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Kim and Primakoff have shown that certain T-violating currents cannot contribute to neu-
tron B decay because of their properties under charge symmetry. Here we show that the
same currents cannot contribute to strangeness-conserving f-decay transitions within any
isomultiplet. We also extend the result to strangeness-violating decays by means of V spin.

By analyzing the axial-vector current in terms
of time reversal (7') and charge symmetry (CS),
Kim and Primakoff’ have shown that the absence
of T-violating effects in neutron 8 decay does not
necessarily prove semileptonic weak interactions
to be T-invariant. Certain T-violating terms may
be present in the current, but because of their
behavior under CS, they cannot contribute to tran-
sitions from one member of an isodoublet to the
other. Their existence, therefore, can only be
detected in other types of isospin transition.

Here we shall generalize the Kim-Primakoff
theorem by showing that those parts of the axial-
vector current that cannot contribute to neutron
decay cannot, in fact, contribute to g-decay tran-
sitions within any isomultiplet. Definitive tests of
T invariance in strangeness-conserving weak in-
teractions must therefore involve decays from one
isomultiplet to another. A similar result applies
to strangeness-violating semileptonic processes.

The strangeness-conserving axial-vector current
can be written as a sum of terms which are either
“normal” (z) or “abnormal” (@) under T, and
which are either “regular” () or “irregular” ()
under CS:!

A, = _Z) A()\x)(y). (1)
yont

Under T we have

TA({)(}')T-1= _axy(A(ic)(y))T , @)

App =8y =+l, Gy, =a,=-1,

and under CS, we find

eMle()a\r)(y)e-iﬂz = —bw(A(f)(y))T ,
@)
bnrzbar=+1’ bpi=bg = -1.
Terms which are either (n)(») or (a)(i) belong to
the first-class category of currents, and terms
which are (#)(i) or (a)(») belong to the second
class.?

When we take matrix elements of A, between
states o and B, we obtain terms which are either
pure axial vector (A), or induced pseudoscalar
(P), or induced pseudotensor (7T').! The corres-
ponding form factors are

F(N9xay; a"\.B) ’
N=A,P,T,

(4)

x=n,a, y=7,i,

their dependence upon momentum transfer having
been suppressed. As shown by Kim and Prima-
koff,* the Hermiticity of the semileptonic Hamil-
tonian implies that

F(N,x,y; @~ B)=cyF(N,x,y; 8~ )",

/

S+1 for N=A,P

Cn=c (5)
z -1 for N=T,

and the time-reversal properties of AP require
F(N,x,y; 0 = B)=a,, ¢y F(N, %, 9; B~ a)
=a,, F(N,x,y; @ - B)*. (6)
Charge symmetry tells us that
F(N,x,y; &~ B)=b,, F(N,x,y; &'~ §), (7
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where a’ and §’ are states charge-symmetric to
a and B, respectively. Combining Eqs. (6) and
(7), we obtain the relation

F(N,x,y; & = B)=ay,b,,cy FIN,x,y; B/~ a’).
(8)
Suppose that in the decay a—~ S+e~+7 the

states o and 8 are members of the same isomulti-
plet with isospin quantum numbers (I, I,) and (7, I,
+1), respectively. The states a’ and g must also
belong to this isomultiplet and their respective
quantum numbers are (I, L) and (I, —(I, +1)).
Equation (8) now takes the form

F(N,x,y; L~ I,+1)=a,,b,,cy F(N,x,y; ~(I, +1) = =L).

(9)
Because the z component of isospin changes by
one unit in the transition @ - B, the current A,
must be at least an isovector, and it may even
contain higher tensors. We write it as a sum of
isotensors of rank k& (£=1,2,3,...),
A= T AR, (10)
kR=1,2,...
and we denote the form factors associated with
each A()‘") by a superscript (). From the Wigner -
Eckart theorem,® the ratio of the two form factors
in Eq. (9) for a fixed value of % is equal to the
ratio of Clebsch-Gordan coefficients

(1, L), (R, DL L, + ) /(I, =L~ 1), (k, 1)|1, -1,).
Thus, we can rewrite Eq. (9) as
F®(N x,y; I~ I,+1)
= (=1F**azb,ycy FOWN, x, y; L~ L, +1).

(11)
Whenever the phase factor in Eq. (11) is nega-
tive, the corresponding matrix element vanishes.
The appropriate condition, namely,

axybxyclv=(—1)k (12)

does not depend upon the isospin of the parent and
daughter states o and 3, and so terms which do
not contribute to neutron decay do not contribute
to decays within any isomultiplet. For an isovec-
tor current (2=1), which is the case of most
interest, the noncontributing terms belong to the
second class for axial-vector (A) and induced-
pseudoscalar (P) couplings,' and to the first class
for pseudotensor coupling.

If we want to extend this type of analysis to tran-
sitions from one isomultiplet to another, then we
must make use of a symmetry higher than isospin.
For example, in Z*~ A 8 decay, we might assume
that the axial-vector current belongs to an SU(3)
octet; then, because there is no F-type coupling
between T and A states,? it follows that
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F(N,x,y; Z==A)==cy F(N,x,y; Z* ~A)*.
(13)
Combining this result with the CS properties of
the current, we find that

F(N,x,9; Z = A)=b,, cy F(N,x,y; -~ A)*.
(14)
Thus, the axial-vector and induced-pseudoscalar
couplings contain no second-class terms, and the
pseudotensor no first-class ones; however, no 7'-
violating currents are excluded in this case.

Equation (14) is not as strong a result as Eq. (11)
because SU(3) is not an exact symmetry of strong
interactions. ‘If the effect of SU(3) breaking is to
introduce non-octet components into Z* and A
states, then the magnitude of these components
measures the extent to which Eq. (14) should hold.
This magnitude is expected to be of order 10%,
even though metastable hadron states are remark-
ably pure octets.

Other transitions between different isomultiplets
occur in strangeness-violating semileptonic decay.
Because their selection rules AS=AQ=1 are equiv-
lent to®

AV,=1, AY,=0, (15)

we can analyze these decays in exactly the same
way as strangeness-conserving ones, except that
we use the V-spin subgroup®’ ¢ of SU(3) instead of
isospin. - As the analog of Eq. (11) we obtain the
result

FON,x,y; V=V, +1)
=(_1)l+laxy5xy Cy F(l)(N)x9y; Vz" Vz;:+1)
(16)

for the component A *)(N, x, y) of the AS=1 axial-
vector current which behaves as an Ilth-rank tensor
in V space. The coefficient a,, is the same as in
Eq. (2), and Exy comes from the V-spin analog of
Eq. (3).*

Equation (16) is not as powerful in its conse-
quences for hyperon decay as its isospin counter-
part in Eq. (11). It does imply that components
of the axial-vector current for which

axygxyc)l:(—l)l (17)

cannot contribute to the decays £~ - ne~7 and =°
- Z*e "7, both of which are transitions within a
V doublet.* But, because ° and A° are not eigen-
states of V spin,®*® it has no simple consequences
for decays like %™~ X% "D and A - pe - 7.

Currents obeying Eq. (17) cannot contribute to
Q 7~ E*% -7 because it is a transition from one
member of a V-spin quartet to another.5' ¢ They
can, however, contribute to -~ =%~ 7, which is
of the type 3— % in V space. Thus, we see that the
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best tests of T invariance in AS=1 decays are to
be found in processes which either involve a Z°

or A in the initial or final state, or which occur
between one V multiplet and another.

o
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A discussion of high-energy effects in the N/D method is presented and arguments are
given that difficulties of the type described by Coulter can be avoided.

In a recent article,! Coulter has given an account
of an interesting study of high-energy effects in
the N/D method. Starting with a standard reso-
nance form, the generalized potential®

_1 ImA(s)dS,

B(s) m s'=s
. S'=s.

is calculated for s> 4 directly from the phase
shifts. Then B(s) is used in an N/D calculation,
and it is found that when the original phase shifts
have an asymptotic behavior corresponding to a
Castillejo-Dalitz-Dyson (CDD) pole, 6 -7 as s—<o,
the method completely fails to reproduce them.
But when the asymptotic behavior is changed to a
non-CDD form, 6-0 as s -, the resonance is
reproduced in a satisfactory way. The use of a
narrow-width approximation or a Breit-Wigner
form in the crossed channel implies the existence
of CDD effects, and it is suggested that an attempt
to obtain a direct-channel non-CDD resonance
from one of these is inconsistent and can be mean-
ingful only if high-energy effects are negligible.
Since the amplitude was the same throughout the
entire low-energy region in both of Coulter’s cal-

culations, it seems that high-energy effects are
important, and that the use of this type of reso-
nance in the crossed channel is in serious error.

Here we would like to suggest that the impor-
tance of the high-energy form of the direct-chan-
nel phase shift does not necessarily imply equal
importance to the high-energy form in the crossed
channel.®> The usual input is obtained from the ¢-
channel partial-wave series, which is convergent
only for s >-32. Since the left-hand cut is given
by an integral over ¢ from 4 to 4-s, the only ¢
values that contribute directly are 4 <¢<36. Thus
only small changes can result from changing a
high-¢ phase shift from a CDD form to a non-CDD
form. Of course, one could use a truncated series
for s <-32 (with a cutoff to avoid divergences in
the integration), so that large ¢/ would formally
contribute. However, the divergence of the full
series makes this procedure highly suspect.

In any realistic calculation, only the part of the
left-hand cut -32 <s <0 should be directly calcu-
lated from the crossed-channel partial-wave ex-
pansion. One of us (J.D.) has recently discussed*
a modified form of the Baldzs method by which



