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W'e study the problem of second-class currents, and attempt to clarify the situation, by
working within the framework of a formulation that makes no appeal to any specific dynam-
ical model of hadronic interactions or nuclear structure. While much of the paper is ped-
agogical, several new theorems and results are presented. The import of recent experi-
ments is discussed, and a scheme for classification of second-class currents is proposed.

I. INTRODUCTION

Although the notion of "second-class currents"
was introduced by Weinberg' over 13 years ago,
it is only in the last year due to the remarkable
experiments of Wilkinson, Alburger, and collabor-
ators' that the subject has attracted widespread
attention among theoretical physicists-. ' Regret-
tably, most of the recent discussion, if not en-
tirely incorrect or misleading, has been within
the framework of models which are, in many
cases, oversimplified, to say the least. As a re-
sult, the precise significance of the experimental
results4 of Wilkinson, Alburger, et al. has been
obscured.

The purpose of this paper is to attempt to clari-
fy the situation, by working within the framework
of a formulation that makes no appeal to any spe-
cific dynamical model of hadronic interactions or
nuclear structure. We sha1.1 look upon P transi-
tions of a nucleus as the P transitions of the nu-
cleus as a whole, rather than in terms of p tran-
sitions undergone by "off-shell" nucleons in the
nucleus; in effect, we shall treat nuclei as "ele-
mentary particles" of arbitrary spin. ' It is im-
material then whether a nucleus such as C" is
presumed to consist of six protons and six neu-
trons, or 12 neutrons and six quark-antiquark
pairs.

While much of this paper is frankly pedagogical,
we do report some new results -new either in the

sense that they did not heretofore exist in the lit-
erature, or in the sense that they have now been
liberated from model-dependent derivations. We
are led to the recognition that the notion of second-
class currents, as introduced by Weinberg, em-
braces a variety of currents with different theo-
retical and experimental implications; a systema-
tic study of the subject must therefore entail a
subclassification. Such a subclassification is pro-
posed in Sec. VD of this paper.

In Sec. II of this paper we introduce a perspicu-
ous notation. Section III is devoted to the question
of whether one can distinguish between first- and
second-class currents by looking at the space-
time properties of their matrix elements; in this
section we state and prove an extension of a the-
orem on Hermitian currents due to Durand, De
Celles, and Marr. e In Sec. IV we develop a gen-
eral kinematical formalism' for dealing with semi-
leptonic interactions and state some relevant for-
mulas for decay rates and ft values; we also show
that for transitions within an isomultiplet, and

only for transitions within an isomultiplet, inter-
ference effects between first- and second-class
currents of the same isospin (or isospins. differing
by 0 mod2) vanish in the limit of zero lepton mass. '
Section V is devoted to a more detailed study of
these interference effects; it is shown that if the
second-class current is conserved, the difference
of ft values for mirror transitions must at least
have a linear dependence on the sum of the energy



SECOND-CLASS CURREN TS: SOME MODEI. -INDEPENDEN T. . .

releases. ' In Sec. VI we introduce and discuss the
topic of conjugate transition. Section VII deals
with the subclassification mentioned earlier. In
Sec. VIII we discuss the conclusions that can be
drawn from present experiments and other possible
tests for second-class currents.

II. NOTATION Ete.

J =)}e '" J'e" 2 (J= V, A. ) V, or A. ) (2.5)

where the phase factor )}=(-1)'~ ', if J transforms
as a (2I~+1}-component tensor operator of the iso-
spin gx'oup.

Since the charge-conjugation operator commutes
with exp(iII, ) [our phase convention'is such that
C(I„I„I,)C '=( I„I;, I,)-], the defi-nition in
E{l. (2.5} implies that if J~~+) has a definite C parity,
so does J'„), and the two C parities are identical.
The same is, of course, true of 4G', P, and T. We
may therefore write

CJ(„')C-' =q,J(„'», (2.6)

PJ p'(x, t)P '=q'pg""J'„'(-x, t), (2.7)

2J~)(x, t)T- =~,g~"J&)(x, -t), (2.8)

gg(&)g-& -~ J(&) (2.9)

where
gcqJ q„=-1 for ett J (TCP theorem), (2.10)

naos =+» (2.11)

(2.12}J= V,A.
E{luations (2.5), (2.6), and (2.9) imply that

&„"= -nnrnan~ J( " (2.13)

a relationship that will prove useful later. If one
assumes a "XI=1 rule, " one may set )}=+1. (Here
"EI=» rule" means simply that the current carries
I~= »; it should not be confused with the charge-

In the following we denote first-class, charge-
raising, hypercharge-conserving, "vector and ax-
ial-vector currents by V~&') and A~&+), respectively;
second-class currents with the same quantum num-
bers will be denoted by V(u and~(v It is under
stood that these are Heisenberg operators, carry-
ing the full time dependence generated by the had-
ronic Hamiltonian; effects arising from the ex-
changes of m's, ~'s, or U"'-U'"' pairs are, there-
fox'e, all correctly included. " The definition of
class implies that

g g+)Q & —V(+) (2.1)

C~(+)g -& — ~(+)
P P (2.2)

g y(+)g -& — y(+) (2.3)

C~(')C-' =X(') . (2.4)P

Charge-lowering currents are defined via an iso-
topic rotation

symmetry condition gg~g~q~=+» which cannot be
simultaneously respected by first- and second-
class currents without violating T invariance. )

We shall x efer to a current as normal, under
time reversal, if q~=+», abnormal if q~=-».

Finally, the charges associated with these cur-
rents will be defined in the usual way:

{{p' fed'{xt{rp, x . (2.»4

III. SPACE- TIME AND ISOTOPIC PROPERTIES

OF MATRIX ELEMENTS OF CURRENT OPERATORS

In this section we address ourselves to the fol-
lowing question: Can one distinguish between first-
and second-class currents by looking at the space-
time pxoperties of their matrix elements'7 We
show that this is possible only for matrix elements
between two members of an isonlultlplet. Fox'

these cases we obtain the theorem that with a "AI-
odd rule" the matrix elements of second-class
axial-vector currents and first-class vector cur-
rents are divergenceless; with a "EI-even rule"
the matrix elements of first-class axial-vector and
second-class vector currents are divex genceless.
This theorem is an extension, to non-Hex mitian
currents, of a theorem on Hermitian cuxrents due
to Durand, DeCelles, and Marr.

We use invariantly normalized helicity states,
and define a partially reduced vertex I'„via

(p~, ){t;n~, IIS)J„')(0)~p„){.„n„I', )

( g)ly I& t' & 4 PP){:~(y n .P n )
I IJI. I

(3.1)
Here n indicates internal quantum numbers'other

than I', the 3 component of isospin. (I~+ =1 since
in a p~ transition b, I'=+1.) E{luation (3.1) is, of
course, rendered possible by the Wigner-Eckart
theorem, in isospin space. Using E{ls. (2.5),
(2.13), (3.1), the relationship

e 2(p, ){.; n, I ) =(-1) (p ){.;n, -I ), (3.2)

and some elementary properties of the 3-j symbols,
we find

I ){ (p{{'&nji pj& ng)

= ( 1)~

'"'"ng-@~nrem'„""'(p~,

n) py, ng)*. '

(3.3)

For genera& n„nz, Eq. (3.3) relates two different
vertex functions; specification of the class of the
current, therefore, does not put any constraints
on the form factors which occur in a given vertex
function. The only cases in which a constraint is
obtained are those in which n, and nI are two mem-
bers of the same isotopic multiplet. Fox then
ng =ny and
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r„"&~~(P~, n~; P, , n, ) =(-1)'&+'(qeqv) 1'"„'~~(P;, n~; P~, n;)*.

(3.4)

PS(0, p, o) and TS(0, m, o) leads to

r x~ x((p ) q ( l)2s rxj, xj(p ) (3.8)

r~~~~= (p -p. )vr~~~

= i2lp; Ir,"&~'(p;) (brick-wall frame) .

Now rotational invariance tells us that

rkykg(p ) 5 r -xj, kj(p )

( 1)2s+lr -X&,X~(p )

and consideration of the discrete operations

(3.5)

(3 6)

(3.7)

In order to study the matrix element of the di-
vergence, it is convenient to go to the brick-wall
frame in which pz+p, - =0, and choose the z axis to
lie along p, . If we denote the matrix elements of
the divergence by I D, we have

r-4;, x&y ) q
r-x. ;, x. ;(p )s (3.9)

Equations (3.4), (3.7), (3.8), and (3.9) together
imply that

[1 ( 1)I/+1 ]r x xj(p ) (3.10)

I'~~x "s therefore vanishes in the brick-wall
frame, and hence in all frames, if 1+(-l)~&"qe
+ 0. Consequently, with a "b,I-odd rule" first-
class vector and second-class axial-vector cur-
rents, when sandwiched between the states of an
isomultiplet, are effectively conserved. With
"AI-even rules, " the foregoing statement modi-
fies in an obvious fashion. Note that the above re-
sult is true for both T-normal and T-abnormal
currents.

IV. DECAY RATES AND ft VALUES

(4 1)

Let the leptonic current be denoted by l„and the total hadronic current by J„. The rate for the P reac-
tion N, (Z) -N~(Z+1) + e + v, may be written in the form

2
' Z i&f1 J'„'li&&e v. li"lo&l'z'-&(2v) 5 (p, +p, +p„-p;)d Q. -

~q+ ~ spins

Here p, indicates. the momentum of particle a, M,.
and s, are the mass and spin, respectively, of the
parent nucleus, G is the weak-coupling constant,
and I' is a correction factor to take account of the
Coulombic interaction between the l~pton and the
daughter nucleus. " d'0 is an invariant volume ele-
ment in the final-state phase space.

We define leptonic and hadronic tensors, Lu' and
H"', via H~') =H~')'. (4.8)

tensor follows from general covariance consider-
ations. ' The H, are scalar functions of q', q' P,
and P'+q'; fpr pur purppse it is sufficient tp dis-
play only the dependence on q' and 8'—= Mz —M;,
the energy release. We shall therefore write H,
=II.(q', W).

Evidently H u, ——H ' * hence,

(e v If lo& &e v, Il lo&*
SPlllS

(4.2) Time-reversal invariance implies the con-
straints

=4[(q„q„-Kp„}-g„,(q' —m, ') —ie„„~pq If ],
(4.3)

II'„".= Q&fl &Pli&*&f I J!'Ii&
spins

= Q II,+ C'p„(Py P g) .
~1 =1

(4.4)

(4.5)

qu=pu+pu =p" -p"
Eu=pu-pu, pu=p~u+p~, M =M, +M,

(4.6)

I g +PuP, C'„, =Pu P„, Csu quq

Cup= mu~&, pq P, Cu =Puq„+P~qu,4 X, p s

C'„„=i(P„q„-P„q„).
The representation, Eq. (4.5), of the hadron

(4.7)

and the tensor covariants Cu, are defined as fol-
lows:

II~') =a~')*, a 4 6

H(+) — H(+) +
6 6

(4.9}

(4.10)

so HO=0 if T is conserved.
In general, the terms in H&u+„which stem from

interference between the first- and second-class
pieces can contribute to each of the invariants H~');

the a here is a space-time label and, as is evident
from the discussion in Sec. III, cannot be corre-
lated with the concept of class. In the special case
in which the initial and final nuclear states are
members of the same isomultiplet, a correlation
does exist however; in this case Eq. (3.9) indicates
that

(4.11}

where the minus sign holds if first- and second-
class currents obey the same b.I rule (odd or
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I (-) —PG(+)(W)f (-)
a=i

where

(4.12)

even); the plus sign holds if they obey opposite
h, I rules. In the former case, the interference
term gets localized in H('), and the interference
effect vanishes in the limit of zero lepton mass.

The total decay rate may now be written in the
form

Since all P transitions of interest in the present
context are between different isotopic multiplets,
the dominant transition -the only one in the allowed
approximation —is that induced by the axial-vector
current. We restrict ourselves, therefore, to
A -X interference.

Let us define a tensor h(„') via

g+) P (gA (+)
(
f)*(fg (+)

( &) (5.1)
SPlflS

4M;(2s, +1) G(')(W}

6
= g I (.")c'„„(I(') -=o) .

a =3.
(5.2}

x 6 (pe +p v +pf pj ) d Q y

(4.13)

G(')(w) =H(')(o, w) . (4.14}

Note that in the allowed approximation G,(w)/
H, (q2, W) =1.

We may therefore define an "f,t value" via

6 (-)

(
=G~(+)(W)+QG(')(W) () . (4.15}

Apart from a known, and inessential, normaliza-
tion factor, this f,t value reduces to the usual ft
value" for a Gamow-Teller transition in the al-
lowed approximation. (For a Fermi transition, the
corresponding quantity is fmt. )

For a positron emitter, Eq. (4.15) is replaced by

6 (+)

(4.16)
1

If the positron emitter is the mirror nucleus to
the electron emitter, effects stemming from sec-
ond-class currents may be measured through the
parameter 5 defined via

The interference terms contained in H~„", may be
written as

M ( ) —g(+) +.@(+)*
Pv Pp vP 9

so that

Oa(') = 2 Reh(') .

(5 2)

(5.4)

(5.5)

=[6H'(W-) 6H -(W')]
(fif) '(fi&)

+ 3[()H~~+)(W ) —6H2( )(W+)] .

(5.6}

If T is conserved, 5H6(') =0; h6(') is therefore pure-
ly imaginary.

In evaluating the contribution of 6H to the ft val-
ue, we shall retain terms up to first order in the
energy release and neglect the Coulombic correc-
tion, as well as terms which go to zero in the lim-
it m, -0. With these approximations one finds

(ff)'- (f&)

( f)

(fit)'- (fjt)
(,f)

(4.17)

(4.18)
6H(')(W) = -6H(-)(W) . (5.7)

Equation (5.6) may therefore be written in the

Since 6H(') arise from first-class-second-class
interference,

The near equality in Eq. (4.18) would be replaced
by an exact equality in the absence of forbidden
corrections.

V. STRUCTURE OF INTERFERENCE TERMS

IN THE HADRON TENSOR;
ENERGY DEPENDENCE OF 5

We are interested in isolating the contributions
to f,t which arise from interference between the
first- and second-class pieces of the hadron cur-
rent. Since this interference term, if it exists at
all, is certainly small, we shall deem it legitimate
to neglect radiative corrections (such as those de-
picted in Fig. 1}and consider only V- V and A-A
interference.

FIG. 1. Example of radiative correction which can
give rise to V-A interference in the ft value.
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form

=a +a (W++W-)+O(W2) (5.6)(fi) 0 I p ~

where a, and a, are energy-independent constants.
Nothing can be said about these constants without
further specification of the nature of the second-
class current. Let us-assume, for example, that
the A„ is a conserved, or effectively conserved,
current. In this case one has the constraints

i

-M'h, + h, q'+ h, (q P) + ih, (q P) = 0, (5.9)

h, (q P)+h, (q P)+h, q' —ih, q'=0. (5.10)

Since the 5, are nonsingular, it follows that, in
the limit in which nuclear recoil is neglected, both
h., and h, have at least a linear dependence on the
energy release. Hence,

a =0 if (62K'"') =0.
u (5.11)

VI. CON JUGATE TRANSITIONS

Finally, we note that the quantity 5 defined in
Eq. (4.17) can be nonzero either by virtue of sec-
ond-class currents or by virtue of electromagnetic
effects other than those included in the definition
of the ft value. In lowest order these are (i) re-
tardation and recoil effects in the exchange of a
photon between the electron and hadronic matter,
(ii) electromagnetic induction of a second-class
piece in A. ~+~, viz. ,

i r ~„'~X~'=' x d'x

(iii) isospin mixing brought about by the 41=1 and
XI=2 pieces of the electromagnetic interaction.
None of these effects can be computed very reli-
ably; the only firm statement one can make is that
no Z2n effects are possible. '4 We must content
ourselves, therefore, with an expression for 6 of
the form

6=(a, b ++2nQc)+n( , ab,++nc,Zn)(W' W+).
(5.12)

2!/(Pl& Pl) !IP(Plt Pl)

Hence,

&". (Pl', P,', q') =8!'(P2',P.', q'),
fffl(p12 p 2 q2} II(f(pt2 p

2 q2)

(6.3)

(6.4)

(6.5)

t onsequently the result: Any difference in the
nuclear matrix element between conjugate tran-
sitions can manifest itself only through the invari-
ant H„ it will therefore be undetectable in the lim-
it of zero lepton mass.

In the special case in which the conjugate transi-
tion also happens to be the mirror transition, N,
and Nf must be members of an isodoublet; that the
difference in nuclear matrix elements stemming
from second-class currents will be visible only
through II„ in this case, has already been noted
(Sec. IV}.

slderlng the reactions' vu+N; -~-+Nf a d vu+Nf
~ JtL +Kg.

These considerations are relevant to a discus-
sion of second-class currents only in those spe-
cial cases in which a conjugate transition may be
related to a mirror transition. For didactic rea-.
sons, it is worthwhile, however, to discuss con-
jugate transitions in complete generality.

The hadron tensors for the transitions N&(P, )
-N&(p,') and N&(p2) -N;(p2) may be written in the
form

&';.(P;, P,) =Z&'.*(P,",P,', q, ')C'„.(P,', P,), (6.1)

a'„'„(P,', P,) =g&."(P,",P,', q, '}C'„,(P,', P,}, (6.2)

where the notation is that of Sec. IV except that we
choose to indicate the dependence of the Ei, on the
Lorentz scalars in the problem in a slightly differ-
ent fashion. Since the conjugate transition is in-
duced by J~u ~, the definition of II» implies the
crossing relation

To every hadronic transition N; -Nf, whose am-
plitude may be measured in reactions such as

Nf + e + v, or v, +¹- e-+ Nf, corresponds a
conjugate transition Nf -N, whose amplitude may
be measured in reactions such as e-+N~- v, +N&

or v, +Nz- e'+N;. In this section we address our-
selves to the following question: If the nuclear
matrix element changes as one goes from a tran-
sition to the conjugate transition, can such change
be detected by measurement of total rates?" Our
answer is yes, in principle; in practice, however,
one has to measure terms that are rather small
because of their proportionality to the electron
mass. This difficulty can be ameliorated by con-

VII. PROPOSAL FOR CLASSIFICATION

OF SECON'D-CLASS CURRENTS

The preceding considerations lead us to propose
that second-class currents be classified as follows:

Type I. Vector current normal under time re-

versall.

Any test for such a current is really a
test for some facet of conservation of vector cur-
rent (CVC)." To the extent that one accepts CVC,
as an attractive theoretical postulate that has been
vindicated by experiment, one may assume that
such currents do not exist in nature.

Type II. Nonconserved axial-vector current nor-
mal under time reversal. In the presence of such
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currents the Cartesian components of the total ax-
ial charge, "viz. , Q„'+q„' (i=1, 2, 3), are not Her-
mitian operators and therefore cannot generate
unitary transformations; the elegant picture of
weak charges satisfying a chiral algebra and act-
ing as generators of approximate hadron symme-
tries" therefore gets disrupted. Such currents,
while theoretically very unappealing, are difficult
to rule out on the basis of present experiments;
the major problem is how to distinguish them from
induced electromagnetic effects.

Type III. Conserved axial -vector currents nor-
mal unde~ time reversal. In order to avoid diffi-
culties with parity doubling and/or the real exist-
ence of massless Goldstone bosons, one must as-
sume that the associated charge Q„'=—0. Such
chargeless currents are fully compatible with con-
temporary theoretical ideas. They can always be
represented in the "PCTC (partial conservation of
tensor current) form, "

X&„'&(x)= c„,„,a M»(x), (I 1)

where M ~~ is a tensor with nonsingular" matrix
elements. The representation in Eg. (I.l} (proved
in the Appendix) indicates that the matrix elements
of this type-III currents have a characteristic en-
ergy dependence that may enable one to distinguish
between type-0 and type-III currents. This is, of
course, precisely what we found in Sec. V.

Type IV. Currents abnormal under time revers-
The absence of any T violation in the AY'=0

sector may, perhaps, be regarded as evidence
against the existence of such currents. " In any
case, such currents cannot contribute to 5.

Type V. EI -even currents. This category may
overlap with any of the previous ones. Clearly
such currents can play no role in experiments in-
volving P transitions between I=1 and I=O nuclei.

Type VI. Currents sohich distinguish between
electron and muon number. This category may
also overlap with any of the previous ones. We
list it for the simple reason that one outlandish
possibility may well be associated with another.
Neutrino experiments at the National Accelerator
Laboratory (comparison of v&+n- p. +p and v&+p-g'+n) can easily determine the coupling of the
second-class currents (if any) to the muon number.

the positronic ft value by 10-15/~.
(ii) This difference does not show any dependence

on the energy release, nor does it show any sys-
tematic Z dependence.

(iii) One infers from this that there are no type-
III second-class currents; if the difference is to
be attributed to second-class currents, these cur-
rents must be of type II. We recall that type-II
currents do not jibe with contemporary theoreti-
cal ideas on weak charges as generators of approx-
imate strong-interaction symmetries.

(iv) Without a model there is no way to rule out
the possibility that this effect, in the nuclei in

question, is electromagnetic and that there are no
second-class currents. To make this distinction,
experiments are needed on elementary particles,
where radiative corrections are both small and
relatively easier to handle. In this respect it may
be of interest to note that the ft values" for the
mirror decays Z'-A'+e'+ v, and Z -A'+e + v,
also appear to show a small discrepancy, the "wal-
let-card" values for the relevant parameters indi-
cating that 5(Z) =—-0.04. Better determination of
lifetimes etc. are needed, however, before one can
attach much significance to this value for 6(Z).
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APPENDIX

The representation

Xp = cp„»s'M ~ (M ~ nonsingular) (Al)
t

for currents of type III can be established as fol-
lows:

The 4-dimensional Helmholtz theorem tells us
that X„can a]ways be written in the form

X„(x)= &„P(x)+ e„„~ps "M ~ ~(x), (A2)

where Q(x} is a pseudosealar and M ~~ is some ten-
sor (of unspecified singularity structure). Since
X&. is conserved,

VIII. CONCLUDING REMARKS y(x) =0. (A3)

In summary, the present experimental and the-
oretical situation with respect to second-class
currents in nuclear P decay appears to be the fol-
lowing:

(i) There is a definite observed difference be-
tween the ft values for mirror transitions with the
electronic ft value being systematically lower than

z„'&n(y(o) jo& =o. (A4)

If there are no massless particles, this implies
that

If we take the matrix element of Eq. (A3) between
the vacuum state and any arbitrary state (n~, we
find



720 M. A. B. BEG AND J. BE RNSTEIN

(n(p(0)[0) =0 for all n. (A5) This follows from the constraint

By the Federbush-Johnson theorem, therefore, Xod'x =0, (A f)

(A6)

Next we must establish that M~~ is nonsingular. '
as may be seen most conveniently by going to mo-
mentum space.
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