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For a classical-mechanical system of any fixed number of particles it is observed that
,space-translation invariance and conservation of angular momentum imply conservation of
momentum. For three particles it is shown, as previously for tv', that Poincarb invariance
implies that the total kinematic momentum cannot be a constant of motion unless the acceler-
ations are zero. The equations involved make it appear most likely that this is true for any
number of particles.

We have learned only recently how relativistical-
ly invariant classical mechanics can describe in-
teractions of a fixed number of particles, without
fields, as in ordinary Newtonian equations of mo-
tion. ' ' As yet, not very much is known about
these interactions. For two particles it has been
shown that their constants of motion do not include
the total kinematic particle momentum or angular
momentum. " (These quantities could have the
same values before and after a collision by being
asymptotic limits of constants of the motion which
would depend on the interaction and could corre-
spond to translation and rotation invariance. From
the field-theory point of view there is momentum in
the fields that propagate the interaction; Newton's
third law does not hold because the fields do not
propagate the interaction instantaneously. )

Here we observe that for any number of particles
the impossibility of kinematic momentum being a
constant of motion implies the same for angular
momentum. We prove the statement about momen-
tum for three particles. The equations involved
make it appear most likely that it is true for any
number of particles.

The idea is very simple. Suppose the kinematic
momentum is a constant of motion. It is also
space-translation invariant. We assume the dy-
namics is Poincare invariant. It follows that every
Lorentz transform of the kinematic momentum is
a constant of motion, that is, the sum of the kine-
matic momenta of the particles taken at the same
ti.me in the transformed frame. It seems the only

way every one of these can be a constant of motion
is for the individual particle momenta to be con-
stants of motion, which means there is no interac-
tion. "

The same idea for space-translation invariance
shows that conservation of total kinematic momen-
tum follows from that of angular momentum, as we
shall see as soon as we introduce some notation.

Let x" and v" be the position and velocity of the
nth particle, m„ its mass, and

~un ~ ~+n[I (vn)2]-I/2

its (kinematic) momentum.
Suppose that the angular momentum

g xn ~~un

is a constant of motion. If the dynamics is space-
translation invariant, it follows that the translated
angular momentum

that is, the angular momentum in a frame trans-
latedadistance Z, is a constant of motion. For this
to be true for every c the momentum

must be a constant of motion.
For a Lorentz transformation with velocity tanhe

in the 0th direction, the jth component of the trans-
formed position of the nth particle, that is, the
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position at time zero in the transformed frame, is

X~ + 6Xp8~

n n n(xll xtt 2ltt) (g xtl + 0 xtt)

to first order in e, where x" and v" are the position
and velocity at time zero in the original frame. "'"
We can use a bracket-generator symbol [,K] for
Lorentz transformations' and write

2

X] Xg XpQ)
n

[(un)2+~ 2]1/2
dt

(2)

[x,",K„]=x,"v,".

for j, k = 1, 2, 3. The first-order part of the simi-
larly transformed velocity is ' '

[vt t K2] = x2vt + v/~v2 —

Otter

.

Here and in the following a dot means a time deriv-
ative. From these transformations we find that

[21n K ] xn11n [(un)2+212 2]1/2Q

for k, l=1, 2, 3.
Suppose'that Q„u" is a constant of motion. It is

also space-translation invariant, becaus/ space
translation does not change velocities. We can use
a bracket-generator symbol [,H] for time deriva-
tives and [,P] for space translations. ' Then using
the bracket relations of the Poincare group, ' we get

[[g &1",K2], Hl =[[&nt, H], K2]+[2st, P21 =o

and

[[P l, K.],P;1=[[Z ",P]K.]+[K i ~'H]=0'

so [Q„ut, K„] is a constant of motion and space-
translation invariant for 0, l= 1, 2, 3. Repeating
this with [Q„ut, K2] and then [[g„u Kt, ],K, ], etc. ,
in place of g„mt, we see that [[Q„u,",K2], K, ] and
then [[[P„ut,K,],K, ],K,], etc. , are constants of
motion.

To calculate [[Q„ut",K,],K;], for example, we
use a bracket relation of the Poincare group again
to get

[ut", K, ] = [[ut, H], K,.]

=[I."„K,],H]-[ "„P,]
d 1xnBtt —[(Un)2+212 2]t/2ft

To find ['ut", K,] we can use another bracket rela-
tion, viz. , that space translations commute with
time derivatives, to see that ~, is space-transla-
tion invariant:

[2it", P, ] =[[u", , H], P, ] =[[u,",P, ],H] =0. .

In this way we find that if Q„ut is a constant of mo-
tion, then

Q (xn1tn g [(un)2+m 2]1/2)

——O5tttx. x. + 5 tx xtt+ 5ttx xtt)

x —f( ")'+m 'I"))d
dt n

etc. , also are constants of motion.
For three particles this implies that the individ-

ual particle momenta un are constants of motion. '
The rest of the paper is a proof of this statement.
For three particles we do not need the last con-
stant of motion (3). You are invited to use it
to try to construct a proof for four particles. For
five particles you probably need one more con-
stant of motion, etc.

The constants of motion (1) and (2) are space-
translation invariant. [You can easily see that (1)
is, because+„Q,"=0, and that (2) is, because (1) is
a constant of motion. ] Therefore in working with
these constants of motion or their time derivatives
(since time derivatives commute with space trans-
lations) we can choose the origin to be at x' and
write x" —x' in place of x".

Let e be a vector perpendicular to x' —x' and
x ' —X'. We take the time derivative of (1), change
x" to xn-x', multiply by e~, sum over 0=1, 2, 3,
and get

p v tl x (u tt x e) 0
n=l

Similarly, taking the time derivative of (2), chang-
ing x" to x"-x', multiplying by e&e~, and summing
over j, 0=1, 2, 3, we get

3

Q (e v")v "x(u "xe) =0,

and, using the previous equation to eliminate v'
x(u2xe), we get

e ~ (v'-v')v'x(u'xe)+e ~ (v'-v')v'x(u'xe) =0.
Then taking a dot product with v ' or v' and inter-
changing dot and cross products, we find that

e (v'-v')v'xv' ~ u'xe=o
and

e (v'-v')v'xv ~ u'xe=O.

We see" that u'xe, u'xe, and u2xe (since u'
=-u'-u') are perpendicular to v'xv 2 and (per-
muting indices) to v2xv' and v'xv1. We con-
cludelo that ulxe, u2xep and u3xe are zero,
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which means that u', u', and u' are perpendicu-
lar to x'-x' and x'-x'.

If in (1) we change x" to x"—x' and sum over
k =l =1, 2, 3, we find that the total kinetic energy

3
Qv" u"=0.
n=1

(4)

Again let e be a vector perpendicular to x -x'
and x' —x'. We take the time derivative of (2},
change x n to x n —x ', multiply by ez, sum over j =

1, 2, 3 and k = E = 1, 2, 3, and find that

P (e v")(v" u") =0.
n=l

P [(u~n)2+~ 2] 1/2

n=l

is a constant of motion. Taking its time derivative,
we have

Using Eg. (4) to eliminate v' u', we get

e ~ (v'-v')(v' u')+e ~ (v' —v')(v' u') =0.
(5)

We use u'=-u'-u' to eliminate u' from (4), mul-
tiply (4) by e v' and subtract it from (5), and find
that

e u'x[(v'-v')xv']+e ~ (v'-v')(v' u'}

—(e v')(v'-v') u'=0.
If we interchange the dot and cross products, we
see that the first term is zero because e xu' is
zero. This eliminates u'; so we are left with

[e ~ (v'-v'-v')v'+(e v')v'] u'=0.
But u' is also perpendicular to the two other vec-
tors x'-x' and x'-x'. Therefore u' must be
zero. ' We conclude that u', u, and u' are all
zero.
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