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An orbital path close to the hoxizon is sketched
in Fig. 6. The particle traces out a kind of helix
lying on a sphere. As the particle approaches the
maximum latitude, the angular separation between
successive loops of the helix decreases. Beaching
the maximum latitude, the particle begins the
winding descent to the minimum latitude„ located
below the equatorial plane symmetrically to the
maximum. Using Eqs. (22), (28), (29), and (30),
we have plotted in Fig. 7 the maximum latitudes
of orbits at the horizon.

It is known that there is a close resemblance be-
tween the linearized gravitational theory and class-
ical electromagnetism. This prompts one to ask
whether there occur orbits analogous to the spirals
of electrons in the earth's magnetic field. The
best place to look for such exotic behavior is near
the horizon. From Eqs. (3), (Qa), and (8) it fol-
lows that I'4 ' always diverges at the horizon.
Divide Eq. (2c) by Eq. (2d) to obtain

One can see from this that the retrograde motion
required for any k1nd of looping 1s impossibl:
Dragging forces a particle near the horizon to re-
volve always in the same sense as the black hole.

Unlike the weak-field region it is not true in
general that BO depends only on the radius. For

example, for r =9, 60/211 decreases from 0.0814
for the counterrevolving equatorial orbit to 0.060V
for the co-revolving equatorial orbit. "

V. PERIODS

The proper 8 period is obtained by integration
of (2b}. Squaring (2b), multiplying through by
cos28 sin28, and making the change of variables
{M), one obtains

z'=, , r{z)+8

with F(z) as in (27). Hence, apart from a sign,

(~'+z)dz
2y(z)

Integx ating,

(r'+ z)dz
2 y(z)

Ol'

4 g x/s„,(r'+z„)Z(f1) 4 '—' — Z(k), (88)

m/2

E(k}= (1 —It' sin'x)' ~'dx

is the complete elliptic integral of the second kind.
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FIG. 8. The 0, /periods (coordinate and proper) for orbits of least binding. The pperiod is greater g.ess) than the
8 period for counterrevolving (co-revolving) orbits. For the most tightly bound orbits (not shown), which are all co-
revolving and equatorial, the p period is everywhere less than the 6} period.
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To obtain the coordinate period, divide Eq. (2d)
by Eq. (2b). Integration then yields

X/2

re, =4 E — +,~,[C +Pn. ~(r'+I)-Ej K(k) or

dA. =d7.

d7 =m dr

-4z —' E A. (39)
Similarly, from (2d), (3), and (6),

dg=m 'dt. (42}
To find the proper azimuthal period divide ~e p

by

Vy/Ve = 7e/7y&

(40)

p2 ~ m 2p2

e=(mq} e.
It follows that (2b) can be cast into the form (40)
by setting

dX=p.m 'dX=m 'dr.

The second equality results from (4). Putting

which is given by (31}and (32); likewise for the
coordinate period.

The periods determined above refer to p. =m=1,
The scaling law for times is obtained in similar
manner to Eqs. (6). Equation (2b) is to be cast
into the mass-independent form

Pa

P= =(~)'",„,d8

dA.
A

where e is the function e expressed in terms of
caret variables. The polar angle is already scale
free. From (1), (3), and (6) one sees that

Equations (41) and (42) together with Eq. (6) con-
stitute a general rule applicable to geodesics with
p2&0.

Figure 8 shows the periods for the least-bound
orbits with radii ~30. Here we see that the dis-
continuity in ~z/ve mentioned earlier is due entirel
to a discontinuity in v&.

Note added in Proof. One can show from (7) that

D =4ra(e'r'+ (rm+ q)[r'+ a'(r+ 2)]).
Equations (8) and (19) then imply that for an orbit
the effective radial potential is everywhere real
outside the horizon.
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