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The motion of bvo fully relativistic classical spinless point particles interacting electro-
magnetically is studied in the special case of almost circular orbits. The equations of mo-
tion are difference-differential equations with half-retarded plus half-advanced Lienard-
Wiechert potentials. As expected on both physical and mathematical grounds we find multi-
ple stable solutions and conclude that ordinary (Newtonian) initial conditions are not suffi-
cient to determine the trajectories. In addition to the stable solutions we find an infinity of
divergent solutions. Alternatives for dealing with the extraneous solutions are discussed.
The exact equations of motion can in certain limits be approximated by differential equa-
tions. Our solutions serve to delimit the range of applicability of the approximations.

I. INTRODUCTION

Very little ls known about the orbits of two
classical relativistic point particles interacting
electromagnetically. Even with the problems of
self-energy and radiation circumvented by use of
the time-symmetric Fokker action, ' which contains
particle coordinates but no field variables, the
only known exact solutions are due to Schild' and
have orbits which are concentric circles. ' Several
approximations to the theory have been studied.
These provide useful checks on the solutions to the
more general problem, but they shed no light on
the questions of what happens when the particles
come extremely close together (relative to the classi-
cal electron radius e /m c ), and of the uniqueness of
the solutions given Newtonian initial conditions.
Three such approximations are the fo1lowing:

s. The nonxelaAvsstsc appxoxsmatson. Darmn
has discussed the expansion in l/c, keeping terms
of order l/c'. He finds analytic solutions for any
starting position and velocity To or.der l/c' the
Lagrangian with fully retarded potentials (Darwin's
ease) and with one-half the retarded and one-half
the advanced potentials (Fokker's case) are iden-
tical. ' This surprising result is due to the fact
that Darwin' s correction terms are not, as he sup-
posed, due to retardation but rather due to the
magnetic interaction which exists even with no re-
tardation. e Retardation effects, which will obvious-
ly be different for the two theories, are of higher
order in i/c.
ii. The potential-theory limit. Synge' has con-

sidered the expansion in m, /m, . For m, = ~ he
gives analytic solutions' for any starting position
and velocity. The problem in this limit is that of
a single particle moving relativistically in a fixed
vector potential of the form A~ = (r ', 0, 0, 0). Since
there is no recoil, the advanced and retarded po-

tentials coincide. For this reason there is again
no distinction between the fully retarded theory and
the Fokker theory,

iii. The straight-line appxoximation, Kerner
has considered the expansion in e'. The retarded
and advanced Lienard-Wiechert potentials are ex-
panded about the equal-time point on the trajectory
of the source particle. If only the opening term in
e' is retained, the theory is caH, ed the straight-
line approximation' and consists of ordinary cou-
pled differential equations. The name of this ap-
proximation stems from the observation that the
potential would be, exact if the source particle had
constant velocity in the time interval between
crossing the past and future light cones. Just as
in the case of Darwin's approximation, the results
to order e' are identical for the fully retarded the-
ory and the Fokker theory.

These approximations have not been worked out
beyond their lowest terms, and the convergence
properties of the expansions are not known.

In this paper we retain the time-symmetric Fok-
ker action and find linear perturbations to Schild's
circular orbits. Apart'from keeping only first-
order terms in the perturbation amplitude, our
calculations are exact. In particular, they are val-
id for velocities in the entire range from zero to
the velocity of light, for any ratio of rest masses
of the two particles, and fox any magnitude of the
coupling constants. The results shed light on the
questions of existence and uniqueness of solutions,
stability of orbits, number of degrees of freedom,
and selection principles for ruling out unphysical
solutions.

The equations of motion resulting from the Fok-
ker action principle do not form a system of si-
multaneous differential equations as in Newtonian
mechanics. Instead they form a system of differ-
ence-differential equations because the three-ac-
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celeration experienced by one particle depends on
its own present position and velocity and on the
past and future positions, velocities, and acceler-
ations of the other particles. In general such equa-
tions are very difficult to solve. Even if solutions
can be found the question remains whether Newton-
ian initial conditions, i.e., the positions and veloci-
ties of the two particles at some spacelike instants
of time, are sufficient to specify a solution unique-
ly. Driver" has considered a number of problems
of this type and has speculated that for most sys-
tems described by action-at-a-distance equations
of motion the solution is not uniquely specified by
Newtonian initial conditions.

The existence of multiple solutions has been ex-
pected on physical grounds. Plass, "who noticed
multiple stable solutions for the motion of coupled
one-dimensional oscillators, regarded the solu-
tions as giving rise to new degrees of freedom,
which he called "corporate" degrees of freedom.
They do not arise when the oscillators are far a-
part, but as the oscillators are brought closer and
closer together, more and more of them appear.
Through their use Plass was able to derive the
Rayleigh- Jeans law" for black-body radiation.
According to him these corporate degrees of free-
dom take the place of the degrees of freedom of
the electromagnetic field in conventional theory.

The particular system of equations to be solved
for oux problem of almost circular orbits is very
complicated in its dependence on the parameters
of the unperturbed orbit, but relatively simple in
basic structure. We have a set of four coupled
difference-differential equations which are linear
and homogeneous in four unknown functions of time.
These are the radial and azimuthal amplitudes for
each particle. The arguments of these functions
are t, f+r, and f- r, where t is the (present) time
and 7 is constant in time. It is because of the con-
stancy of v that the equations are tractable.

Such a system of equations is known to reduce to
an eigenvalue problem. '4 The eigenvalues depend
on the velocities and are interpreted as complex
frequencies of the normal modes. Our results,
which are partly analytic and partly numerical,
show the following pattern: At low velocities there
are some real eigenvalues which corresyond to
trivial motions and one which corresponds to the
almost elliptic orbits described by Darwin's solu-
tion, i.e., to a stable mode with the correct non-
relativistic limit. In addition there is an infinity of
complex eigenvalues, which correspond to diver-
gent modes. (Some of these have been reported
previously. ""}The complex eigenvalues have
imaginary parts which tend to infinity as the rela-
tive velocity approaches zero, i.e., they do not
have a nonrelativistic limit. As the velocity in-

creases, the imaginary parts decrease and (for
the equal-mass case) one of them reaches zero 'at

a velocity of about 0.95c. The corresponding real
eigenvalue belongs to a new stable mode. As the
velocity increases further, more eigenvalues reach
the real axis and hence more stable solutions ap-
pear. In order to specify the solution of the equa-
tions at very high velocities it is therefore neces-
sary to specify more than the 12 Newtonian initial
conditions. The additional stable solutions are
closely akin to Plass's corporate degrees of free-
dom. However, their continuation to divergent sol-
utions at nonrelativistic velocities suggests that
one should formulate a selection principle to rule
them out.

Such selection principles are common in electro-
dynamics. We mention a few.

(i) In conventional classical electrodynamics
Rohrlich' s asymptotic condition, "patterned after
the asymptotic condition in quantum field theory,
decrees that as I;- +~, the acceleration should van-
ish. Clearly this princip1. e is applicable to scatter-
ing problems but not to bound states.

(ii) The straight-line approximation to the Fok-
ker theory selects those solutions which become
straight lines as e'-'0. This observation has been
used by Keener' to formulate a selection principle
which admits only those solutions to the fuQ theory
which have the same property.

(iii) Van Dam and Wigner" have implicitly as-
sumed a similar selection principle when they pro-
pose to find scattering solutions by successive ap-
proximation. The physically acceptable solutions
are those which grow out of straight lines by iter-
ation.

(iv) Synge' has described a method of solving
the full equations by successive approximation
starting with solutions for m, /m2 =0. The solu-
tions thus selected have potential-theory limits.

(v) Darwin's theory selects those solutions to
the full theory which become solutions of the non-
relativistic theory as c-~. This observation can
be used to formulate a correspondence principle:
Physical solutions must have a nonrelativistic lim-
it. Such a principle was used by Staruszkiewicz"
to rule out unstable solutions,

(vi} Wheeler" suggested that divergent solutions
be ruled out for physical reasons.

It may be that when more mathematical details
are known, some of these selection principles will
be identical. '

In our example one can adopt one of two points of
view. If one accepts the correspondence principle
(v), the solutions can be uniquely specified by New-
tonian initial conditions and no corporate degrees
of freedom appear. If one accepts Wheeler's sta-
bility condition (vi), then the solutions are not
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II. CIRCULAR ORBITS

Our starting point is Fokker's action integral for
two point particles, labeled p and e, which have
masses m~ and m„coordinates z~" and z,", and
charges e~ and e,. Since we are concerned with an
attractive vector interaction, e'-=-e~e, is a posi-
tive number. The action is

f f—epe, '

J 5((zp-z, )')~p~~, „dz~dz„ (2 1)

where A~ and A., parametrize the world lines and
can be set equal to the proper times after the vari-

unique and corporate degrees of freedom appear
at very high velocities. The divergent solutions
may be due to the perturbative treatment and per-
haps do not survive in a fuller mathematical treat-
ment. But even in this case we still have the prob-
lem of how to interpret the stable solutions. It
may be of course that the whole problem does not
arise in a more realistic theory which includes
radiation or quantum effects or both.

ational procedure, and where the dots refer to dif-
ferentiation with respect to the appropriate A..
This action results in interactions only along light
cones, and is symmetric under time reversal.
The equations of motion are derived by requiring
A to be stationary under variation of the world
lines as functions of ~~ and ~,. The resulting three-
vector acceleration for particle e is

a (g ) (I v 2)1/2

e

r v,E rv, FE- + -vv'E
g0

(2.2)
where r = r~ —r, and r, = t~ —t, = +

~
r ~, depending on

whether particle p is at its retarded or advanced
position. The velocity v, is ordinary three-veloc-
ity. The right-hand side of Eq. (2.2) must be eval-
uated for the retarded and advanced positions of p
and the results added and divided by two. In the
large round parentheses the term independent of
v, is electric in origin, the terms linear in v, are
magnetic in origin, and the quadratic term is a
relativistic correction. The electric field due to
particle p and felt by e is given by

~e~
E„,„„=

( , » [(1—v~ +r. a~)(r —x'v~) —r'a~(x' —r v~)]~ -r-v~j (2.3)

The acceleration of particle P is obtained by interchanging the subscripts p and e in Eqs. (2.2) and (2.3).
Together these four equations determine the dynamics.

Schild found that the circular-orbit solutions must satisfy

m (1 v ~)»2
„[v.+ v, (cos8, —8,' cos8,+8, sin8, )e (do V~(00+ V Vp 1Q80)

+ v,'v~(2 cos8, +8, sin8, ) + v,v~'(1+ cos'8,) + v, 'v~'(v, + v~ cos8,)] (2.4)

8O =(v~ +vp +2v~vp cos80) (2.5)

is the retardation angle. This latter quantity,
which is the same for both particles, is the angle
through which one particle moves in the time it
takes a light signal from the other particle to
reach it. The retardation angle 8, ranges from
zero to approximately 1.4782 (except in the poten-
tial limit, in which case 8, = v, and it ranges from
zero to unity).

The solid curves of Fig. 1 show the variation of
r, and r~ with the square of the relative velocity,
(v, +v~)', for m~/m, =l, 20, 1000, and infinity.
Note that as (v, +v~)' goes to four, r, /x~ ap-
proaches unity and r, and r~ each approach zero.

and a similar expression with P and e interchanged.
Here r~ = v~/&uo and r, = v, /&u, are the radii of the
orbits, and

In the potential-theory limit r, approaches zero
as (v, + v~)' goes to unity. Here, as in the remain-
der of this paper, we have chosen the umt of length
such that d m„c'/e' = I=, where m„=m~m, /(m~+m, )
is the reduced rest mass, c =1, and e' = -e~e, . We
specify 80 and v~, determine v, from Eq. (2.5), and
then determine m~/m, from the ratio of Eq. (2.4)
to its analog for m~. By relating this ratio to the
quantity d = 1 we solve for m~/e' and m, /e', then
for &u„and finally for r~ =v~/~0 and r, =v, /&uo.

At this point we have found the solutions for cir-
cular orbits. Energy and angular momentum can
then be found from formulas given by Schild. ' Rep-
resentative curves of angular momentum vs energy
for circular orbits can be found in a previous
work. '

In comparison with Eq. (2.4) the three limits or
approximations discussed above yield the following:
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FIG. 1. Radii of the two
particles in concentric cir-
cular orbits vs the relative
velocity squared. The solid
curves show the exact solu-
tions when the mass ratio
A, =mp/m~ takes on the values
1, 20, 1000, and infinity.
The dashed curves show the
results of using the straight-
line approximation for A, =1
and 1000. For A, =~ the
straight-line approximation
is exact.
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(i) The nonrelativistic approximation.

e 1
1 —I V V2

e'&u v (v +v )' ~
0 e e p

(2.6)

m, 1-v2 ~~2 y+v g

Vp& 1/2 $ +, VeVp

e'(oo 1 —v, ' v~(v, + v~)'

(2.8)

PSp .s I:
—2( ' + "n')l .

8 CcPO Vp(Ve+ Vp)

(ii) The potential-theory limit.

I. —v 2)1/

8 (d
Ve

Vp =0.

(iii) The straight-line approximation.

(2.7)

The dashed curves of Fig. 1 show the variation of
r, and r~ with v„' = (v, + v~)' in the straight-line ap-
proximation. This approximation has the same
nonrelativistic and potential-theory limits as the
exact theory. In addition, the ratio r, /r~ approach-
es unity as v„' goes to four, just as in the exact
theory. However, in this approximation the two
radii approach a finite limit —,'(m, m~)"ml(m, +m~),
whereas they approach zero in the exact theory.
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Also we note that, unlike in Darwin's nonrelativ-
istic approximation, the first correction terms in
v are wrong. '0 We conclude that the straight-line
approximation is not adequate for the description
of relativistic circular orbits.

~,(t) =r,[1+xp, (t}],

Q,(t) =@+&sot+'x«, (t),

&~(t) =r~[1+Xp«(t)],
(3 1)

Q~(t) = e,t+ Ap«(t),

where r, and x«(without arguments) are the unper-
turbed radii and ~0 is the unperturbed angular ve-
locity. The parameter A, symbolizes the lnfinites-

IH. THE EQUATIONS FOR ALMOST

CIRCULAR MOTION

%e work in the center-of-mass frame, let t~ = t,
= t, and write the time dependence of the polar co-
Ordinates of the particles as

imal character of the perturbations. Terms in A.
'

are dropped. The four functions p, (t}, p«(t), e,(t),
and e«(t) are to be determined by solving Eqs. (2.2)
and (2.3) and the corresponding equations for a«.
The advanced and retarded points on the p trajec-
tory which appear in Eqs. (2.2) and (2.3) are light-
like with respect to the point at time I, on the world
line of e. In the case of circular orbits, the ti,me
advance and time delay are constant in time and
equal in magnitude to 80/&u~. For almost circular
orbits they deviate only in first order in A from
8,/e, . This observation is very important because
it allows us to express the equations for almost
circular motion in terms of the positions, veloc-
ities, and accelerations at the same equally spaced
points in time (t+8,/&uo, t, t —8,/&oo) as in the un-
perturbed case.

Let 8, „=&a,(t-t„) and 8, ,=+0(t —t,), where t is
the present time and t„and t, are the retarded and
advanced times, respectively, when p is lightlike
[(«'« —z,)' =0] to e. Let k stand for either r or a
and we have

(t —t )' =
~ z,(t) - z«(t ) ~

« —=r, '[1+ 2Ap, (t)]+r~'[1 2+Xp«(t)]+ 2rr~[1+ Ap, (t) + Xp«(t )]cosf&uo(t —t ) + X[e,(t) —e«(t«)]).

Then

8, « =8„,+ X(v,'p, (t) + v«'p«(t«) + v, v«([p, (t) +p«(t«)] cos8, „—[«,(t) —e«(t«)] sine, J)/(80 «+ v,v«sine, „), (3.3)

where 0,„=0,and 8„=-e,and where v, and v~ are
the unperturbed velocities. Let 8~„and 8~, be sim-
ilarly defined. Then an expression for 8~ ~ analo-
gous to Eq. (3.3) holds.

The next step is to express the quantities appear-
ing in Eblis. (2.2} and (2.3) and their counterparts
for a« in terms of the p's and the e's of Eg. (3.1).
For example, we have

x,(t) = -r,([1+Ap, (t)]cos(o,t —Ae, (t) sin(u, t},

y, (t) = -r,{[1+Ap, (t)] sin(u, t+ A.e,(t) cos(sot],
(3.4)

x (t)=x(1——'—~0,a 6.,a —~0,~

(d0 0

y«(t«) =tp1 + Ap'« t ——' sin((dot —80 «)
~o,a

+ A.e« t - —' —(8«« - 8~«) cos(&oat - 80 «}
~o,a

(3.5b)

Similar expressions are used for the components
of z«(t), z, (t„), and for the relevant velocities and

accelerations. The result is a set of four coupled
second-order difference-differential equations
which are linear and homogeneous in the p's and .

6 s.
Because the problem is time-symmetric, we can

find solutions of the form

ee a ~0 a '~o vip

=1'p 1+Ap« t- ~ cos((dot-80«)~on

0

-(8, -8 „) sin(&o,t-8 ),eon

0

(3.5a}

p, (t) =E,sin~t,

«,(t) = G, cosset,

p«(t) =F~ sin~t,

&«(t) = G«cos(ot.

(3.6}

This parametrization leads us to the eigenvalue
equation
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A~p2(d —A~op

B~p~ (0

A,~oP cosg
-A, ,&u sing
-A, cosg

B, ,od' sin)
+B~j (d cos )
-B, psing

2—B~p240 + B~pp

A, ,oP sinE
+A„,&u cosg

-A, , sing

Bo+gQP c os (
+B, ,~ sing

+ B~ocos $

Ap 2&d COS(

-Ap, &u sin(
Ap+0 COS $

Bp,ur' sing
+ Bpig td c os $- Bp o sin)

2Apm -Apoo

Boo

A, ,(g' sin(
+A~„~cosg
-Ap, sin(

-B& 2~ cos~ G~

+Bp,~ sin)
+ Bp~p cos)

Appj (0

Bpm(d +B~oo
2

(3.7)

where g =e,&u/~, . The dependence of the A's and
B's on the parameters v„vp Op and ~o of the un-
perturbed orbits is given in the Appendix. The A' s
are determined from the radial equations of motion
while the B's come from the tangential equations of
motion. Since great care is required in deriving
these expressions, we have written a FORMAc

language computer program to do much of the
lengthy and tedious algebra.

Let the square matrix in Eq. (3.V) hereafter be
called M. Then Eq. (3.7) has solutions for those
values of ~ for which the determinant D of IVI is
zero. The stable perturbed orbits (those with real
&o) are rotating ellipses whose perihelion advances
at the rate of 2w(too-) e()/( &o~ radians per revolu-
tion. The form of Eq. (3.V) is such that if ~ is an
eigenvalue, then -cu, ~, and -(d are also eigen-
values. (&u is the complex conjugate of &u. ) How-
ever, (d and -co always lead to the same solutions.
Further, if ~ is a complex number, then there is
only one real solution associated with these four
eigenvalue s.

In the case m, =mp, we have v, = vp and Eq. (3.V}

can be simplfied. M now has the form

B C D

S F G

C D A B

G H E F

(3.8}

and the block-diagonal matrix

rA+C B+D 0

F+G F+H 0

o }

(o
0 A-C B-8
0 E, -C F-II (3.9)

can easily be shown to have the same determinant
as M. Thus a zero of D is associated either with
a zero of D~'~ =det(M~' ) or of D~ ~ =det(M& ).
Zeros of D~' correspond to eigenvalues with E,
=E~ and G, =G~, while zeros of D~ correspond to
eigenvalues with F, =-E~ and G, =-G~. In this man-
ner the problem has been reduced from a four-di-
mensional one to a two-dimensional one.

In the case mp -~, Eq. (3.V) becomes

((o'+ s),'[3+v, '/(1 —v,')] -(u(u, [2+v,'/(1- v,')]
(u(u, (2 —v,')

0

(d + (do
= 0,

240(dp FP

Ordrr -(rr r rr )I (G~)

(3.10)

where the entries in the lower left submatrix are
complicated and of no consequence. Two of the
eigenvalues of Eq. (3.10) are &u =+~,(1 —v,')'".
Both of these eigenvalues correspond to the poten-
tial-theory solution, ' a precessing ellipSe whose
perihelion advances for low velocities at the rate
of 2m(&uo —

) ~( }/( &oo(
-=vv, ' radians per revolution.

In addition, the determinant of the matrix in Eq.

(3.10) has double roots at 0, a&a, . These corre-
spond to trivial solutions. The eigenvalue ~ =0 has
(I'„G„E~,Gp) = (0, 1, 0, 1), which corresponds to a
circular orbit with the azimuthal angle differing by
a constant amount from the unperturbed orbit. It
is easy to check that &u =0 with eigenvector (0, 1, 0,
1) is also a trivial solution for the general equation
(3.7). The values &u =a~, of Eq. (3.10) correspond
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to the eigenvector (0, 0, 1, 1). Since r~ =0 we see
from Eqs. (3.1) and (3.6) that this seems to corre-
spond to no perturbation at all. However, the gen-
eral equation (3.'7) also has trivial solutions of this
type. The eigenvalues are &u =a&a, and the eigen-
vectors are (v~, v~, +o„+v,). The interpretation
here is that the corresponding solutions have again
just circular orbits. The P and e orbits are con-
centric but their common center is slightly dis-
placed from the origin. In the v~ =0 limit we still
have physical solutions of this type.

IV. ASYMPTOTIC EXPRESSIONS FOR THE

EIGENVALUES u

The determinant D of the matrix M can be writ-
ten in the form

& &

D = e 4' g P a»s 'e"
A=O y=p

(4 1)

where s = t'( = i8,(~/~, ) and the a» are real func-
tions of the parameters of the unperturbed orbit.
Such a form is usually called an exponential poly-
nomial or a quasipolynomial. Without numerical
computation, little can be accomplished toward
finding the zeros of D with small magnitude of s.
However, for those zeros with large imaginary
part of s there are useful asymptotic formulas. '

For simplicity consider the case m, =m~ and u,
= v~ =—v«1. The determinants D(' have the form

4 4
D ( & ) —e-&& ~ ~ a( & )g s e&&=e ~~~a,.~ s e

A=pg=p

(4 2)

where the a, ', correspond to the two-dimensional
matrix M(' and the a~~ correspond to M( . Fur-
ther, because A~B„=A,B, (we have dropped the
first subscript on the A.'s and B's because it is
superfluous in the equal-mass case), we have

a, ', =a4', =0. In Fig. 2 we construct a diagram in
which we place a dot with abscissa k and ordinate
j for each pair of integers (k, j) with a,.„w0. We
then construct a polygonal line which must (i) have
vertices only at these dots, (ii}be convex upward
(or straight), (iii) have no dots above it, and (iv)
extend from the leftmost column of the dots to the
rightmost column. This graph (L„L„L,) is known

as the distribution diagram for the exponential
polynomial (4.2). The terms which correspond to
the dots beneath this graph may have a strong ef-
fect on the location of the zeros with small I sI.
However, they may be ignored for purposes of
finding the asymptotic formulas. The five terms
of Eq. (4.2) which correspond to the five dots
through which the graph passes are the only ones
which contribute asymptotically. Thus

FIG. 2. Distribution diagram for the exponential poly-
nomials D+ (s). The integer k is the coefficient of s in
the exponential and j is the power of s. The dots refer
to the terms a;&s e~ with a&& & 0 in D (s). The three
straight-line segments I &, L2, and L3 comprise the dis-
tribution dia~ram. The points and the distribution dia-
gram for D (s) are identical with those for D+ (s).

e"D(') =—a(') ps+ a(')g4eB+ a(') g'e '
+ a(~) &4es + a(~) gse4s,

4,3 s,4 (4.3)

s+ (2e )e'=0.
The asymptotic formula for its zeros is

Res =-1n(2v') +lnI ImsI,

lms=(2u~~ai/I &l)~,

(4.5}

(4.6)

where upper (lower) signs refer to Dt'i (Di i) and
k is any large positive or negative integer. Simi-
larly, line segment I,, corresponds to

with
(a) a(+)
3,p 3,4

= q(&o/8o) (A~B ~+A xB+a A+~B a
-A aB+~)

-s+ 4
p

(~) (~)a41 =a4,3

= +—,'((u, /8o)'(A~, B„+A~Bo,) - +a),'/ (16v ), (4.4)

a~i", = ((o,/8, )'(A~8~ +A~B„)- u),'/(16 v') .
The arrows show nonrelativistic limits.

The zeros of D(') asymptotically fall into four
sets of chains, one chain associated with the
straight-line segment L, (cf. Fig. 2), two with L„
and one with I, The zeros associated with Ls are
determined only by the coefficients a3 4 and a, 3'.
Dropping over-all factors we are led to the equa-
tion
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2v' w se' =0

with the asymptotic formula

Res =in(2v') —ln~ Ims~,

1ms = (2k+ —'k/
~
k ( )w .

(4.7)

(4.8)

Finally, associated with line segment L, we have
the three terms with (k, j) values of (1, 4), (2, 4),
and (3, 4). When we drop over-all factors we are
left with

1 a 2v' coshs =0,

which has the approximate solutions

s =21nv+(2k+-,'a 2)mi

and

s =-21nv+(2k+-,'+ )mi,

(4 9)

(4.10)

(4.11)

where again upper (lower) signs correspond to D~')

(D( ') and k is any positive or negative integer.
Staruszkiewicz" discovered the solutions (4.10)
and (4.11) associated with L, but overlooked those
associated with L, and L3.

The transition from the variable s to the vari-
able ~/ar, is simple and results in the following
four chains of asymptotic zeros for D~' for v«1:

~/~. =(k+ lk/I kl)~/~+ —»I (k~ lk/I kI )v/~'I,
(4.12)

(4.13)~/(u, =(k+ —,'+ —,')m/v+ —' In~ 1/v'~,

(ul&o, = (k+ ,'+ ,')nlv ————ln~1/v'~, (4.14)

~/~. =(k+ lk/lkl)~/~ ——»I(k+ 4k/lkl)~/~'I
2v

(4.15)
In each chain the approximation to the true zeros
of D ' becomes better and better as the integer k
becomes larger in magnitude.

For the case m, pm~ we must revert back to
Eq. (4.1). Though we have not worked out many
details, we can point out that a«=a» =a87=a88=0
and that Eq. (4.9) generalizes to

1+ (v, v~)'i'(u, + v~) cosh s = 0 . (4.16)

(u/(u, =(v, + u~) '(2k+-,'+-,')m

+ i(v, v~)-'In~ 4/(v, + v~)2)

+i(v, + v, )-'lnl 2(y+y ')
I (4.1V)

(o/(u, = (v, + v~) '(2k+ —,'+ —,')w

—i(u, + v~)
' ln ( 4/(v, + v~)' )

—i(v, +u~)-'ini —,'(y+y ')[. (4.18)

If we let y' =m~/m„ then the asymptotic solutions
of Eq. (4.16) are

In the equal-mass case y =1 and Eqs. (4.1V) and
(4.18) are the same as Eqs. (4.13) and (4.14). In
the unequal-mass case the last terms of Eqs.
(4.1V) and (4.18) move the zeros farther and farther
without limit away from the real axis as y goes
from unity to infinity. We expect a similar behav-
ior for the zeros approximated by Eqs. (4.12) and
(4.15), so that in the potential-theory limit we are
left with no complex eigenvalues at all.

(0/(do = 1 - 25 = 1 —25„ (5 1)

V. NUMERICAL SOLUTIONS FOR THE
EQUAL-MASS CASE

In this section we return to the equal-mass case.
%e resort to numerical computation in order to lift
our previous restrictions to low velocities and to
large real part of &u/&o, (i.e., large imaginary part
of s). Figure 3 shows how a few of these zeros
vary in the complex &u plane as the velocity v
varies. The solid (dashed) curves represent zeros
of D&' (D( i). For low velocities there are some
zeros lying on the real axis between -1 and +1.
These we will discuss later. The remaining zeros
are infinite in number, are complex, and are ap-
proximated by the four chains (4.12) to (4.15). In
Fig. 3 we have marked the positions of these zeros
for velocities of 0.10 and 0.314. In addition for
v =0.1, we have plotted exact solutions of the as-
ymptotic equations (4.7) and (4.9) and their approx-
imations by the asymptotic formulas (4.13) and
(4.12). We see that Eq. (4.7) is considerably more
accurate for small k than Eq. (4.13), but that Eq.
(4.13) has become quite good for k ) 3.

There are four zeros (two each in the upper and
lower half planes) which are pure imaginary at low
velocities. At v-=0, 12 they collide in pairs and
leave the imaginary axis. Then at v =0.95 they be-
come the first complex zeros to move onto the real
axis. They belong to solutions of D ~, i.e., solu-
tions with F~ = -E„G~ = -6,. The other zeros in the
L, and L, series also move onto the real axis as
the velocity becomes higher and higher. The zeros
in the L, series move toward the origin at low vel-
ocities but at high velocities they swerve and move
away from the real axis.

In addition to those zeros which are complex at
low velocities, there are some which are real for
all velocities. These are the fixed zeros at &o/e,
=0, +1, which we discussed in Sec. III, and the
zeros of D't' which begin at ~/e, = el for v =0 and
move toward the origin as v approaches unity. The
solution which corresponds to this latter. pair of
zeros coincides to order v' with Darwin's solution.
The solid equal-mass curve of Fig. 4 shows the
variation of ~/~owith v„'=(v, +v~)'. For low vel-
ocities we have
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FIG. 3. Motion for m& = m of a few of the zex'os &/&() in the complex plane as the velocity varies from zero to unity.

The symbols and + show the positions of the zeros for v=0.10 and v =0.314, respectively. The symbol x shows exact
solutions of the asymptotic equations (4.7) for v=0.10. The symbol Q shows solutions given by the asymptotic formulas

(4.13) and (4.12) for v=0.10. The trajectories exhibit mirror symmetxy about both the real and imaginary axes.

in agreement with Darwin, Along this curve the
rate of the perihelion advance varies from zero
(at v=0) to infinity (at v=l). For very high vel-
ocities this means that there are several revolu-
tions between perihelia. The dashed (equal-mass)
cuxve in Fig. 4 belongs to those stable solutions of
D~ ~ whose continuations to low velocities have im-
aginary ~. Similar curves occur at higher values
of &u/&o, for both Dt'~ and D~ &. The corresponding
solutions are stable and typically have many peri-
helia per revolution.

In general the eigenvectors can be specified up
to normalization by giving, for example, the three
ratios E,/G„E~/E„and G~/E~. In the equal-mass
case E,/G, =E~/G~ and E,/E, = ~1. E,/G, ha. s the fol.-
lowing geometx ic interpretation. Let the perturbed
orbit be viewed in the noninertial cooxdinate sys-
tem whose center is located at (-r, cos&uot,

~, sin~, t) and whose x axis .rotates so.as to be
radially outward from the old origin. Then a per-
fectly circular orbit with angular velocity &o, is
seen as a fixed point at the origin of the new coor-
dinate system. A perturbation of this circular or-
bit with the same average angular velocity [cf. Eq.
(8.4)] will be seen in the new coordinate system as
a closed elhpse of length 2k~ E, along the x axis

and 2Am, G, along the y axis. This ellipse is tra-
versed in the time 2w/&0, and the ratio of its x axis
to its y axis is E,/G, The equa.l-mass curves of
Fig. 5 show the variation of this ratio with e„. For
low velocities on the normal equal-mass curve
(E~=E„G~=G,), we get

For very high velocities on this curve E,/G, tends
to zero, meaning that the perturbation is mainly in

the tangential direction. The higher-order stable
solutions are characterized by high values of E,/G,
This means that for them the perturbation is main-

ly along the radial direction.

Vf. SOLUTIONS FOR THE CASE OF
UNEQUAL MASS

As the mass ratio A, =m~/m, varies from unity to
infinity, we shouM expect our equal-mass solutions
to gradually deform into the solutions discussed by
SommerfeM for the potential-theory limit. But as
we have observed before, ' this is a tricky limit to
take. For any very large but finite mass ratio A,

as v, approaches unity the effective mass of e in-
creases and becomes comparable to the rest mass



ALMOST CIRCULAR ORBITS IN. . .

/
/A= I

I

l.5

I.O

1.0
D

Q3
3

0.5

0,5

2
2
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FIG. 4. The variation of u/+0 with relative velocity
squared for different values of the mass ratio A, = mp/m .
The solid A, = 1 curve has Ep =E, and Gp = G„while the
dashed A, =1 curve has Ep =-E~ and Gp =-Ge. Not shown
are additional solutions for A, =1 with large relative vel-
ocities and large ~/~0.

2

(v, +v, )

FIG. 6. The variation of Fp/F, with relative velocity
squared for three different values of the mass ratio
A, = mp/me. The heavier particle experiences a smaller
percentage change in its radius as a function of time than
the lighter particle does. The dashed A, =1 curves (not
shown) have I'p/I~=-1.

of p, resulting in v~ approaching unity also. Thus
the upper limit of v„'=(v, +v~)' is always four.
However, in the strict potential-theory limit vp is
equal to zero and so the upper limit of v„' is unity
rather than four (cf. Fig. 1). Similarly, the total
energy for two particles in concentric circular or-
bits for any finite A. goes to zero as their velocities
approach unity. However, in the potential-theory
limit, by not treating the case where vp is appre-
ciably different from zero, one concludes that the
total energy goes to mpc' which is infinite.

In Fig. 4 we show graphs of &o/&u, vs v„' for the
stable solutions for mass ratios X =1, 20, 1000,

me

G~ 2 mp+m, 2
(6.1)

and ~. For 0 & v„' & 1 we see that as A, becomes
large the ~/&u, curves approach the potential-the-
ory limit, &u/&u, = (l. —v„')'~'. But potential theory
gives no clue as to the limiting values of ~/&u, for
1& v„'&4.

Next we turn to the eigenvectors. In Fig. 5 we
show graphs of E,/G, vs v„' for stable solutions for
mass ratios X=1/1000, 1/20, 1, 20, and 1000.
The A. = 1/1000 and 1/20 curves are included be-
cause the ratio E~/G~ for A =1000 (20) is the same
as the ratio F,/G, for A. =1/1000 (1/20). We find

l.5

I.O

0.5

2

( V +Vp)

/
/

/
/

I
I
I
l
I
I

for low velocities.
In Fig. 6 we show graphs of E~/F, vs v„' for sta-

ble solutions for mass ratios A, =1, 20, and 1000.
In the equal-mass case and in the nonrelativistic
limit E~/F, equals unity as expected, but for A & 1
and 0 & v„' & 1, F~/F, is less than unity, meaning
that the radial amplitude of perturbation divided
by the radius of the circular orbit is less for the
heavy particle than for the light one. For low
velocities we find

p p™er (6.2)
mp+m, 2

which, with Eq. (6.1), yields G~=G, . For reasons
unknown to us the dashed (D ) curves of Figs. 4
and 5 are nearly alike.

FIG. 5. The ratio of the radial perturbation to the
tangential perturbation shown as a function of the relative
velocity squared for different values of the mass ratio
A, = mp/m~. The additional solutions for A, =1 have still
higher values of &,/G, .

VII. CONCLUSIONS

We have shown for certain high-velocity circular
orbits in the iwo-body problem that there exist (in
first-order perturbation theory) several stable
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perturbations which all have the same average an-
gular velocity. We interpret this to mean that, in
such cases at least, Newtonian initial conditions
do not determine the subsequent motion. The sys-
tem has more than the usual number of degrees of
freedom. Such an effect has been. the subject of
many speculations but has not previously been
demonstrated using the exact equations of time-
symmetric action-at-a-distance electrodynamics.
In particular, this effect has been used by Plass
to derive the Rayleigh-Jeans blackbody radiation
law.

In addition we have found an infinite number of
divergent perturbations for any given circular or-
bit, regardless of how low the velocity may be.
Since the divergent perturbations involve trajector-
ies with large deviations from the circular orbits,
first-order perturbation theory is not powerful

enough to study them. There may or may not exist
full mathematical solutions which have small sec-
tions of their trajectories which are almost like
small sections of trajectories of the bound circular
orbits.

The question as to the necessity of a selection
principle for ruling out certain solutions remains
open.
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APPENDIX

The radial equation of motion for particle e is

0 =A,~p, (t) +-,'A~+, [p~(t 7) +p~(t +-7)]+-,'A~, [~~(t 7) -'e~(t +-~)]+A,»~,(t) + —,'A~+, [e~(t -r) + e~(t + 7)]

+-,A~, [P~(t- r) —p~(t + r)] +A,~,(t)+ 2A~~[p~(t- r)+ p~(t + 7)]+2A~, [e~(t-r) — ~(t + r)],
where

A.,~ =1,
J

A „=-v V, '(v,8, +v~sin8, )(v~8, +v, sin8, ),

A~, =v~ V, '(v,80+ v~sin80)(v~+ v, cos80),

A,o, = cvo(-2 —v, '/(1 —v 2) + v, v~V, '[v~+ v, cos80+ v, 80sin80+ v, v~(v, + v~ cos80)]j,

A~„=&uov~(-3 v, sin8, /(80+ v, v~ sin8, ) + V, '[sin8, (8, + v,v~ sin8, ) —28,' cos8,

+ 2 v,'8, sin8, + 3v, (v, + v~ cos8,)(cos8, + v, v~) ]],

(A1)

Ap 1
= (dovp(-3(vp+ ve cos80)/(80+ v~vp sin80) + V~ [80cos80(1 + 2ve —vp )

+ 2 v.v~8, + sin8, (2v, ' —v,'+ 2v, v~ co s8,) + v,'v, ' sin8, ]],
(A2)

A.,M = &u,'(-I —v,'/(1 —v,') —3v, v~ sin8, /(8, + v, v~ sin8, )

+ v, V, '[1+v~'(I +cos'8,)+2v, v~(8, sin8, + 2 cos8,) + 3v,'v~'+ 2v, v~' cos8,]+v,(v, + v~cos8 )I'},

A~~ = &u,'v~(-3 v, sin8, /(8, + v, v~ sin80) + V, '[cos80(1+ v,' —v~'+ 3v, 'v~')

+ (1+v,')(2v, v~ +80 sin8, )]+(v~ + v, cos8,)I'j,

A, 0
= &u,'v~(3v, cos80/(8, + v,v~ sin80) —V, '[80 cos8, —(1—8,') sin8,

—v, v~ sin80(v, v~ + 2 cos8,) + v,'(8, cos8, —2 sin8, )]+v, sin801'],

V, = v, + v~(cos80 -80' cos8, +8, sin8, ) + v, 'v~(2 cos80+80 sin80) + v, v~'(I + cos'8 ) + v,'v~'(v, + v~ cos8,),
I' = [-3(1+v, v~ cos80)/(80+ v,v~ sin80) + v~V, '(1 —v, ')(v~' sin8, —80 cos80)] /(8, + v,v~ sin8, ) .

The tangential equation of motion for particle e is

0=B»R,(t)+ —,'B~~[e~(t-r)+a~(t+ 7)]+,'B~,[p (t r)-p—~(t+7)]+B-ap, (t)+2B~„[p~(t-&)+Pp(t+&)]

[Ep(t-y) —j (t+ 7)]+B~f (t) + gBpio[6&(t —T) +Ep(t + '7)]+ 2' 0[p (t T) pp(t+ T)], --(A3)
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where

B,~ =I,

B~„=v~ V, '(1 —v,')(v, + v~ cos80) (v~ + v, cos80),

, = —v V, '(1 —v, ') (v, + v~ cos80) (v~80+ v, sin8, ),

Bqog =(go[2 —vqVq (8O+ vqvp sin80) ],

B~„=&u,v~V, '(1 —v, ')[-3v~(v~+ v, cos8,)~—(1-v~')8, sin8, + 2(v, + v~ cos8 ) (u~+ v, cos8,)],

B~,= co,v~ V, '(1 —v,')[-3v,v~ sin80%'+8, cos8+280' sin8, +3v,v~80 —2v, v~ sin8, cos8,],
B,oo

= ~0'(-1+v, V, '[-3(l —v,')v~' cos8O~ + 1+2v~' —v~' cos'8,

+2v, v~8, sin8, +3v,v~cos8, —v, 'v~ co8s,]-v, pvsi 8n,a),

B~~ = ~0'v~V, '(1 —v,2) [3v,v~ cos8,%+cos8, —802 cos80+80 sin8, —v, v~(1 —2 cos28 )]++02v, v~ sin8ob, ,

(A4)

B~,= u&0'v~ V, '(1- v,')[-3v,v~ sin8, VP+80cos80 —sin80+80' sin80+2v, v~(80 —sin8, cos80)]-&oo'v~(v~+ v, cos80)b, ,

% = [8, cos80 —(1 —8,') sin8, + v, v~(8, —sin8, cos8,)]/(80+ v, v~ sin8, ),
& = v~ V, '(1 —v 2)[3(1+v, v~ cos80)~ -80' cos80-8O sin80 —2v, v~ sin28O]/(80+ v, v~ sin80) .

Some general relations which hold among these quantities are

A,~B„2=A, ,B, 2,

Ap~Bp+~=Ap 2' 2,

&coo = -&n.o

&&oo = -&-o
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