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A generating functional is constructed that relates inclusive and exclusive multiparticle
cross sections. In a special case it reduces to the generating function of the multiplicity dis-
tribution. The generating functional is used to derive the complete set of constraints imposed
by energy-momentum and charge conservation. The nature of these constraints in the high-
energy limit is discussed. We show that, if there is no correlation between a pair of pions
of the same charge, then the width of the multiplicity distribution of all charged pions should
be about twice that of a Poisson distribution, a result in good agreement with present experi-
ment. We also conjecture that, in the high-energy limit, the leading terms of all the mo-
ments of the multiplicity distribution of a particular produced particle become independent
of the production mechanism.

I. INTRODUCTION

The natural way to investigate high-energy colli-
sion processes is the inclusive way: One first
measures total cross sections, then the number of
particles of a given type that are produced in vari-
ous momentum intervals, next the correlations be-
tween a pair of particles produced in different mo-
mentum intervals, and so forth. In this way one
arrives at, in addition to a single-particle number
density, a hierarchy of correlation functions that
describe multiparticle inclusive cross sections.
The inclusive and exclusive multiparticle differen-
tial cross sections are easily related to one anoth-
er by means of a simple generating functional that
reduces to the generating function of the multiplic-
ity distribution when its parametric function is re-
placed by a constant parameter.

The generating functional may be used to derive
the entire set of constraints imposed by the addi-
tive laws of energy-momentum and charge conser-
vation. These constraints are of a nontrivial na-
ture. For example, an integral of the two-particle
correlation function in the central region, the re-
gion in rapidity space where both particles are
well separated from both the projectile and target,
is related to the single-particle number density.
Thus, such conservation laws impose constraints
even in momentum regions that are far away from
kinematical boundaries, and in no region are the
correlation functions free of constraint.

The conservation of charge places a nontrivial
constraint on the multiplicity c&istribution of
charged particles. The production of K mesons at
high energy is quite small, and it can be neglected.
Moreover, the correlation between pions and pro-

tons should also be negligibly small, since it in-
volves some sort of baryon exchange. Finally, the
correlation between pions of like charge may well
be small (perhaps a small anticorrelation), since
they are not in a resonant state. Under these con-
ditions, charge conservation requires that the
width of the multiplicity distribution of all charged
pions be about twice that of a Poisson distribution,

&(~. -&~, ))')=2& . ) ~

This prediction is in good agreement with the Echo
Lake experiment' that is in the energy region
200-400 GeV.

If the number density scales at high energy, the
average multiplicity grows logarithmically with
the energy. ' Recently it has been suggested' that
the coefficient of the logarithm should depend only
on the type of particle produced and should be in-
dependent of the specific type of target or projec-
tile. If the multiparticle correlation functions
scale at high energy, ' then the logarithm of the
generating function for the entire multiplicity dis-
tribution grows logarithmically with the energy. '
Here we conjecture that all the coefficients of this
logarithmic energy growth also depend only on the

type of the produced particle and not on the pro-
duction mechanism. In particular, the logarithmic
growth of the width of the multiplicity distribution
should depend only on the type of particle produced
but not upon the specific nature of the projectile or
target.

II. INCLUSIVE AND EXCLUSIVE GENERATING

FUNCTIONALS

We shall, for simplicity, consider explicitly the
production of identical particles, but we will indi-

V48



INCLUSIVE - AND EXCLUSIVE -CROSS-SECTION FUNCTIONALS. .. 749

cate briefly later the extension of our work to the
production of various types of particles. We may
write the exclusive differential cross section for
the production of fl, particles in momentum inter-
vals (dq, ) ~ ~ (dq„) as

Here I'" is the total four-momentum of the initial
state and T„ the transition amplitude for the pro-
cess including the incident-flux factor. The cor-
responding exclusive generating functional appears
as

can be produced is straightforward, and we shall
not spell this out in detail. It should suffice to re-
mark that in this general case we introduce a sep-
arate parametric function for each type of particle.
We may do this by using a vector field (t)„(q),
where the suffix A labels the particle type. The
exclusive generating functional E [(t)„(q)] has the
general form (2), but with the sum extended to a
sum over all particle types with separate denomi-
nator factorials for the number of particles of
each type and separate products for each compo-
nent of Q„(q). The inclusive generating functional
in this general case, I[/„(q)], is again simply re-
lated to the exclusive functional:

since we have

x IT, I (t'(qi) ' ' ' 0'(q, )

(4)

In the inclusive process one sums over all final
particles that are not explicitly detected. Hence,
the inclusive cross section for the detection of n
particles accompanied by whatever else might be
produced is given by

«:"' =II(dq. )~
' E[4(q)].=z

'
& q.

Note that the total cross section can be written as

(lO)

For the sake of simplicity, we shall discuss ex-
plicitly the case of the production of identical par-
ticles for much of our work.

The set of inclusive cross sections defines a set
of number-density functions:

doi+' (dq)
( )0, 0 N, q

gives the average number of particles produced in
the momentum interval (dq) in a single collision,

dv, ' (dq, ) (dq, )
( )0 0 2 ~1&~2

stot Cfl g 2

gives the average number of pairs of particles
produced in the momentum interval (dq, )(d q, ) in
a single collision, and so forth. In terms of these
functions, which are completely symmetrical in
their momentum variables gl g2 we have

Thus, if we define the inclusive generating func-
tion in a conventional manner,

do „' = Q (d q.)
' I[g(q) ]

/=0

it is simply related' to the exclusive generating
functional by a translation of the parametric func-
tion (t)(q):

I[e(q)]=E [e(q)+ l].
Note that now

(8)

og, g =I[0].
The extension of this method to the general situ-

ation where several different kinds of particles

We can write this inclusive cross section in terms
of the exclusive generating functional, for

n

do~' =g (dq, ) ' F. [P(q)]

«((q, ) "('(q.)) . ((()

The number densities, as we have defined them,
refer to numbers of particles produced per colli-
sion, including elastic collisions. It is sometimes
convenient to omit the elastic part of the process
and normalize the number densities in terms of
numbers of produced particles per inelastic event.
This is accomplished by omitting the elastic con-
tribution in the generating functionals, and by re-
placing the total cross section o„, by the inelastic
cross section v „. Such a change of normaliza-
tion has no effect on the relationships that we shall
consider.

For high-energy collisions it is convenient to
use a set of correlation functions C„rather than
number-density functions N„, since particles with
widely separated momenta should not be corre-
lated. The number and correlation functions are
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&2(qi qm) =I)Ii(a)Ni(q2)+ Cm(q~ qm) (12a)

ref:atzed by the cluster expansion that is often used
in statistical mechanics,

3(q~z qme qs) =&g(qi)&g(qm)&, (q, )
+ &,(q, )C,(q„q~) + 2 perms

C3(ql) I2z q3) ) (12b)

The complete set of relations is easily expressed in functional language as

)(0(z)]=e ez)t . zz(z)('(z)eg —„, 'll .'('.(z, ",z N(z) "((z &)."(dq) "
1 ",

" (dq, )
(13)

Pn = on"'~&(og )

we have

(14)

Q p„(1+e)"=o„, 'E[e+1]
n=o

=o„, 'I[a]. (15)

In terms of the correlation-function decomposition
this appears as

Zp„((+z)"=e~((z)z E(C„)z/z)},
where

(n)=, N(q)
(d q)

is the average multiplicity, and

" " (dq, )(c„}= n, c„(q„... , q„).
a=~ &a

If all the (C„) were to vanish, we would obtain the
generating function of a Poisson distribution. How-

ever, this is not likely to occur even at high ener-
gy,

' particularly in view of the constraints to which
we now turn.

III. CONSERVATION CONSTRAINTS

We consider first the constraints imposed by the

We should remark that at a finite energy, since a
finite number of particles are produced, only a
finite number of number-density functions N„are
nonvanishing. However, at a finite energy all the
correlation functions are generally nonvanishing,
with the higher correlation functions serving only
to cancel the lower correlation functions' contri-
bution to the number-density functions that vanish.
This is vividly presented in the functional relation
I[/ =-1]=E[0]=0. Accordingly, the correlation
function C„ is meaningful only if the number of par-
ticles correlated, n, is considerably less than the
average multiplicity at the energy considered.

When the parametric function Q(q) is replaced
by a constant z, the generating functionals reduce
to generating functions for the multiplicity distri-
bution. Indeed, since the probability for producing
m particles P„ is given by

conservation of energy and momentum in the e-
particle exclusive process,

P q
]) P])-

a=1
(19)

It is convenient to introduce four parameters x~

and write the energy, -momentum conservation law
in the form

(2o)

tO

(d q')q'"e(q'), ~;, E[e(q)]=p"E[q(q)]. (22)

Indeed, the iteration of this linear constraint pro-
duces the exponential form (21),

z'"z(((z)] eze z (&a )=(( z)z''z, ')z[((z)]53
~4(q')

exp I '

(d q')q'xQ(q') ', P(q)5 q'

&&exp -s dq q x q 6 q'&

=E[ ' "e(q)]. (23)

We may express the constraint in terms of the
inclusive functional if we recall that I[/) =E[q)+ 1],

dq'q'" q' +1 ', I q =P I q' . 24

Writing out the expansion (11) in terms of number
densities gives a sequence of relations that convey
the complete content of energy-momentum conser-
vation:

for, on referring to the exclusive generating func-
tional (2), we see that the factors e"~"are ob-
tained if we replace (t)(q, ) with e "~"Q(q,). Hence,
the constraints imposed by this conservation law
may be expressed as

E[e'"y(q)] = e"*E[y(q)].
This structure contains redundant information,
since the exponential form (20) is a consequence
of the linear law (19). We need, therefore, con-
sider only the linear term in x".'
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P0=I*( q q9r, (q),

d q')
Pv q0)N (q) I q 0N2(q q

(25a)

(25b)

This form of the energy-momentum constraint has a simple physical interpretation. The first condition,

Eq. (25a), simply states that the energy and momentum carried off by the produced particles must add up

to the initial energy and momentum. ' The second condition, Eq. (25b), states that the four-momentum of
the produced particles that are not detected (P" q"}-times the number density of the detected particle is
an integral over the momenta of an undetected particle weighted by the number density for pair produc-
tion times the four-momentum of the undetected particle. The general form of the constraint,

(d qn+1}P -P qa Nn('qlt '''tqnt 0 qn+1Nn+1(qlt '''tqnrqn+l)t
a= 1 ~tl+1

has a similar interpretation. If we multiply Eq. (25b) by q", integrate over the momentum, and use
Eq. (25a), we obtain

(26}

P)'P"=~ q"q"N (q)+ i,', ' q"q"N (q, q ).(d q) „(dq, ) (d q, ) (2'I }

Energy-momentum constraints of this form have been discussed recently. '
The extension of these results to the general case where several types of particles can be produced

should be clear. In the general case we label the particle types by 1, 2, . . . , and the inclusive generating
functional has the structure

I[(ibA(q)] = gn„~ l +
1 1

1 2

~*
" (dq, ) "&(dPb). . .

0 0

x (n„q. . . , „„q„t. . . , „,t. . . ) (q) qq, (q„,)q, (t,) "q,(t„,) "). (ts)

We can simplify the notation if we introduce a number density N». ..(q„, qB, . . . ) which is completely sym-
metrical under the combined interchange of any two indices together with the two corresponding momenta,
with

N1 ~ ''12'''2I ~ ~ ~ ~ (ql tq. tP.. tP. 1 ")= (ql, , q,Plt ~ ~ tu. t ).
51 2

We have, on using the multinomial theorem,

t(q.(q))=..., (( p —', f fI
"': p n... . ...(q„.. . , q. )q.,(q) q..(q)}.

1 n

(29)

(30)

( q}
q N„(q),

A

(31)

The energy-momentum constraints now appear as

eA+ ep+' ' ' = e. (33)

for some particular exclusive n-particle process
reads

and generally

(P —qA qB ' ')NAB ' ' (qA qB ' ' ' )

I' (dq, }
0 qx NAB' ' 'n (qAt qBt ' ' '

x & ~x

The method that we have used is not restricted
to the conservation of momentum, but applies to
any additively conserved quantity —for example,
electrical charge. We denote the charge of the
initial state by e and that of a produced particle of
type A by eA, so that the conservation of charge

dq eA A g E A g =eE
A A

(34)

In terms of the inclusive number densities, we

have

o eANA q,(dq ) (35a)

The derivation is now precisely parallel to that of
the momentum constraints, with the result that



752 LOWE LL S. BROWN

(dq')
eA)+A(q) g 0 eB+AB(qi q ) i

B

and generally

eA eB )+AB ''' (qAi qBi ' ' ' )

(' (dq, )0" &~B . . q~ qax

(35b)
where

t (dq) (dq')
&CAB& =

Jl 0 io CAB(qi q') =(CBA& ~

q q'

It now follows from Eqs. (39) that

(n, +)-(n„)=(c, „)-(c„+.+) .

(42)

(43)

(36)
The physical interpretation of these constraints is
entirely similar to that of the energy-momentum
constraints.

Since we are essentially neglecting the production
of charged particles other than pions, we must
assume that an equal number of positive and nega-
tive pions are produced, ' with the consequence
that

IV. HIGH-ENERGY COLLISIONS
(C, ) =(C +,+) . (44)

We have already remarked that at high energy
it is convenient to use a set of correlation func-
tions rather than number densities, since parti-
cles with widely separated momenta should not be
correlated. In particular, if we put = (n„+) + (C...+) . (45)

Hence, according to Eq. (41), the widths of the
multiplicity distributions of z- and m' must be the
same:

((n, —(n. &)'& =((n, - —(n. -))'&

AB('qi 'q ) +A(q)+B(q ) AB(q! 'q

in Eq. (35b) and use Eq. (35a), we obtain

(dq ')
e A+A(q) Q 0 CAB(q, q ') eB .q'

(37)

(38) ((n,„,—(n,„„&)')= 2 (n,„,) + 4 (C...,) . (46)

Moreover, on using the constraints (39), we can
put tiie width of the charged-pion distribution n,„„
=n, ++n, in the form

We can make use of this constraint if we make
several approximations. We may neglect K-me-
son production at high energy since ~t is very
small, and we should be able to neglect the cor-
relation between pions and protons since this in-
volves some sort of baryon exchange except for
small regions in phase space near kinematical
boundaries. With these approximations only
charged pions contribute to the sum rule (38), and
we have

-iv, ,(q) = „[c.„,(q, q') —c„+,-(q, q')]
t'(dq ')

q
(39a)

+z, (q) = „[c...(q, q') —c. ,-(q, q')] .
t' (dq ')

(39b)

These constraints can be applied to the multi-
plicity distribution. It is a straightforward matter
to generalize the discussion of the multiplicity
distribution given in Sec. II to the case of produc-
tion of several particle types and establish that

It seems reasonable to assume that the correla-
tion between pions of like charge is small" (per-
haps slightly negative) since they are not in a res-
onant state. In this case, we find that the width of
the multiplicity distribution of pions of the same
charge is about that of a Poisson distribution,

((n, ~ —(n„.))') =(n, ~&, (47)

but the width for all charged pions is about twice
that of a Poisson distribution,

(48)

The derivation of these simple results does not
require all the elaborate machinery that we have
built up. This is exhibited in a simple model.
Since we assume that the net charge of the pro-
duced pions vanishes, we can describe the distri-
bution by the probability p for the production of
m pairs of pions with opposite charge. We have

(n,„,& = g 2m p„.- (49)

Now, according to our hypothesis that the correla-
tion of pions of the same charge vanishes, the
average number of pion pairs n„+,+ is given by

(40) (n, +, +) =(n, +&'=-,'(n,~&'. (5o)

and

((n„- (n„))(n —(n ))) = (n„)5„+(C„), (41)

On the other hand, the number of p'g' pairs de-
tected when nz neutral g'm- pairs are produced is
given by m(m —1), and so



INCI USIVE- AND EXCLUSIVE-CROSS-SECTION FUNCTIONALS. ..

(n, +, +) = Q m(m —1)p„

= ~ (n.h.') —
2 (n.h.) . (51)

tic events to be more nearly uncorrelated, and
treat inelastic scattering as a separate process.

We present a comparison of our prediction (53)
with the Echo Lake data' in the following table:

The agreement of these two calculations requires
that the width of the charged pion distribution be
twice that of a Poisson distribution in accord with
Eq. (48). Et also requires that the width of the
g'p- pair distribution P be that of a Poisson dis-
tribution.

A Poisson distribution in pairs of charged parti-
cles" does fit the multiplicity distribution found in
the Echo Lake experiment' in the energy range
200-400 GeV. However, the detailed shape of the
distribution is not measUred well and, moreover,
it is necessarily difficult to predict theoretically
since it entails knowledge about higher-order cor-
relation functions. Hence, the best procedure is to
consider a few low-order moments of the distribu-
tion, particularly the average number (n) and
width ((n —(n))') . Unfortunately, the Echo Lake ex-
periment does not distinguish protons from pions
and measures the number of all charged particles
n,„. We can account for this in a rough way, for,
since the proton multiplicity is quite small, (n~)
= 1.5, we should be able to neglect the width of the
proton distribution and any correlation between
protons and pions so that

E„„(GeV) (n,„) ((n,„-(n,„))') 2((n,„)—1.5)

203
291
424

5.9
6.2
6.5

8.1
8.9

10.8

8.8
9.4

10.0

qii
—@pe, sznhy, (54)

where nz~ is a "transverse mass" dependent upon
the momentum perpendicular to the beam q„

m, =(q '+ m')'i'. (55)

In view' of the many approximations that we have
made and of the sensitivity of the width to small
error, the excellent agreement of the figures may
be a little fortuitous.

We turn now to consider the effects that our con-
straints have in the high-energy scaling limit.
We shall, for the sake of simplicity, return to the
case of the production of identical particles. It is
convenient to write the center-of-mass longitudinal
momentum of a produced particle qli in terms of
its rapidity y,

((n,„,—(n,„,))') =((n,„,+ n~- (n,„,+ n~))')

=((n,„-(n,„))') . (52)

At high energy, the rapidity has the kinematical
limits

Thus, on replacing (n,„„)by (n,„)—(n, ), our pre-
diction (48) becomes

((n,„-(n,„))')=2((n,„)—1.5) .

We must note that the particle numbers which we
are now considering are numbers per inelastic col-
lision. We have already mentioned in Sec. II that
we are free to normalize either to the total num-
ber of collisions including elastic scattering or to
only inelastic events. Nonetheless, even at 400
GeV, elastic scattering occurs in about 20%%u~ of the
collisions and appears as a prominent spike in the
multiplicity distribution. If we were to include it,
we would lose considerable sensitivity to the in-
elastic distribution, for a major part of the width
would then come from the displacement of the
average multiplicity from the elastic spike at n= 2.
Moreover, the correlation functions defined by the
two normalizations are different since the normal-
ization appears linearly in N» but quadratically in
the N„N~ contribution. Thus a lack of correlation
in terms of an inelastic normalization produces a
correlation in terms of a normalization to all
events including elastic scattering. We use the in-
elastic normalization, since we expect the inelas-

iv, -x,(q, ),

C -C, (y, —y, q, q ),

(57a)

(57b)

and so forth.
The first of the energy- . ,mentum constraints,

Eq. (25a), emphasizes . = integration regions
near the kinematica' boundaries and gives no con-
straint in the central region. The higher con-
straints are, however, effective in the central
region. For example, in terms of the correlation
function, Eq. (25b) gives

(dq, )-q", X,(q, )=,'
q,"C,(y, —y„q„,q„)

(58)

-ines sy~lnvs

in which vs is the over-all center-of-mass ener-
gy. In the central region, where rapidities are
finite or separated by a large finite amount from
their kinematical limits, the single-particle dens-
ity and correlation functions are assumed to be
independent of the average, over-all rapidity.
Thus we have'
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m, (q, ) coshy, „. m, (q») coshy,
m~(q~) sinhy, N, (q, ) = ~ dy2

l~
d q m (q ) sinhy, C (y, —y, q, , q ).

&& coshy C, (y, q», q») (60a)

—q)dN~(q~d) =
)
dy d q~dq C (y, q~d. , q2d) ~ (60b)

We note that the constraint on the transverse mo-
mentum (60b) requires that the two transverse
momenta be correlated at least to the extent that
C, must contain the first harmonic in the angle be-
tween q, and q, .

The scaling limit gives a simple structure to
generating functions of the multiplicity distribu-
tion. ' We recall that this function involves the
correlation functions integrated over all momenta,
Eqs. (16)-(18). In the scaling limit, the integral
over the over-all, average rapidity produces lns
and constant terms, with the generating function
becoming

If we change the integration variable to y =yy
use the addition formulas for the hyperbolic func-
tions, and note that C, is even in y, we get two
independent constraints:

h

—m~(q, )N, (q») = dy d'q»m~(q, )

increases only logarithmically with energy, in
practice only a few correlation functions and cor-
responding moments of low order should become
independent of the production mechanism.

Note added in proof. Recently, Le Bellac [M. Le
Bellac, Phys. Letters 37B, 413 (1971)]has ob-
served that the high-energy limit given by Eq. (61)
is in conflict with ordinary Pomeranchukon exchange
where the Pomeranchukon is a simple pole with in-
tercept unity. This conflict is avoided if the Pom-
eranchukon has an intercept less than unity, or if it
is associated with cuts in the angular momentum
plane. It is also avoided if, as advocated by Wil-
son [K. Wilson (unpublished report)], the scatter-
ing process consists of two distinct parts, a dif-
fractive part and a "multiperipheral" part, with
the high-energy limit (61) applying only to the lat-
ter. Le Bellac's argument is easily presented
within the context of our work.

We have

((n —(n)) ) = .z ——(n)) d(z -))
dg

and thus a generating function

~(~) =g —,~'((n —(n))')

d„(1ez)"-exp P (z„(nz+d„)z/n!).
n=O n= 1

This gives

(n) - c, lns+d„

((n (n))')- (c, + c,) 1ns+ (d, + d,),

(61)

(62a)

(62b)

d
=exp'. z——(n) I(z —1)d2'

In the high-energy limit (61) we obtain

M (A ) - exp [ (a,A.'+ a,AS+ ~ ~ ~ ) lns]
and so forth. Recently it has been suggested' that
the coefficient c, depends only on the type of par-
ticle produced and not upon the production mecha-
nism. Such a behavior follows from the multi-
peripheral, model where the central region is un-
correlated with the target and projectile particles.
It also follows from a more formal Regge-pole
analysis in which the inclusive process is viewed"
as the discontinuity of a multiparticle scattering
process. We note here that the same arguments
apply to all of the coefficients c„:At a sufficiently
high energy we expect any c„ to depend only upon
the particular particle produced and to be indepen-
dent of the specific type of target or projectile.
However, it is clear that the higher correlation
functions C„will scale only if the number of par-
ticles being correlated, n, is considerably less
than the average multiplicity (n) . Since the latter

2N

((n —(n))'") = — M(~)
X.=O

- (lns)".

Qn the other hand, since

(n) -c, lns,

we also have

((n-(n))2") gp„(n-c, Ins)2~,

which is a sum of positive terms. Hence, on com-
paring the two versions of the 2Nth moment, we
conclude that, with n fixed, the asymptotic bound

s-~: p„& (const)(lns) "
obtains for arbitrary ¹ In particular, since N is



INCI USIVE- AND EXCI USIVE-CROSS-SECTION FUNCTIONALS. ..

arbitrary, this violates the ordinary high-energy
Pomerancbukon limit

0 =&.&/Rot- 0&~)
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