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residues of these leading Regge poles factorize in
the manner specified in Sec. III. Thus, contribu-
tions from cuts are ignored. Such assumptions are
admittedly not well established even for elastic
amplitudes, let alone Mueller amplitudes. These
very assumptions however have been invoked in the
past to obtain interrelationships between different
hadronic fragmentation processes.? We have also
assumed that forward elastic (photon-hadron and
hadron-hadron) amplitudes are dominated for lead-

ing Regge poles with factorizable residues. Finally,
in Sec. V it is assumed that if the well-known func-
tions W, and vW, scale in the v>> ¢* region, then so
must the contributions of each individual Regge
trajectory. This is a very natural assumption, in
the absence of which a very delicate conspiracy
must exist (see Ref. 5) between these contributions
in order that their sum in the form of W,(v, q?) and
vW,(v, ¢%) be a function only of v/¢? in a dense

v> g% domain in the v-q2 plane.

IFor recent summaries of the experimental and theo -
retical progress in electroproduction, see E. D. Bloom
et al., MIT-SLAC Report No. SLAC-PUB-796, 1970 (un-
published), presented at the Fifteenth International Con-
ference on High-Energy Physics, Kiev, U.S.S.R., 1970,
and F. J. Gilman, SLAC Report No. SLAC-PUB-842,
1970 (unpublished).

%Literature on hadronic inclusive processes is by now
quite rich. For our purposes, the references which will
be of use are A. H. Mueller, Phys. Rev. D 2, 2963
(1970); Chan Hong-Mo et al., Phys. Rev. Letters 26,
672 (1971).

33ee, for instance, S. D. Drell and T.-M. Yan, Phys.
Rev. Letters 24, 855 (1970).

‘H. D. 1. Abarbanel, M. L. Goldberger, and S. B.
Treiman, Phys. Rev. Letters 22, 500 (1969); H. Harari,
ibid. 22, 1078 (1969).

53, Rai Choudhury and R. Rajaraman, Phys. Rev. D 2,
2728 (1970); R. Rajaraman and G. Rajasekaran, ibid. 3,
266 (1971).

SR. W. Anthony et al., Phys. Rev. Letters 26, 38
(1971). The high-energy data of J. W. Elbert and A. R.
Erwin are also quoted in this paper.
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We treat the spin dependences of high-energy inclusive reactions from the viewpoint of a
J-plane analysis. Measurements of various spin correlations are shown to bear directly on
questions such as factorization of residues at Regge poles and the strengths of J-plane cuts.
We provide examples of experiments which test these ideas using polarized beams, polar-,
ized targets, or polarized products. Electroproduction and high-energy neutrino reactions
are viewed as sources for polarized spin-one “beams,” and the implications for the process-
es are drawn in detail. Finally, we consider scaling properties of these latter reactions and
discuss produced-particle multiplicity in the scaling region.

1. INTRODUCTION

The qualitative features exhibited in hadronic
multiparticle production reactions provide a source
for discrimination among various models of the
strong interactions. A useful separation of these
production processes has been made by Feynman®
who invites us to consider separately exclusive
reactions in which all final produced particles are
detected and inclusive processes in which only a
selected subset of produced objects are observed,
the coordinates of the rest being summed over.
Many of the complications of production reactions

are washed out in inclusive processes and, indeed,
a variety of models? agree on the limiting behavior
to be expected at very high energies for the invari-
ant inclusive differential cross sections. In parti-
cular, the phenomena of production of large num-
bers of slow-moving particles in the barycentric
system — so-called pionization®-and of a limiting
distribution for the production of fragments asso-
iated with the beam or target —namely, limiting
fragmentation — appear as common attributes con-
nected with diffraction scattering.

To distinguish among the alternatives one will
clearly have to look beyond the gross features of
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the production spectrum found by measuring only
the momenta involved. In this paper we propose

to examine in some detail the consequences for
spin dependence in inclusive processes which fol-
low within the multiperipheral or general Regge-
pole model.* It transpires that there are a number
of definite statements that one can make based on
the properties of J-plane singularities generally
agreed upon in the context of two-body physics.®
The crucial observation in what follows is that the
inclusive cross section is given by a piece of a
Jorward absorptive amplitude. This means that
over-all helicity is conserved, and, once one ac-
cepts the idea that Regge poles mediate the reac-
tion, whenever any particle is properly isolated
from the rest by a Regge exchange, its individual
helicity will be conserved to leading order in s.
(This statement requires certain technical assump-
tions which will be given precisely below.)

Typically one will conclude on this basis that cer-
tain spin correlations are suppressed by powers of
s relative to other allowed transitions. The ab-
sence of this suppression would be telling evidence
against either the properties of Regge poles one
takes quite for granted; e.g., factorization, or,
possibly, the use of a Regge analysis in inclusive
phenomena. We propose looking for the effects
presented here in a variety of experiments. The
first kind requires a polarized beam and demands
looking in the fragmentation region of the target.
Since quite high-energy polarized photon beams
are presently available at SLAC, one can probably
make these tests rather soon. Another form of
this experiment involves producing polarized vir-
tual-photon or weak-current “beams” in electro-
production or neutrino reactions. This is simple
since the photon or weak-current polarization vec-
tor %y, u or %Wy (1+y)u is at one’s disposal by vary-
ing the lepton parameters. We discuss these pro-
cesses in some detail and, while we are at it, con-
sider implications of scaling behavior for them,
and make some remarks about the multiplicity of
produced hadrons in the scaling limit.

A second kind of experiment is symmetric to
these and involves inclusive production on polar-
ized targets. Unhappily, targets of significant po-
larization are not readily at hand, so the matters
here may be more difficult to attain in practice.
The skeptic may properly be concerned about our
testing the Regge models with photons since there
are any number of well-known technical problems®

The dynamics is contained in

1
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FIG. 1. An inclusive reaction.

associated with photon-induced reactions from the
point of view of the J plane. The last kind of ex-
periment we discuss, therefore, is one which re-
quires a measurement on the polarization of a pro-
duced particle at zero transverse momentum. If
this particle decays it will analyze its own polar-
ization, but one would still need another produced
object to provide an axis about which to measure
the decay parameters. The necessity of producing
three hadrons in the final state may thus cut down
on the expected rate and make the experiment dif-
ficult.

II. INCLUSIVE-REACTION KINEMATICS

We will be concerned in this work with the dif-
ferential cross section associated with the process
a+b—~1+2++++ +N+X, where g and b are incident
particles carrying momenta p, and p,, respective-
ly, and N particles of momenta p,, ..., p, are de-
tected, while X represents an undetected group of
hadrons whose coordinates are summed over (see
Fig. 1). Spin labels s, s;, s}, - - ., Sy Will appear
when needed.

The differential cross section for this reaction
is given in the @, b barycentric system as

AY2(s,m 2, my2)do(@+b~1+2++++ + N+X)
N d3p;

= _—_-M(pu,p]_"'

2 ‘7pN’ pb)y
j=1 ™y E,

®

where the flux of the incoming beam is expressed
via the relative momentum p =AY%(s, m 2, m,2)/2Vs
with

s=(bg+ ), (2)
and

Ax, y,2)=(x+y — 2 —4xy . (3)

b N
7y f d%y,ceed?yydZ, - d?Zy, exp(igp,- y,)Kvl- .. KS,N(ZE@E,,)”2
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X(ab in| (CACALACARE '¢N(yN))+(J].(0)¢2(ZZ) *** ¢x(Zy)),| ab in)
- - N
X(2E2E,)?Ky,* .vaiKZNexp(—z‘ 2 by Z,) , (4)
i=2
where ¢,(y) is the field operator for particle j, andJ,(y) is the associated source density which arises as

K,¢,(9)=J;(y). E; is the energy of particle j.
The parametrization of phase space is chosen so that when p, is labeled by®

p; =m, (coshp; coshg,, sinhp,; cos¢,, sinhp, sin¢p;, coshp, sinhg;), (5)
we have
asp; do; 2
m °F, =—2-7—T—d0, d(coshp,)?. (6)

This choice for naming the components of p; decouples the longitudinal momentum ,; coshg; sinhé; in an ef-
fective manner from transverse momentum. Thus, an invariant squared subenergy (p, +p;)?, which plays
a significant role in the Regge analysis to follow, will become large when the difference 6, -6, is large, re-

gardless of the 8’s which govern the transverse momentum. This is readily seen from

Py * Py =M;M;[coshg,; coshp; cosh(6,; ~ 6;) ~ sinhg, sinhg, cos(¢; = ¢,)]. )

In fact, the relevant values of 8 will be small
since observed transverse momenta are strongly
damped.

Now M(p,, Py, - - - Pw, Dp) 18 related to a piece of
the N+2 to N+2 forward absorptive amplitude as
exhibited in Fig. 2. To properly discuss the multi-
Regge analysis of this, one makes a multiple
crossed-channel partial-wave analysis based on
the SO(1, 3) little group of the null momentum
transfer between pairs of particles.® One may
conveniently envision the analysis by lining up the

- particles according to their longitudinal-boost an~
gle f as in Fig. 3 and imagining that across each
link in the figure one makes an ordinary two-body
SO(1, 3) partial-wave decomposition.

We only need the following results of that labor.
Consider the inclusive reaction in the barycentric
system of ¢ and b and choose the incoming three-
momenta along the z axis,

Dp.=mg(coshb, 0, 0, — sinh6,) (8)
and
pb =mb(005h9b7 01 0, Sinheb) ’ (9)

do {a+b == 1+2+ - +N+X)

FIG. 2. The relation between M and a piece of the
three-to-three forward absorptive part.

T
with
m, sinhf, =m, sinh, . (10)

When the squared subenergy (p, +p,)?, governed
by 6, - (-6,), is large, each Regge pole at a con-
tributes a leading factor to the asymptotic expan-
sion of M,

exp(6, +6,)(a - | My, +AR,|), (11)

where M, is a label of the SO(1, 3) representation,
into which the Regge (or Lorentz) pole is put, which
corresponds to the minimum ordinary angular mo-
mentum in the representation.” In order to enter
in (11) M,, must be less than or equal to min(2j,,
2j,); j,=spin of a, and j, =spin of 1. In (11) AR,

is the difference in helicity between the incoming
(in the sense of Fig. 3) state of ¢ and the departing
state of ¢. In general, a will contain a mixture of
helicities and a number of helicity transitions will
be present. Similarly, when the squared subenergy
(py+bp) is large, each Regge pole contributes a
factor

FIG. 3. A representation of the kinematics of the N +2
to N +2 forward amplitude in terms of the longitudinal-
boost angles, 6;, of each particle. The SO(1,3) partial-
wave decomposition is performed in the channels indi-
cated by the wavy lines.
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exp(Oy +6,)(a - IMNb+Ahb| ), (12)

with Ak, the helicity flip at the b—b—Regge-pole
vertex in Fig. 3. Here, of course, the relevant
My, <min(2jy, 2j,). Therefore, the leading term in
the asymptotic behavior (11) requires the helicity
flip Ak, to have magnitude M,,, or, symmetrically,
the leading behavior in (12) requires the magnitude
Ahy, to be equal to My,. Corrections to this are re-
duced at least one power of the large subenergy.

Each of the usual leading trajectories P, P/,

p, A, etc. appear to carry Mquantum number
zero,® since they contribute to helicity-nonflip
amplitudes in two-body processes. Therefore, we
are led to conclude that when p,-p,, o7 equivalent-
ly 6, +6, becomes large, the leading contvibution
of each Regge pole cavvies Ah,=0. Furthermore,
the contribution of helicity-flip transitions is down
by |Ah,| in powers of p,* p,. The situation is clear-
ly similar for Ak, when 6, +6, is large.

This same line of reasoning allows one to con-
clude that when 6, +6, and 6, - 0, are large and B, =0,
that is, the transverse momentum of particle 1
vanishes, then to leading order in powers of ener-
gy, Ak, =0. What we are doing in this case is to
isolate particle 1 from ¢ and from the conglomer-
ate 2,..., N, b by Regge poles carrying M =0, thus
carrying no azimuthal information in the leading
order. Then we make p, collinear with ¢, which
by rotational invariance means it cannot flip its
helicity.

In a shorter version of this paper,® where many
of the main results were described, the argument
given here proceeded by using factorization of
Regge poles in the ¢ channel and the absence of
conspiracy at £=0 to deduce the helicity-nonflip
property just described. The equivalence of these
lines of reasoning is demonstrated in detail in Ref.
8. There is, however, an additional benefit that
one may derive from the factorization argument.
Namely, if we consider a transition which isolates
a helicity-dependent Regge-particle vertex B, ,,
each form of reasoning allows us to conclude

Bh.h' =0yr4By - (13)

Factorization, however, allows us to go further by
lifting this vertex out of the original process in
which we found it, and deduce many of its proper-
ties by connecting it with simpler systems, for ex-
ample, spinless particles. Thus, if parity and
time reversal are good symmetries of the original
process, we learn

B pt =B-n =1t = Brrns (14)

with a convenient choice of phases.
In a real sense, as we shall discuss in a moment,
it is probable that only isolated poles in the J plane

are going to carry M =0, and the unitarity of the S
matrix then implies factorization of the residues,'°
so the factorization and M =0 properties are likely
to be achieved together.

Before we go on to draw some of the conclusions
of the arguments we have given, let us pause to
consider how they may break down. The primary
ingredient is clearly the assumption that the lead-
ing asymptotic behavior in any relevant squared
subenergy s is governed by those isolated J-plane
poles which one is acquainted with from two-body
physics. It happens that this is true in the multi-
peripheral model, % but generalization from that
may be unwarranted. What is more likely is that
J-plane singularities other than poles, especially
branch points, play a significant role in governing
the high-s behaviors of amplitudes. Indeed, one
does not expect cuts to be factorizable. In addi-
tion, since they are generated in conventional mod-
els from the contribution of two poles in the ¢ chan-
nel, there is no apparent reason why they should
carry M=0 and, thus, should flip helicity with no
loss of powers in s.'! From a J-plane viewpoint,
one would reasonably view the failure of the pre-
dictions we will outline as evidence for strong con-
tributions of Regge cuts.

In contrast to the simple Regge model we have
followed here, eikonal-approximation models do
not give.a precise statement about the spin depen-
dence of forward scattering except for the single
leading order in s. There, at least in electrody-
namics, one finds that the coefficient of s' does
not flip helicity.'? The contributions to any lower
powers of s are untouched in these calculations.
Furthermore, in these models it is rather clear
that the J-plane structure of the diffraction contri-
bution is not factorizable, so one would expect any
of our results depending on this property to break
down. To draw the contrast here a bit clearer,
let us note that the Regge argument given above
means that as soon as a finite number of Regge
poles with M =0, not just the Pomeranchukon, de-
scribe the behavior in a squared subenergy s, then
no helicity flip will occur to order s%-!, where
oy is the leading trajectory. In the eikonal models,
absence of helicity flip is only true for the diffrac-
tion component, and the lower contributions surely
flip helicity. Should the tests we will momentarily
propose, in fact, defend the Regge reasoning, such
an outcome would pose a serious challenge to
eikonal-model builders. Should they fail to do so,
the situation will, alas, be more ambiguous.

III. SOME EXPERIMENTS TO TEST THESE IDEAS
A. Polarized Beams

Let us begin for simplicity with single-particle
inclusive production: a+b-1+X, and let particle
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b be incident along the pOsitive z axis carrying
spin label s,. Choose the four-vectors in the cen-
ter-of-mass frame of ¢ and b,

P, =m,(coshg,, 0, 0, sinh6,), (15)

P, =m,(coshd,, 0, 0, —sinh,), -~ (16)
and

p, =m,(coshp, coshd,, sinhp,, 0, coshp, sinhd,),
where m, sinhf, =m, sinhf,, and we have chosen( 1&1723
produced particle to lie in the x-z plane, as we

may. The differential cross section for this pro-
cess is

do(la+b—~1+X) _M(@l +04 By, O —6,)

AY2(s, m 2, my?) = 2m gm, sinh(6, +6,) . (19)

Now let the incident energy become large, so 6,
and 6, are large, holding 8, and 6, +96, fixed. That
is, the transverse momentum of p, is fixed, and
we select events in which the produced particle
“runs along” near the negative z axis, that is,
more or less in the direction of particle q. This
limit is the fragmentation limit of ¢. In this re-
gime s, =(p, +p,)? becomes large since

Py by =m,m, coshp, cosh(d, - 6,) (20)
and p,* p, remains finite since

Py P, =m m, coshp, cosh(b,+6,) . (21)

= - , (18) Suppose that M is governed by a finite sum of
d6, d(coshp,) 2m m, sinh(6, +6,) Regge poles with ¢=0 intercept @, and O(3, 1) quan-
noting that tum number M;. As 6, -6, gets large,
J
M(el +6a ,Bl’ Gb - 91) By fixed:é::‘ea fixed i:L;h{;Rz';'hb(el + 9“ ’BI) exp(eb - 91)(ai - i Mi + Ahb] ) (22)
0,=61~>% g

for a configuration in which the helicity at the b-b—Regge-pole vertex flips by Ak,=h}—h, The R} are re-
lated to the residues at the Regge poles. As noted, the incoming states labeled by s, are, in general, a
mixture of definite-helicity states so the differential cross section governed by M will involve a number of
helicity transitions. We have already argued that the relevant M, are zero, so to leading order in

s ~m,m,e%*% one has

do(a+b~1+X)

Prbih S e i ~
dg, d(coshp,)? 8, fixed; 6,40, fixed ish,
=0,

where some inconsequential constants have gone
to make up the f?and g* from the R:. Further,
because one has only a single particle detected,

f::b,hb :finb. ~hy (24)
if parity is conserved.
An immediate interesting application of this
comes if particle b is taken to be a real photon.

Then the initial state is a mixture of %, =+1 which
we may take as

I's,y=(A]+) +B|=))/(|A]*+|B|*). (25)

To order s®~!, where q, is the largest of the a,,
(23) tells us that the differential cross section de-
pends only on |A| or | B|, while the further piece
of information (24) tells us that do(y+a—~1+X)
does not depend on A or B at all.

Now this same conclusion may be drawn when-
ever 6, -6, is large enough so that the behavior of
M in that variable is governed by a finite sum of
M =0 Reggeons. Clearly, the other subenergies
could get large or the transverse momentum may
do as it likes, and the conclusion still holds. Thus,

D3 by By O+ 0)SH 174 50 gl (B, 6+ 6)%i™E 00 e (23)

iy,

we find: In the photon-induced reaction y(p,) +A(p,)
- 1(p,) +X, let the squared energy s,=(p, +p,)*
grow so that M(6, + 6,, B,, 6, —6,) is governed by a
finite sum of Regge singularities «; with //=0.
Then we expect that to order (s,)z™!, .where a; is
the largest of the @, do/df, d(coshg,)? is indepen-
dent of the state of polarization of the photon.

This differential cross section can contain only
two varieties of dependence on the photon polariza-
tion. One term is, in general, independent of the
polarization; the other is the coefficient of the tri-
ple product ﬁy- @, xP,), where the pseudovector
P, is the polarization vector of the incident photon
beam. On the basis of order-of-magnitude esti-
mates alone, the size of the spin-correlation term
is at worst = (transverse momentum of p,)/m, rel-
ative to the other term. Therefore, if one para-

- metrizes do as

do(y+a—1+X)

W=F(91 +6,, By, 6, — 91)

+G(8, + 6, By, 6,—6,) [Py (ByXBy)],
(26)
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with p, a unit vector along ,, then we expect G/F
to go to zero as 1/s, as s, —~ .

A similar conclusion follows for polarized spin-
3 beams, since again only two states of helicity
are allowed, and they are related by parity. For
higher spins, polarization independence does not
transpire, while, of course, helicity-nonflip dom-
inance does.

Thus far, we have been able to proceed on the
basis of the asymptotic dominance of M =0 Regge-
ons plus parity conservation. Helicity-nonflip dom-
inance in single-particle inclusive production will
be a test of these matters. When we come to pro-
ducing more than one particle, parity alone does
not lead to (24) because of the orientation angles of
the produced particles relative to one another. In
this case, however, we may deduce (24) by adding
the assumption of factorization of the residues at
the M =0 Regge poles. Factorization allows us to
study the properties of the reduced residues by
coupling them with the same M =0 Reggeon to sim-
pler processes. Tacking our residue for the v—b-—
Regge-pole vertex onto a spinless target immedi-
ately gives (24) when parity is conserved.

Under the condition, then, that the residues at
Regge poles factorize, we may carry over all of
our results to the case of multiple-production in-
clusive reactions: Consider a+b—+1+2++++ +N
+X and order the particles as in Fig. 3 in the g, b
barycentric system. When p,*p, becomes large,
the leading terms of do have zero helicity flip at
the b—b-Regge-pole vertex. If b is a photon or a
spin-3 beam, then all spin correlations involving
the polarization of the beam are suppressed by or-
der (p,* p,)~* relative to other terms in do.

B. Target Polarized

The conclusions here are identical to those for
polarized beams with appropriate renaming of par-
ticles ¢ and b. Since highly polarized targets are
difficult to come by, we will not dwell on this mat-
ter.

C. Polarized Products

It is unfortunate that the best polarized beams
are photonic since the application of Regge phe-
nomenology to photon-induced processes is fraught
with well-advertised pitfalls. It would indeed be
nice, therefore, to be able to use highly polarized
hadron targets so that only hadrons are involved.
Fortunately, it is possible to find a test of our ar-
guments involving polarized produced particles.

Consider production of two particles where the
particle labeled 1 carries spin indices s;, and
other spins are averaged over. Let the longitudi-
nal-boost angles 6, + 6, and 6, - 6, become large,
thus isolating particle 1 from the rest of the reac-
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tion by M =0 Regge poles. When the transverse
momentum of 1 is zero; that is, g, =0, it is clear
from Eq. (49) of Ref. 6 that helicity does not flip
to order (subenergies)®z~!. Intuitively, one sees
this since M =0 objects carry no noncollinear in-
formation to leading order in s, so when particles
1 and a are collinear, the helicity of 1 cannot flip.

Since only helicity-nonflip transitions enter the
differential cross section in this region of phase
space, one may state the conclusion we have
reached in the following concise manner: Consid-
er rotating by ¢ only the spin vector of particle 1,
keeping all other vectors fixed, then each helicity
transition %, — k] picks up a phase expi¢(k, - }).
Since only %, =h; is allowed to leading order, the
differential cross section will be independent of ¢
to that order. .

If particle 1 subsequently decays into two objects
of momenta §, and §, (think of producing p’s and p
—2m), then the argument just given means that
do(a+b—~1+2+X) is independent of

_ (ﬁz X—ﬁb) * (KXﬁb)
[ By %P, [ AXB, |
to leading order in s, where A =§, —d,. When par-

ticle 1 has spin J, one expects, in general, that
do contains ¢ dependences

cos¢ (27)

2J 2J
do= 3 (a,cosMe)+ > (b, sinM¢) (28)
M=0 M=1
with coefficients a, and b, which depend on the
other variables. Our analysis suggests that a,/a,
or b,/a, for M+0 are expected to vanish for large
energies as s~

1IV. INCLUSIVE ELECTROPRODUCTION
AND NEUTRINO REACTIONS

As a place where one may further test the im-
plications of helicity-nonflip dominance, we turn
to electroproduction reactions of the variety e +p
—~e’+1+2+++++N+X or neutrino reactions v, +p
- [+1+2+++++N+X. We view the vector coupling
to the leptons as a source for a polarized, off-
shell, spin-one beam incident on the proton; see

() (b)

FIG. 4. (a) An inclusive electron-hadron reaction.
(b) An inclusive neutrino-hadron reaction.
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Fig. 4. The differential cross section for unpo-
larized incident electrons or muons and unpolar-
ized target protons is still valuable for us because
the hadronic matrix element of the electromagnetic
or weak currents is contracted with “polarization
vectors” %y, u or %Wy,(1 —y;)u, whose decomposition
into states of definite vector-current helicity may
be varied by varying the incident lepton beam en-
ergy and final scattering angle.

For electroproduction with incident lepton mo-
mentum [ and outgoing lepton momentum ', we
write for the production of N detected hadrons from
a proton of momentum p the laboratory differential
cross section

do(e+p—-e' +1+2++-++N+X)
—dE dQP
4."‘12 E/LaB N ds
——QT‘—ET"z_E'WaB(q,l’Z,' Np)I,IITfij
(29)

INCLUSIVE REACTIONS 705

with the choice of lepton momenta
l=(E,E siny, 0, E cosy), (30)
U'=(E’,E’sin(© +¥),0,E’cos(© +)), (31)
where we have neglected M, and © is the lab scat-

tering angle. The angle y is an auxiliary quantity
which is given by
siny=E’sin®/(E*+E'? - 2EE’ cos©)!/2, (32)

The squared four-momentum transfer

Q=-g*=-(-U) (33)
has been introduced and, as usual, is
Q*=4EE’'sin%*(30). (34)

The lepton tensor L,g comes from summing over
lepton spins and is explicitly

Lag=lolls+1%lg=gopls . (35)

The interesting dynamics resides in the structure functions W,y which are given as

N
Wep(ds Dy« - -5 Pws P —(1-6_—1—2? Z

with J, the electromagnetic current.

For neutrino- or antineutrino-induced processes the structure is essentially the same.

e=tay @lJa(y)lpp .o

, Py, XoutX X, p,, -« ., by out]J(0)|p), (36)

The Fermi cou-

pling constant replaces a/Q? and the lepton tensor picks up an extra antisymmetric term from V-A inter-

ference in the lepton current.

Let us write the two differential cross sections as

do(l+p—=1U+1+2+--+N+X) E' asp, .4
dvd@? =Ny ,Hln fE,d

where N, is a factor which tells if electrons or muons or neutrinos were incident,

N,=N,=410%/Q",
and
N,=Gg?/2m.
We have also introduced v=p+ q/M=E’

—-E as a new and familiar variable as well as k=2§":1pj,

N

kol - >, (37)
j=1

(38)

(39)

the sum of

the detected hadron momenta. The factor W will be constructed out of the lepton tensor and the structure

function (36).

What we shall do is to examine the helicity amplitudes for the current + proton—~ 1+2+-+++N+ X inclusive
cross section. This will tell us which of the various structure functions survive in the limit as q-p, be-
comes large, for most of them will be suppressed by the mechanism we have been discussing in this paper.

In the laboratory system let us choose as our momenta

4=(40,0,0, g5),

p'_'(M’O,O;O),
and the symmetric quantity &,

k= (kg kpcose, kysing, ky).

(40)

(41)

(42)

The structure function W,z will be built out of p, ¢, k, and the pseudovector
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Na=5aeovpﬁqok” (43)
= (O, lﬁ| sing, - IEI coso, O), (44)

where |fi| =Mg,k, in the lab frame.

When the reaction is induced by electrons or muons, there are six helicity amplitudes or structure func-
tions in general. If only one particle is detected, the number is four. For neutrino-initiated processes we
will have nine transitions. We choose our structure functions as follows (neglecting terms proportional to
g, or g, which will not contribute when contracted with L ).

p (0 q) kg +Ppky) (R @)Pud 4 Nepp +Nob
W= - aaW, + aPeW+ aNsW [ 2;;43 sRa) 15 B (w, + st Bl
. o v , .
+ Naks +NBkoc WS_ ZEaBozup q W,+ l(NapB ‘Nepo)WB+ l(NakB -Neka)Wg (45)
2mV=N2 2m 2mvV-N2 2mvV-Nz2

When dealing with electroproduction of a single hadron, we need only W,,...,W,. If two hadrons or more
are electroproduced, then W, and W; also enter. Note they are pseudoscalars and may be taken proportional
toN-p;, j=1,...,N.

To discover which of the structure functions will survive the high-energy limit, we proceed by writing
out the helicity amplitudes in terms of them. This is not a very instructive exercise but the results are
useful:

Wy, =W, + W, % 10, W, % SerW,, (46)
W, =™ (=5 W+ Yk W), 47
“q g 4
WOO——W+Q2 W, + <LF( ¢ - (k- q) 52) (48)
where
k'€0=(koq3—quo)/n’ (49)
e o
N p q kqu _}_ kee .
Wy, = ——2\/_2_ (— ——m3 ———W + 7o (EWs +W,) £ " (lWe‘*'Ws))’ (50)
and

Wiom 57"t Vs % T

From these formulas we may deduce the asymptotic behavior of the structure functions W, in the region
where the squared energy (p, +q)* becomes large, while the other momenta and @ are held fixed; that is,
just the limit we have discussed above the photon becomes isolated from the remainder of the process by
an M=0 Reggeon. In this limit the large quantity g « p, is proportional to v. In general, all helicity ampli-
tudes W, , behave as v % for the contribution of an allowed Regge pole at @. Because of our rules above,
however, we expect Wy, ,~ v*"!"~#  From this we find that for large v (in parentheses we indicate the
Regge behavior which would occur 1f factorization were not valid)

Fid . . 0
e ( D qRpq, aw, W) kme (iWG—W9)>. (51)

W~ v (v%), (52)
Wy~ vo=t (v, (53)
W2~ l/OC"Z (VQ-Z)’

Wy, Wy, W, ~ v*72 (1), (54)

Wy, Wy~ v 2 (v271),
and finally,
W, ~ v%=3 (v9-2). (55)
The contributions to the helicity-nonflip amplitudes in the large-v limit are

W, .~ W, vW,/2M+ O(v*~?) (56)
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and

Wpo ~ = W, + (V2/Q2)W, + O(v*~2).

(57)

Thus, in the inclusive differential cross section we expect to see dominant in the limit we take only those
terms involving W,, W,, and W, which are the familiar structure functions from inelastic electroproduction

and high-energy neutrino reactions.
Finally we write the differential cross section

do (lepton + p—lepton’ + 1+« + +N+X)
dQ2 dv

El
E "' nmiE,
+ W, _sin®
m?* (+Q%)

N
=—N, II b d*r 64( ',Z-E p,)[z sin?(3 @)W, +cos®(30)W, + <sin2(§®) +

175 kL EE’ Sin® - 3k, cosp(E?— E'2)] -

ko(E+E')

sin’¢ EE’' sin*©
gt )
(E +E’) sin® sin¢ W

2(V +Q2)1/2 5

sin¢ W, sin® <

- m(uz + QZ)X/Z

¥sin?(30)(E+E’)

2 - (V2+Q2)1/z

.._7_
m

krcosdp SinOEE’ Fk,(E?-E'?)
- 2(V2 +Q2)1/2
kT

Wy
2W sin® cos¢ i ((V 1

77 (E+E")(1 - cos®)

(V2+ké'2)1,2 (E =E’)cos¢ sin® - k,cos¢ sm@)]

(58)

This, while not terribly transparent, has the distinct virtue that those coefficients independent of ¢, which
is just the angle we spoke of in connection with Eq. (27), multiply W,, W,, and W, alone.

V. SCALING IN INCLUSIVE LEPTON-HADRON
SCATTERING

Recent experiments’® on the reaction e+p-e’ +X
in the deep-inelastic region have shown a remark-
able dependence on the four-momentum transfer to
the hadrons. The results of the experiments are
summarized by saying that the total photoabsorp-
tion cross sections for large virtual photon mass,

- Q%= 2BeV?, and large energy transfer v behave
as

¥~ (1/Q*)F (- mv/Q?). (59)

Alternatively we can conclude that the absorptive
parts of the helicity amplitudes for forward virtual
Compton scattering scale for large @* and fixed
w=2mv/Q2. Of the structure functions introduced
in the previous sections, only W, and W, are mea-
sured in the SLAC-MIT experiment, and these de-
pend on @2 and w alone. We have that

WF+(Q27 w) =W1(Q2: w)o'z_’ ++(w)’ (60)
2 _ 2)l/2
oo @, 0)= L w,@2, ) -W,(@%, )
— Wpolw).
(61)

It is natural to inquire as to the @2 dependence

r
of the more general inclusive lepton-nucleon re-
actions e+p—~e’+1+++++N+X, and, in particular,
to ask whether the corresponding structure func-
tions exhibit similar scaling behavior for large Q2.
Scaling in fact might be anticipated due to the close
relation between the integrated cross sections for
these reactions and the total photoabsorbtion cross
section. The connection, however, involves the
multiplicity of produced hadrons which is, so far,
a rather arbitrary function of Q2. Therefore, we
shall resort once again to a Regge-pole model for
virtual -photon-~hadron forward scattering, and use
factorization to establish scaling, deriving as a
by -product a @2 dependence for the multiplicity.
First let us recall that Regge theory seems to
be applicable to deep-inelastic scattering%!5 and
the w dependence of the amplitudes W, , and W,, can
be fitted by a modest number of Regge poles,!® so
that

W++(w) ~ EB:--:- wai(O)- (62)
w24 i
For fixed @2, large v W, , behaves as
W.(@%v) ~ FBL.Q)(w/VQF)%, (63)
v Q >>1 4

so that for (62) and (63) to be consistent, the Regge
residue coupling a Regge pole at J = ;(0) to two
photons of virtual mass —-@* must behave, for large
Q% as
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BL.(Q%) RS (1/VQ2)(gt . (64)

QP
We now turn our attention to the inclusive cross
section where, say, a single hadron of momentum
P, is detected (the restriction to one detected had-
ron is nonessential). As before, this is deter-
mined in terms of a piece of the absorptive for-
ward amplitude for

Y@ +1+p~y(@*)+1+p. (65)

In the region where v,/VQ? =q+ P,/MV@Q2 is re-
latively large (i.e., = 4), we can describe this am-
plitude by the exchange of Regge poles between the
photon and the hadrons. The essential point is that
due to the factorization of the Regge residues, the
dependence on the virtual photon mass is known
from our previous discussion. In fact, in this re-
gion a given helicity amplitude, say
W, Q3 v, Pz, P,;), behaves as

W@, v, Pur, B~ 231 (@) (v/VQE)
XRi(PlTrplL/‘/—V-); (66)
v/@ > 1; PlT, PlL/H fixed.

We have used the fact that, for fixed P, /Vv, v
=q+P/Mand v,=q+ P,/M are proportional. We can
then consider the behavior of W, , for large @
(i.e., 2 1 BeV?, as indicated at SLAC'®) using (65),
and derive that

W++(Q2: v, Pp, Pu,)

zEBi+ at(O)R (P1T’P1L/‘/-_ ++(w P1T7 1L/‘/—
i

(67)

with w fixed 2 4, Q?~«, and P,;, P,;/Vv fixed. In
conclusion, using the observed scaling and Regge
behavior of the total photoabsorption cross sec-
tions, we have derived that the cross sections for
inclusive electroproduction should scale in the
same way in the fragmentation region of the tar-
get.

If we now combine the results of this section
with those of the previous section, we see a re-
markable simplification in the large-w scaling re-
gion. As before, for electroproduction, only W,,
and W,, will survive to leading order in w. In ad-
dition, the indication is from SLAC that the W,, is
much less important than W, , for large @2 (6,/04
20.2). With all of this in mind, we then have for
the structure function W,s(q,P, P, . .., B), for
large but fixed w=2g - P/Q*, large Q2 and fixed P,
that

PgQ? Pi
Waﬁz<1:;232Q _got8> W++(w’PlT’ _‘/:;f) . (68)

We are now in a position to determine the @2 de-
pendence of the multiplicity of the hadrons pro-
duced in deep-inelastic electroproduction. This
can be calculated from the differential cross sec-
tion for the inclusive reaction y(Q?) +P- P, +X,
where

do, (V(Qz) +P"'P1+X) W, .,

~y

d#, d(coshp,)? vow VO

(69)

Indeed, the mean multiplicity of hadrons of type 1
will be for large v

do, .
de, d(coshp,)*’

(70)
The usual estimate of hadron multiplicities* pro-
ceeds by examining the contribution of the pioniza-
tion region to (70), i.e., the region where both
q* P, and P, - P are large or where + +A<6,<6-A
for some fixed A~ 2.5. For fixed @2 one has that
W, ,~ v in this region and o, (v)~ const so that

n(@%, v)= f d@, d(coshp,)?

y(Qz)
tO[

n(@?,v) o~

0,+ 6, — 2A= const(Inv).
v 0 ; Q3fixed

.In a similar fashion we can estimate the contribu-

tion of the pionization region to the multiplicity
when @%, ¢ - P,/q?, and P,- P are large.
In this region

W, .= constwf (Pr)

with w>1, P+ P>1, %~ «, and % - const/Q?.
Since

O+ 6= 1n(2V/‘/Q—2),
P, - P=mm, coshB, cosh(6, - 6,), (71)
q * P,/Q%= (m,/VQz) coshp, sinh(6, + ;) ,

we must have in the pionization region that

- 6,+ In(¥Q2/m,) +const < 4, < §, —const,  (72)

and thus
n(Q?, v) f ~ const Inw. (73)
pionization ‘”2>: i

We have thus derived that the multiplicity of pro-
duced hadrons in the pionization region of deep-
inelastic electroproduction scales and exhibits
logarithmic behavior in the scaling variable w.
We cannot immediately conclude that the same is
true of the total multiplicity. This is because the
region of 6, which lies outside the pionization re-
gion increases in size as @%-« as In@?. In fact,
when - 6, —const < 6, < — 6,+ In(v@2/m,) + const,
we are in the fragmentation region of the photon,
and our previous discussion of the @ behavior of
the inclusive cross section is inapplicable. For
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fixed @ this region is finite and thus gives rise to
a constant multiplicity. However, the multiplicity
from this region could conceivably be an increas-
ing function of @2. We are unable to rule this out;
however, we regard it to be unlikely that this in-

deed happens.

VI. DISCUSSION

We have seen above that the J-plane structure,
which has been uncovered in the study of two-body
processes when assumed to govern the asymptotic
behavior of inclusive processes, has quite striking
implications for the allowed spin-dependent struc-
ture of those inclusive reactions. Briefly re-
counted, we have argued that whenever any par-
ticle in an inclusive process is “isolated” from
the others by Regge exchange and is collinear with
the incoming beam, then to leading order in the

subenergy governing the Regge behavior, the hel-
icity of that particle will not flip if the J-plane
singularity is factorizable, or equivalently here
since all momentum transfers are null, it carries
0O(3, 1) quantum number M=0. The primary im-
port of our observations is to provide a rather
straightforward testing ground both for the ap-
plicability of J-plane concepts to inclusive pro-
cesses and, perhaps more singificantly, for the
detailed examination of many of the phenomenolog-
ical ideas which have grown up around Regge be-
havior in two-body reactions. The failure of our
predictions for various kinds of spin independence
must be regarded as strong evidence for non-neg-
ligible cuts in the J plane. Should their presence
be indicated, the studies we are proposing can be
turned around to provide a sensitive measuring
ground for the properties of these cuts.
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