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A representation of the forward Compton amplitude in which the A& meson breaks scale
invariance is shown to be consistent with existing data for the difference between the proton
and neutron structure functions vW2 —vW2, while ensuring a finite proton-neutron mass
difference AJAR. The conjecture that Wz

——W&+ (v /q ) W2 0 as v ~ for fixed q leads to an
expression for hM in terms of measurable quantities.

I. INTRODUCTION

We begin with the almost obligatory remark that
despite intensive study in recent years, the prob-
lem of the proton-neutron mass difference hM has
remained unsolved. The conjecture' that the elec-
tromagnetic interaction, in first-order approxi-
mation, should give a good estimate for &M led to
Cottingham's' formula for the self-mass of a had-
ron, 5M, in terms of the forward amplitude for
Compton scattering. Harari' considered the ex-
change of Regge poles in the crossed channel, and
showed that the 4I = 2 mass differences are ade-
quately obtained from the Born terms in the Cot-
tingham formula, while the &I=1 mass differences
could have an additional contribution from the sub-
traction term for the T, (v, q') amplitude, because
its behavior is dominated by the A., Regge pole.
Pagels showed that if the structure functions
W, (v, q') and vW, (v, q') are scale-invariant in the
Bjorken limit, ' -q'- ~ with (d = -2Mv/q' fixed,
then the self-mass 5M diverges unless some un-
likely cancellations occur among terms in the Cot-
tingham formula.

We take the position that while divergent self-
masses are acceptable, a theory of self-masses
must predict the observed finite proton-neutron
mass difference. Within the framework of the Cot-
tingham formula, this means that the differences
W, -W," and vW, -vW," cannot have a nontrivial

Bjorken limit if the proton-neutron mass differ-
ence is finite.

II. FORMULA FOR MASS DIFFERENCE

The formula for the self-mass of a hadron is
given by

(2»)» q'+is,

where ei'e" T„„is the forward Compton amplitude
for scattering of photons of four-momentum q off
hadrons of four-momentum P, and n=e»/4m. T„„
can be expanded in terms of two Lorentz-invariant
functions of q' and v =P q/M:

~„,(?? ? ) =?? (+„??„?', Q, T (? ?? )

(2)

The Cottingham formula is obtained by a Wick ro-
tation in the variable v, giving the result

e q6M =—
» ~~ dv (-q' v')'"T(iv, q'),—

(2)

where

T(v, q') =- T„,((l, q')g"" . (4)

Following Harari, ' we assume a once-subtracted,
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fixed-q' dispersion relation for T, (v, q'), while

T,(v, q') requires no subtraction:

I "v'W, (v', q'}dv'
0

(6)

where the structure functions for inelastic elec-
tron-hadron scattering, 8", and 8'„are given by

W,. (v, q') = (1/w) ImT,. (v, q') .
In order to calculate the subtraction constant

T, (0, q') we shall assume, ' consistent with the data,
that

lim T~(v, q') =0,
~ v I ~~;q2 fixed

where

Tl, (v, q') = T, (v, q') + (v'/q') T, (v, q'),

( g) 2
v W/(v ~q )dv

L Vy g' t2 2
0

and for the subtraction constant

(10)

T, (0, q'} = 2 W~(v', q')
0

Here T, (0, q') is determined in terms of the mea-
surable quantity W~(v, q'). It should be noted that
(8) is equivalent to the statement that t~(v, q') sat-
isfies an unsubtracted, fixed-q' dispersion rela-
tion, where"

and we define

Wi(v, q') = (1/7/) ImTi(v, q') . (9)

Therefore, we can write an unsubtracted, Axed-q'
dispersion relation for T~, obtaining for the longi-
tudinal amplitude

T„.(q, q') = (q'g„. -q„q. )4(v, q')+ [-v'a„.-q'I'„I'„/M'+(v/M)(&„q„+I'„q„)]t, (v, q')-

By using (2) with the representations (5) and (6) and substituting (11) into (3), we have

5M= —[ q d ( '- ')'" -3 W, (' ')

(12)

We observe that the nucleon poles at 2Mv = -q', in (13), will give the usual Born contribution to the self-
mass o

By performing the v integration in (13), and defining

bW,.(v, q') =W~/(v, q') —W",.(v, q') and AW~(v, q') =Wg(v, q') -W~(v, q'),

we obtain for the proton-neutron mass difference

n "dq' q2 1/t'2 q2AM=AM~""+—,vdv~32W, (v, -q') 1 — 1+ —, +

1/2 2
"

q2 1 /2 3 3 q2
+AVIV, (v, -g')I(1+ —, ——, 1 — 1+ —, —

~
—

~
—,&W (r, -q''t~,

V

(15)

where v, is the inelastic threshold. By expanding. the integrand in (15) in powers of q'/v', we see that the
terms involving ~W, and ~W, are positive provided ~R', and ~R", are positive, while the contribution of
48'~ to &M is positive or negative, depending on the sign of 8'~.

III. MODEL FOR THE STRUCTURE FUNCTIONS

In order to discuss the proton-neutron mass difference, we shall consider a model for the forward Comp-
ton amplitude valid for large v. %e have

CO

i=P, P' 0

V(0 ~(d /, „1
A2 1+~~ ] ~~~ A2 ~A2 2+~ 2 «A2&+~,
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&, = (1+e ""()/sinva, . (i =P, P'),

$„,=(1+e "~)/sinva+.

We shall assume that for large ~v~,

Tf "(v, q') = -(v'/q')T~2 "(v, q'),

which leads to

W~ (v, q') = 0 (iv i large) .
The structure functions R', and W, are obtained
from the imaginary part of (16). We have

p 0fi
W'"(v q')= g f(&)P'"

+Pl

CX+f„(~)()',;"(,„.r""*, (hO)
A2

where the threshold factors f, (~) are g. iven by
(using c(~=1 and a„,= n~, =-,')

V (df (r)=r) ~+ —rr)

f~(~) =A,. ~+ —B,. (j =P', A, ) .W(() V QP + (h)

f, ( )(-d1 (i=P, P', A,) (22)

and also that

f, ((d)-0 as &u-l. (23)

The parameters A, and J3, (i =P, P', A, ) are deter-
Inlned by requiring that for M

The ratio p„,/(1„,)'1' is fixed at q' = 0 by requiring
that the model give the correct value for &o~
= o(yp)-o(yn) in the Regge region v & 2 GeV. From
ca~lier work, ' this means that P„,/(7„,)'&=0.14
GeV '". The parameters p~, p~„and m, are the
same as in the earlier model. s

We shaD now enumerate some properties of the
amplitude (16):

(1) For fixed q2, (16) is a real analytic function
in the cut v plane with poles in the second sheet;
hence (16) satisfies fixed-q' dispersion relations.

(2) The model possesses the correct s-u cross-
ing symmetry, as it is even for v--v.

(3) For fixed ~(lj, (16) has poles only in the sec-
ond sheet, and therefore a Wick rotation may be
performed on (16) to obtain the Cottingham formula
(3).

(4) The representation (16) is valid for all v and
q' outside the resonance regions [except for pos-
sible fixed poles, for example, at J=0, which may
have to be included in (16)']. lt has the threshold
property W~ "(~,q')- 0 for co-1, and the correct
Regge behRvlor as v ~ 0 for fixed Q' o

(5) The P and P' terms are scale-invariant in
the llmlt ~ ~ +q (d flxedq RQd when y AA &

then
also the 42 contribution is scale-invariant in this
limit, but when y4 eA the A.2 term breaks scale
invariance.

The A2 contribution is the only one that occurs
in the proton-neutron mass difference. If 4W, and,
V(EW2) RpprORC11 ncntrlV181 SCRle-1nVarlant IlmltSr
then the 4W, and v(&W, ) terms in 4M will diverge
logarithmically. Explicitly, expanding the inte-
grand in (15) in powers of I/(q'ro'), we have

This gives

A =B =1,

AA -A~, -2,
3 (24)

4M = 4M "" + &M'"+4M'""

where

(25)

hM" =— dtr ", ' ' + '; ' '+(hihhrr phwrrh))
4F o Q' 2' (26)

hM'" = —— dq hW~(((), -q ) .d et)

o
(2V)

Because scale invariance of 4W, and v(bW, ) im-
plies only a logarithmic divergence of the mass
difference, the violation of scale invariance neces-
sary to render the mass difference finite may be
very difficult to observe. In order to see this sup-
pose we take n„, =-,' and y=1 in (16). Then P„, is
fixed by a fit to the difference v(AW, ), which gives

P 0 3 68Vl/2

With these parameters, we can predict v(&W,)
versus ~ for various fixed values of -q'; the re-
sults are. shown in Fig. 1. Also shown for com-
pallsoQ ls the pledlctloQ with y= &A = p Rnd 'TA

=-.=0.567 0 V---p-d--g to a -~ -':-'-
ant A, contribution as -q'-~. We see that for
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FIG. 1. The difference
between the proton and
neutron structure functions

vs —uW," plotted versus
cu for fixed values of -q2,
Also shown is our scale-
invariant predlctlon. Glau-
ber corrections are ig-
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-q' & 12 GeV', which is the range of -q' in the
data, the scale-invariance-breaking results are
consistent with the preliminary data, lo the largest
discrepancy occurring for large values of -q'. Of
course, vR'~ and vR'", are both scale-invariant in
the Bjorken limit for this model.

The contribution of b, M'"" in (25) is negative pro-
vided W~(v, -q') is positive over the range of inte-
gx'ation ~ %6 stl ess that the col lect sign fol +M
can only arise from d M'"" in (27), because &M ""
is known to be positive, while &M'" also appears
to be positive when compared to the 81 Ac-MIT
data. Thus, if &S'~ is positive for a sufficiently
large range of ~ and -q2, then it is possible that
4M is negative. The assumption that 4W, and
v(AW, ) have trivial scale-invariance limits means
that the divergence of &M'"" must be less than
quadratic. In fact, if hW~(~, q') vanishes suffici-
ently rapidly in both the co and -q' directions,
then the integrals in (27) will converge and 4M
will be finite.

IV. CONCLUSION

Our main assumptions have been: (1) T~(v, q')
satisfies an unsubtracted, fixed-q dispersion re-

lation; (2) The differences d W, and v(AW, ) break
scale invariance in the limit -q -~, ~ fixed.

A model which satisfies both assumptions has
been shown to give reasonable fits to the SLAC-
MIT data for v(b,W, ) in the region in the ru-q2

plane experimentally investigated.
%6 could Rdopt Rt this stRge the polQt of view

that a nontrivial Bjorken scale-invariance limit
for v(AW, ) is most likely valid in nature, since it
is (to some people)' most appealing if scale invari-
ance is not broken by any of the dominant contri-
butions to W, or vW, . However, from the point of
view of the mass-difference problem, assuming
that the Cottingham approach is valid, this would
16Rd to R divergent px'otoQ-Qeutron mass diffex'-
ence, which is unacceptable. Vfe have demon-
strated that a model of t (&W,) possessing a trivial
scale-invariance limit (subject to certain assump-
tions about the high-energy behavior of W~) is
consistent with the present data. It is our opinion
that the latter picture is more pleasing, for there
are more forceful reasons for believing in a finite
proton-neutron mass difference than in the exist-
ence of a nontrivial scale-invariance limit for
v (hW, ).
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We study and p'resent forms for the cross section of e-e two-photon processes, e+e
e+ e+ hadrons, analogous to the S'&, W2 form factors in e-p inelastic collisions. In general,
the cross sections are a function of ten form factors. Two do not contribute if time-rever-
sal invariance holds. At very high energies, with no polarization measurements or with
real photons, the cross sections reduce to functions of fewer form factors.

I. INTRODUCTION

Brodsky, Kinoshita, and Terazawa, ' in their im-
portant and interesting paper, point out that in
electron collisions, two-photon-exchange processes

e+ e- e+ e+ hadrons

increase logarithmically and are dominant at high
energy in spite of a factor of e4. They find that
two-photon reactions are the most frequent events
above 1 GeV. Balakin, Budnev, and Ginsburg, '
Arteaga-Romero, Jaccarini, Kessler, and Parisi, '
and Serbo' also consider the importance of these
processes and competing reactions with an eye
toward studying photon-photon interactions. Need-
less to say, these results give us a new insight into
high-energy electron processes, and are important
because they redirect our over-all view of electron-
electron colliding-beam experiments.

In hopes of facilitating future experimental mea-
surements, the double-photon cross sections were
examined and a parametrization analogous to the
W, and W, form factors in e-p scattering' ' was
derived. ' This is presented in Sec. II. In Secs. III-
V, cross sections and their high-energy limits are
derived for e-e, y-e, and y-y collisions in terms
of a number of form factors which describe the
two-photon creation of hadrons. It is not within
the scope of this article to examine the-regions
in which this production mechanism dominates over
other diagrams, for instance the C = -1 reactions.
This is being carried out in other work. Nor is the

complete singularity structure' examined, since
the aim is to present a simple derivation of the
form factors analogous to the 8', and W, functions
of direct use to experimental measurements.

II. FORM FACTORS

Drell and %alecka, ' von Qehlen, ' and Gourdin'
showed that in e-p scattering with one-photon pro-
duction of hadrons (Fig. 1.), the tensor T„„re-
presenting the square of the photon-photon-hadron
vertex summed over all polarizations, could be
represented by two form factors, each a function
of two variables:

, ~.(e', e P)(& P e
) (&

P q

)
(2)

One assumes that the target is unpolarized, that
final polarization is not measured, and that all ex-
perimentally accessible hadron states are summed
over. Current conservation,

pTpv gvTpv

limits us to the two functions %", and W, . Since the
current is a polar vector, there are no terms of
the form c»z,Pz q~.

Similarly, for the two-photon-exchange reaction


