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best tests of T invariance in AS=1 decays are to
be found in processes which either involve a Z°

or A in the initial or final state, or which occur
between one V multiplet and another.
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A discussion of high-energy effects in the N/D method is presented and arguments are
given that difficulties of the type described by Coulter can be avoided.

In a recent article,! Coulter has given an account
of an interesting study of high-energy effects in
the N/D method. Starting with a standard reso-
nance form, the generalized potential®

_1 ImA(s)dS,

B(s) m s'=s
. S'=s.

is calculated for s> 4 directly from the phase
shifts. Then B(s) is used in an N/D calculation,
and it is found that when the original phase shifts
have an asymptotic behavior corresponding to a
Castillejo-Dalitz-Dyson (CDD) pole, 6 -7 as s—<o,
the method completely fails to reproduce them.
But when the asymptotic behavior is changed to a
non-CDD form, 6-0 as s -, the resonance is
reproduced in a satisfactory way. The use of a
narrow-width approximation or a Breit-Wigner
form in the crossed channel implies the existence
of CDD effects, and it is suggested that an attempt
to obtain a direct-channel non-CDD resonance
from one of these is inconsistent and can be mean-
ingful only if high-energy effects are negligible.
Since the amplitude was the same throughout the
entire low-energy region in both of Coulter’s cal-

culations, it seems that high-energy effects are
important, and that the use of this type of reso-
nance in the crossed channel is in serious error.

Here we would like to suggest that the impor-
tance of the high-energy form of the direct-chan-
nel phase shift does not necessarily imply equal
importance to the high-energy form in the crossed
channel.®> The usual input is obtained from the ¢-
channel partial-wave series, which is convergent
only for s >-32. Since the left-hand cut is given
by an integral over ¢ from 4 to 4-s, the only ¢
values that contribute directly are 4 <¢<36. Thus
only small changes can result from changing a
high-¢ phase shift from a CDD form to a non-CDD
form. Of course, one could use a truncated series
for s <-32 (with a cutoff to avoid divergences in
the integration), so that large ¢/ would formally
contribute. However, the divergence of the full
series makes this procedure highly suspect.

In any realistic calculation, only the part of the
left-hand cut -32 <s <0 should be directly calcu-
lated from the crossed-channel partial-wave ex-
pansion. One of us (J.D.) has recently discussed*
a modified form of the Baldzs method by which
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the effects of the remainder of the cut can be esti-
mated. The part of the left-hand cut with s <-32
is replaced by poles whose residues are calcu-
lated in the usual way by matching the N/D re-
sults with a known form in the gap. The method
uses closed-form solutions for N and D, retains
explicitly the near part of the left-hand cut, and
with the matching criteria for the gap is free of
arbitrary parameters.? The necessary inputs are
ImA(s) for -32 <s <0 and the real function, A(s),
for 0 <s <4, so that no separate calculation of B(s)
is necessary. In a real calculation, the amplitude
used for matching in the gap is again obtained from
the ¢ -channel partial-wave expansion (which con-
verges in 0 <s <4 for all t>4). A(s)is given by an
integral in ¢ from 4 to «, but now the integrand is
damped by a factor ¢=’-! which suggests that the
low-¢ region still dominates.

There remains the question of whether the small
changes that might occur in the near part of the
cut due to a change of high-¢# forms, or the small
changes that might occur in the gap despite the
t~'"! damping, might have some significant effect.
There is the possibility that CDD and non-CDD
direct-channel forms might have similar cuts and/
or gaps, so that small changes in these inputs
would be crucial. These questions can be studied
by a more detailed study of the properties of func-
tions producing phase shifts corresponding to CDD
and non-CDD resonances. We can express a uni-
tary partial-wave amplitude in the general form

A(s)=[p(s)f (), (1)
where
p(s)=[(s-4)/s]*/?, f(s)=cotd(s)-i, (2)

and f(s) is chosen so as to give the amplitude the
correct analytic and threshold properties. A con-
venient form for cotd which ensures the correct
threshold behavior is

__ h(s)
cotd(s) = Goa)y % s 3)

where %(4)#0. In addition, we want to require that
A(s) be free of CDD poles and also ghost poles on
the physical sheet. To obtain conditions for this,
we can use a contour around both cuts, closed
with a large circle, and calculate

1 _1 df
=30 P B 5 as
=N,=-N,, (4)

where N, and N, are, respectively, the number of
zeros and poles of f(s) inside the contour. Taking
the behavior of f(s) to be

fls) s 8™,

F8) (s = 4)71-1/2,
and taking the contour to these limits, one obtains
[B() = B(4)] + [B(0) = B(=)]= (N, =~ N, = I-=»=13),

(6)

where 8 is the phase of f above the cut. In terms
of the phase of the amplitude itself, 6=-3 on top
of the cuts, this becomes®

[6(4) = 6(0)]+ [6(=) = 6(0)]=7(N,— N, = == 3).
(7)

We will restrict our attention here to the cage
1=1 and forms of f(s) having no poles and » =3,
which gives

8(=) = 6(0) = (N, = 2) = [6(4) = 5(=)] . ®)

The form used by Coulter corresponds to the
choice

n(s)=as(sz—s). (9)

Here 6(~»)~ 6(0)=0 and 5(4) — 6(«)==7 which
implies N,=1; there is, in fact, one pole of A, a
bound state. (Recall that N, is the number of
zeros of f; hence, these represent poles of A.)

By inspecting (8) we see that if we continue to
require no ghost poles, fix the number of bound
states, and alter the high-energy phase shifts to
avoid CDD effects, then we must also alter the
left-hand cut such that certain oscillations will
occur in both the real and imaginary parts of A to
give 5(—w) - 5(0) the right value. Since this con-
dition involves only the ends of the cut, the re-
quired changes can, in principle, occur anywhere;
however, in the actual cases we have constructed,
the near parts are definitely affected.

For example, a resonant form having no bound
states or ghosts, and no CDD effects, is

(s)=a+bs'2+cs+ ds3/2+esz, (10)

with ¢=19.875, ="75.0875, ¢ =15.5375, 4=0.05875,
e¢=0.0125, where the constants have been chosen
to give a resonance at about the p mass and also
to satisfy (8). In Fig. 1, we compare the imagi-
nary part of the amplitude constructed from this
function with that of Coulter’s choice, (9), and
show that the respective left-hand cuts are indeed
quite different. In Coulter’s calculation, the
transformation from CDD to non-CDD form is
carried out numerically so that the analytic form
of the altered (non-CDD) amplitude is unknown and
the left-hand cuts of his amplitudes cannot be
compared. The arguments given here, however,
indicate that the cuts differing to the extent of
those in Fig. 1 would correspond to very different

(5)
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FIG. 1. Left-hand cuts of CDD and non-CDD reso-
nances. A is taken from Eq. (9), which is a CDD form,
and B is from Eq. (10), which is a non-CDD form.

t-channel processes. Or, stated another way,
since the low-energy resonances from crossed-
channel partial waves are the dominant feature in
this portion of the cut, it is most unlikely that one
could get from the CDD form to the non-CDD form
by changing nothing but the high-¢ phase shifts.

We have verified directly that a non-CDD reso-
nance can be accurately reproduced by the present
form of the N/D equations. Using (10), one can
directly calculate A(s) for 0<s <4 and ImA(s) for
-32<s <0, which are the basic inputs to the cal-
culation.

Although this calculation does not involve the ¢
channel, we are using the same quantities for in-
puts which would be obtained from the ¢ channel
in a problem with crossing symmetry. In this
sense, we are simulating a practical calculation
to verify that our N/D equations do indeed give an
approximate continuation to the region s >4. The
pole parameters were computed by the usual
matching procedure in the gap,* and there was no
instability with respect to the matching points.
The pole positions were varied so as to optimize
the agreement.in the gap, and excellent fits were
thus obtained. The output phase shifts are shown
in Fig. 2 (curve II), where they are compared
with those obtained directly from the known func-
tion (curve I). The agreement is good, and the
non-CDD function is well represented by these
N/D equations. Our method fails, of course, when
a CDD form such as (9) is used, which agrees with
the results obtained by Coulter.

We now return to effects in the gap produced by
changing the high-energy behavior of the reso-
nances in the ¢ channel. As was noted previously,
the high-¢ contributions are all damped by a fac-
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FIG. 2. N/D continuation of the amplitude obtained
from Eq. (10), a non-CDD form, from its known values
in the gap and on the near part of the left-hand cut. Iis
the known phase shift of the given function, and II is the
phase shift from the N/D equations.

tor ¢~'"1, so that it seems unlikely a priovi that
the output will be significantly altered by such
changes. However, there is no need to speculate
on this point since a direct calculation is possible.
For this purpose, we compare the direct-channel
output that is produced by two different ¢-channel
input forms. One of these has CDD (¢-channel)
phase shifts, and the other does not. However,
they both contain the same low-energy resonance,
which is taken at the p mass. Equation (10) is
used for the non-CDD case, while a suitable CDD
resonance is given by the unitary p-wave Breit-
Wigner form®

rp®
Al)=T—"—=
( tp—t=ilp?’ (11)

tp=28.09, T2=250,

where the parameters® have been chosen to pro-
duce low-energy agreement between (10) and (11).
Thus the ¢-channel resonance that was actually
used is much wider than the p.

Both (10) and (11) were used to compute Im A(s)
for —32<s<0, and A(s) for 0 <s <4. These were
used as inputs to the same kind of N/ D calculations
as were carried out with the known functions.

The two forms were quite similar in the gap, but
the real comparison should be made with the di-
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FIG. 3. Direct-channel output comparing two forms
of t-channel resonance input. A is obtained from a CDD
type of input, and B comes from the non-CDD case.

rect-channel phase shifts, which are given in Fig.
3. Form A is obtained from (11), and B is ob-
tained from (10). Although there is, of course,
the cutoff at s =-32, this position is dictated by
the convergence of the {-channel partial-wave
series and is not arbitrary. Nor are there any

HIGH-ENERGY EFFECTS IN THE N/D METHOD 765

other arbitrary parameters to be adjusted to bring
about agreement in the output; all parameters are
adjusted to bring about the match in the gap. That
the results, A and B, are quite comparable again
suggests that the detailed form used at high ¢ is
of no great importance.

The outputs of both calculations are, at face
value, disappointing, since neither produces a
resonance in the output. However, this is due to
the neglect of other partial waves, not any defect
in (11) at large ¢. In fact, we have verified di-
rectly’ that when other partial waves are also
kept in the crossed channel, an s-channel /=1
resonance appears with the approximate p param-
eters.

To summarize, a given left-hand cut of a partial-
wave amplitude should lead clearly to either a
CDD or a non-CDD form of the phase shift. We
have discussed a form of the N/D equations which
uses only the near part of this cut and the gap as
inputs, and the main features of these inputs are
determined by the low-¢ resonances in a problem
with crossing symmetry. The numerical examples
given here suggest that the CDD and non-CDD cuts
are indeed different, but that there is very little
high-¢ contribution to the necessary N/D inputs.
Thus, while our N/D equations will not reproduce
a CDD form when the inputs are taken from the
direct channel — an expected result since these
equations assume the absence of CDD effects - the
use of a crossed-channel CDD form, such as a
Breit-Wigner form, has little adverse effect on
the direct-channel output.
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