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An inequality relating the parameter A+ of It:» decays to the spectral function of the iso-
vector electromagnetic current is derived, assuming only Weinberg's first spectral-function
sum rule. It is shown that a large value for A.+ (e.g. , A, + =0.045) is not compatible with p
saturation of the isovector spectral function. Since the principal tests of the sum rule have
relied on the additional assumption that such resonance saturations are possible, some
doubt is cast on the validity, or at least on the previous applications, of the sum rule. Im-
plications for the Weinberg mass relations, c-number Schwinger terms, and the e+e-
annibilation cross section are discussed.

I. INTRODUCTION

The K» decays, such as K'- m'l' v&, where ~ is
an electron or muon, have received a great deal
of experimental and theoretical interest recently. '
The most interesting aspect of these decays is that
the form factor f (t), which would be zero if SU(3)
were an exact symmetry, has a surprisingly large
magnitude. Another interesting experimental fact
is that the slope' ~, of the approximately linear
form factor f, (t) is around 0.045; this is much
larger than would be expected from simple K*
dominance of the ~I=-2, ~S =1 weak current. In
Sec. II we derive a rigorous inequality relating X,
to an integral of the spectral function of this cur-
rent. For the present experimental value of A,„
we find, as expected, that the spectral function
cannot be dominated by the K* resonance. In Sec.
III we tentatively accept the validity of the first
steinberg sum rule' in order to derive an addi-
tional inequality relating A,, and the spectral-func-
tion integrals of the isovector and isoscalar elec-
tromagnetic currents. The Weinberg sum rule, of
course, depends on the assumption of c-number
Schwinger terms and on the convergence of certain
integrals. For the current experimental value of
~+, the inequality is not compatible with the as-
sumption of resonance saturation of the spectral
functions of the electromagnetic current. This in
itself does not contradict the Weinberg sum rule;
however, most of the applications and tests of the
sum rule have depended crucially on this extra
resonarice-saturation assumption. Hence, if g,
really is large, either the sum rule is wrong or it
will have to be reinterpreted. This and other im-
plications of our result are discussed in Sec. IV.
Finally, in Sec. V we discuss the possible errors
in our numerical results.

of the matrix element for K'- z'l'p, is

&v'(p ) lV,'(O) IK'(p)&

= [I/(2 )'(4p, p,')'~'][f (t)(P+ P')„+f (t)(P -P'), ],
(I)

where V„ is the AS=1, ~I= —,
' vector current

(V„—= V, „—iV, „ in octet notation), and t = (p- p')'.
In the SU(3)-symmetric limit we would have f (t)
=0 and f,(0) = —I/V2.

By analytically continuing (I) to the matrix ele-
ment &0 l V„ l

w'( p')K '( p)& and by applying standard
reduction techniques, one can show that

Imf, (t) = ([(2v)'2p ] '~'/4y)

&XI(»)'5'(p+ p'-p. )

x&K "(p) l&„(0) l~&&&lp v(0) lo&]. (2)

Here, Q is the center-of-mass three-momentum
of the K'm' system, p„ is a sum over intermedi-
ate states n with momentum p„, and j, is the pion
source function. The matrix element of j, is pro-
portional to the complex conjugate of the scatter-
ing amplitude for K'n'- n. Because of the octet
nature of V„only intermediate states n of total
isospin —,

' are included in the sum. Also, we have
selected a space component of V„, so only states
with total angular momentum J= 1 enter the sum
(the time component of the nonconserved current
would couple with states of 8=0).

Of course, f,(t) is analytic except for a right-
hand cut starting at the K'z' scattering threshold
t, =(m~+ p)', where p, is the pion mass. The
physical region for K» decays is from t= rn,

' to
t = (m~ —p)'.

The Schwarz inequality

II. DERIVATION

Now let us derive the bound. The hadronic part
true for any complex numbers A„and B„, can now
be applied to (2), yielding
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~lmf, (t) ~' ~ (1rt '~'/6k)o"'(f) p"(t)/f

= (2v't ' '/0') sin'5' p"'(t)/t ~

(3)
In (3), o~'~(t) is the total 8= 1, I= ,', K-m cross sec-
tion and 5,'(t) is the p-wave, I= ', ela-stic phase
shift. We have used the fact that the total cross
section for K'm to scatter into states of J'= 1,
I=-,' is just

0 = (4»/k ) sin 5

In (3) the spectral function p~'~(t) is defined by

(2~)'Z 5'(q- p„&(0 I
V„'(O) Is& &n I V„(O) IO&

=( gp +VIV /0 )P (0 )+Cpq P (0 )

(4)

By using the Schwarz inequality again, now in
integral form, we have

&" imf, (f)dt '
G(t)

""~imf, (t) ~dt ' ( j'"2vt'~2o, ''(t)dt, "p~"(t)dt t" 2vts~no (t)dt, "p&&)(t)dt

;(,) -
I "t, 6&G(t)' ', ~ ~ 6~G(t)' ', t

(5)

where G(t) is any positive definite function of t and

os(t) is any upper bound on o~'~(t). (We have used
the fact that p' is positive definite. In Sec. III we

also use the positive definiteness of p~'~. )
By choosing G(t) appropriately, the left-hand

side can be made into a dispersion integral for ex-
perimentally known values of f,(t}. For example,
if we choose G(t) = vt(t - f,), where t, is in the
range 0 c t, & (m»- p)', the left-hand side of (5)
becomes

(
1 ""Imf,(t)dt ' f,(t,)-f,(0) '
» ,, t(& —t, )

In the physical region for K» decays, f (t) is well
fitted by the formula'

f,(t) =f,(o)(1+&,tip'). (7&

Hence, the left-hand side of (5) is just [f,(0)X,/jP]'.
Notice that at this point we are not maki. ng any
crucial use of the approximate linearity of f,(t).
We are merely using (7) as a reasonably accurate
parametrization of the experi. mental data in the
region in which f,(t) is actually measured. There
is a great deaI. of experimental uncertainty in the
value of A.+. We shall tentatively use the value'
~,=0.045 ~0.012. This is to be compared with the
K*-dominance value of X,= g'/m»*'=0. 0225. Un-
fortunately, f,(0) is not well known experimentally,
but by combining results of Refs. 3 and 4 we can
estimate' f,(0) =-0.89/W.

Now that the left-hand side of (5) is known, we
can use (5) as a lower bound on the integral of
p'(t). In order to do this we must find some ap-
propriate upper bound o ~ on 0,' . The values of
5', (t) are known experimentally up to about t '~'
= 1.2 GeV (Ref. 6) (5,'is fitted beautifully by a K*
Breit-Wigner formula in this region, but we have
used the actual data points given in Ref. 6}. Above

1.2 GeV we have upper-bounded sin'5,'by unity
(probably a gross overestimation). We have esti-
mated that the experimental errors in the low-en-
ergy values of sin'6,'will not affect our final re-
sults by more than 10%.

All quantities in (5) are therefore known except
for the spectral-function integral; for this quantity
we have a very conservative lower bound. Defining

(8)

we have

1 ""p"'(f) dt (y,(0)A., ' 1
2 „, t i p,

' I(t,)
We can parametrize the left-hand side of (9) as

C &0.037f,(Q)' GeV', where 0.037f,(0)' GeV' is the
value the integral would have if K* dominance
were valid [0.0375f,(0)' GeV' in the narrow-width
approximation]. Canceling the common f,(0)' fac-
tor and evaluating I(t,) for t;-0, we find

(9)

C &1.6 x10'A.,'. (lo)

Our inequality (9} is not in itself very interesting.
Pro~ the largeness of A., we could have guessed
that K* domination of p' is not valid. However,
it has been shown by Glashow, Schnitzer, and

For the experimental value A.,=0.045, this implies
C &3.3. That is, the spectral-function integral.
must be more than three times as large as the res-
onance-saturation value. For X„=0.033 (the one-
standard-deviation value), C &1.8.

As a check on the correctness of (10) we insert
the K*-dominance value of X,=0.0225, for which
C=1. Our inequality yields C &0.82, suggesting
that our inequality is not too far from an equality.

III. APPLICATIONS
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Weinberge that if the relevant Schwinger terms
are c numbers and if the integrals converge, then

~,
*" P"()„(.(t)dt

"
P,(t)d,

t 4~3 g
0

Let us define the number I by

dt= =L x0 0244 GeV
4/2 g p

(13)

where m~ is the p mass and m, '/f, is the photon- p
"coupling constant. "7 If the common assumption
that (13) can be saturated by a zero-width p reso-
nance is true, ' then I.=1. The finite-width p-sat-
uration hypothesis gives L =0.92. Therefore, (12)
becomes

(14)
pter

tl' i I(t,)
'

Choosing t, =0 yields L&974 jA.,j'; for X,=0.045,
this gives L &1.97. If we choose It, in the physical
region (where A., is actually measured}, we obtain
bounds that are almost as stringent. For t, =0.03
GeV', for example, L&900 jA+j'; for X+=0.045,
L, &1.82. It must be noted that the stated error for
A,, is ~0.012.' For A. ,=0.033 the bounds on I. are
ar ound 1.

A similar but stronger bound can be obtained by
taking G(t)=v(t t,)'/(t-ppgx*'-) in(5). This G(t)
effectively suppresses the K* contribution to the
a«i'~ integral. The left-hand side of (5}becomes

jf '(t, )+ (t, —m~*') f,"(t,)/2 j'. We can then repeat
all of the steps that led to (14) to derive a lower
bound on L in terms of the second derivative f,"(t,),
the form of which the reader can easily write down.

Little is known experimentally about f+'(t, ) [the
data fitted by (t) are relatively insensitive to it],
but if we make the ad hoc assumption that f,"(t,)/
f,(0) is no larger than it would be if f,(t) were domi-
nated by a K* pole, and that still f', (t,) =f,(0)X+/tl',
then we can show, for example, that L, &10.0 for
1.,=0.045 and L & 2.3 for A.,= 0.033 (all t, up to 0.05
GeV' give bounds this big). Because of the uncer-

"
n~(«)dt

9p2

where p~(t) and p,(t) are the spectral functions of
the conserved (electromagnetic) isovector and
isoscalar currents. The —,

' is due to our normaliza-
tion of V&.

Equation (11) is a special case of what is known
as Weinberg, 's first (fast convergent) sum rule.
Combining (9) and (11), we find

tainty in f,"(t,) we shall make no further use of this
second bound on L,.

IV. IMPLICATIONS

We have seen in Sec. III that if ~, really is much
larger than the K*-pole value, and if the Weinberg
sum rule is true, then p~(t) must have important
contributions other than the p resonance. The
principal tests of the spectral-function sum rule
(and therefore of the c-number Schwinger-term
hypothesis) have relied on the additional assump-
tion that each spectral function can be saturated
by a resonance (the p for p~). In Hef. 2, for exam-
ple, this extra assumption is used to predict m„ /
m~= ~2, which agrees very well with experiment.
(ActuaIIy, this particular result also requires the
second and less convergent Weinberg sum rule. )
We now see, however, that if A, ~0.045, then the
resonance-saturation ayproximation is false. In
this case, we would have to conclude that either
(i) the Weinberg sum rules are still true, and they
are satisfied separately by the resonance and non-
resonance parts of the spectral functions, or (ii)
the sum rules are not true, and the success of the
mass relations must be accidental or due to some
other origin.

It has been suggestede'" that the spectral-function
integrals might not converge (the convergence of
the p and p& integrals requires that the total cross
section for e'e -hadrons through one photon must
decrease faster than 1/t' for large t). In this case
the sum rules cannot be valid [possibility (ii)
above]. It is also conceivable that the integrals
diverge but that the sum rules ax'e still true for
the resonance part of the spectral functions. %'e
will lllclude 'tllls (111 Bonis fol'11181 sense) Rs R

special case of possibility (i). We must emphasize
'tllRt if possibility (i) is 'tl'ue, lt ls emp1rlcal. It
does not follow from the arguments in Ref. 2.

We consider our results [that large X, implies
(i) or (ii)] to be much more modest than the pos-
sibility that the spectral integrals diverge. '" How-
ever, Pestieau and Terazawa's result' is based on
the (experimentally unknown) asymptotic behavior
of the reaction e'e H+anything, where H is a
hadron, and the conclusion of Beg et al. '0 depends
on the assumption of asymptotic scale invariance.
Our result, though limited, is very direct and does
not require any additional assumptions.

The spectral function ~is related to the e'@-
annihilation cross section (into hadrons with I ~1)

p.(t) = «",—,(t)/15" '
to lowest order in ix. AgaQl, %'6 can Sap that if
X+ & 0.045 [and if (11) is true], then this cross sec-
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tion must contain something besides the p reso-
nance. This is supported by recent measurements
of the pion form factor, " measured in the reaction
e'e -~'n, which does not decrease nearly as
fast as would be expected from simple p domi-
nance.

Using (11), we can also place a lower bound on
the integral of p~(t)/t. For A. , = 0.045 and t, = 0, the
bound is 1.48 times greater than the estimated ~-
plus-P saturation value (the experimental widths
for e, Q -e'e have been used"). The isoscalar
spectral function is related to the cross section
for e'e -I =0 hadrons by a relation like (15},
except for an additional factor of 3 on the right.

From (11)we can combine the I=0 and 1 cross
sections to give

dt = » Jt te, +, (t) &t, -(16)

where v,+,—is the total (I =0 plus I =1) annihila-
tion cross section. Using (12), this quantity must
be larger than 23.8~A. ,P GeV'. For A, , =0.045 this
is 0.0482 GeV'. This is to be compared with the
estimated p+ ~+ Q value of 0.0264 GeV'.

We might mention that if , +,- is ever known ex-
perimentally to a high enough t, then our result
can be used as an upper bound on ~,

Let us now return to the Weinberg sum rule. It
has been shown" that if the first sum rule and the
resonance-saturation approximation are true, then

3m~1
(p-e'e )=m I'(e-e'e )+ &mI'(f-e'e )-

(1'7)

This agrees roughly, but not terribly well, with
experiment. ' Again we claim that the resonance
approximation probably fails badly, so again we
are led to possibilities (i) and (ii) above. Because
of the partial successes of the saturated first
Weinberg sum rule we would like to speculate that,
for some unknown reason, it holds approximately
[perhaps only in the SU(3}-symmetric limit] for

the resonance part of the spectral functions. The
nonresonance part may either diverge or satisfy
the sum rule separately. Weipberg's second sum
rule may also hold in this resonance-domination
sense, but only in the limit of SU(3}. This is be-
cause the analog of (I'I) for the second sum rule is

-~m~'I'(p-e'e ) =m 'I'(e-e'e ) +m~ 13'(p-e'e ),

(18)

which is badly broken. '4

V. ERRORS

We would like to discuss briefly the numerical
errors in our results. Our estimate of f,(0) is
probably accurate to about 10/0, a 10/p error will
affect (14) by 20/0. We have bounded sin'6,'by
unity above 1.2 GeV. Variations of the K* posi-.
tion and width in the low-energy region have been
estimated. They should not affect (14) by over I(@.
The saturation value given in (13) is uncertain,
owing to uncertainties in fq. The value that we have
quoted corresponds to f~'/4w =1.9. Most other
values that have been obtained for f, are larger, '
corresponding to even sma11er values for the
spectral integral in the zero-width saturation
hypothesis. Also, the spectral integral is about
8% smaller when a finite width is given to the reso-
nance. Hence, the coefficient of I. in (13) is the
largest value compatible with p saturation. Finally,
the most uncertain quantity is A, + itself. All of our
conclusions depend strongly on A. , being almost as
large as 0.045. Until &, is more firmly estab-
lished, all of our conclusions must be regarded as
tentative.
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W'e study the problem of second-class currents, and attempt to clarify the situation, by
working within the framework of a formulation that makes no appeal to any specific dynam-
ical model of hadronic interactions or nuclear structure. While much of the paper is ped-
agogical, several new theorems and results are presented. The import of recent experi-
ments is discussed, and a scheme for classification of second-class currents is proposed.

I. INTRODUCTION

Although the notion of "second-class currents"
was introduced by Weinberg' over 13 years ago,
it is only in the last year due to the remarkable
experiments of Wilkinson, Alburger, and collabor-
ators' that the subject has attracted widespread
attention among theoretical physicists-. ' Regret-
tably, most of the recent discussion, if not en-
tirely incorrect or misleading, has been within
the framework of models which are, in many
cases, oversimplified, to say the least. As a re-
sult, the precise significance of the experimental
results4 of Wilkinson, Alburger, et al. has been
obscured.

The purpose of this paper is to attempt to clari-
fy the situation, by working within the framework
of a formulation that makes no appeal to any spe-
cific dynamical model of hadronic interactions or
nuclear structure. We sha1.1 look upon P transi-
tions of a nucleus as the P transitions of the nu-
cleus as a whole, rather than in terms of p tran-
sitions undergone by "off-shell" nucleons in the
nucleus; in effect, we shall treat nuclei as "ele-
mentary particles" of arbitrary spin. ' It is im-
material then whether a nucleus such as C" is
presumed to consist of six protons and six neu-
trons, or 12 neutrons and six quark-antiquark
pairs.

While much of this paper is frankly pedagogical,
we do report some new results -new either in the

sense that they did not heretofore exist in the lit-
erature, or in the sense that they have now been
liberated from model-dependent derivations. We
are led to the recognition that the notion of second-
class currents, as introduced by Weinberg, em-
braces a variety of currents with different theo-
retical and experimental implications; a systema-
tic study of the subject must therefore entail a
subclassification. Such a subclassification is pro-
posed in Sec. VD of this paper.

In Sec. II of this paper we introduce a perspicu-
ous notation. Section III is devoted to the question
of whether one can distinguish between first- and
second-class currents by looking at the space-
time properties of their matrix elements; in this
section we state and prove an extension of a the-
orem on Hermitian currents due to Durand, De
Celles, and Marr. e In Sec. IV we develop a gen-
eral kinematical formalism' for dealing with semi-
leptonic interactions and state some relevant for-
mulas for decay rates and ft values; we also show
that for transitions within an isomultiplet, and

only for transitions within an isomultiplet, inter-
ference effects between first- and second-class
currents of the same isospin (or isospins. differing
by 0 mod2) vanish in the limit of zero lepton mass. '
Section V is devoted to a more detailed study of
these interference effects; it is shown that if the
second-class current is conserved, the difference
of ft values for mirror transitions must at least
have a linear dependence on the sum of the energy


