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The restrictions for the structure functions of deep-inelastic, electroproduction and neu-
trino-induced production following from assigning partons to any representation of SU(2)
x SU(2) x Y are derived. Apart from the general parton-model, assumptions only isospin in-
variance and positivity are used. Comparison with experiment. allows us to exclude all mod-
els which have only partons of spin 2, isospin ~ 2, and integral charge.

I. INTRODUCTION

One of the popular models for deep-inelastic
electron- and neutrino-nucleon scattering is Feyn-
man's parton model. ' ' In thi. s model one views
the nucleon as built of constituents, partons, which
scatter incoherently. It is then natural to ask for
the quantum numbers of partons. '

On a more fun-
damental level one may hope to identify partons
with the bare quanta of some underlying field theo-
ry and ask for the quantum numbers of the basic
fields which build up the electromagnetic and weak
currents.

The relation of Callan and Gross' gives a direct
test for the spin of partons.

If partons have only spin —,', the longitudinal struc-
ture functions vanish; for spin 0, the transverse
ones vanish. In the present article we will derive
the restrictions for the structure functions which

follow from internal-quantum-number assignments
to partons. The basic fields are assumed to carry
a representation of SU(2) xSU(2)x Y, where Yis
the hypercharge. We exploit only isospin invari-
ance and positivity. No assumptions on the momen-
tum distribution of partons etc. are made. The
generalization to SU(S) && SU(3) would be straight-
forward but tedious.

All notations and definitions are taken from Ref.
6. Bjorken's scaling functions' will be defined by

F,(x) = lim2MW, (v, Q'),

F,(x) = limvW, (v, Q'),

F,(x) = limvW, (v, Q'),

F,(x) =-F,(x) —F,(x),

where x= Q'/2M v and the limit is taken for v- ~,
Q'-~, x fixed. The Cabibbo angle of the weak
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current will be set equal to zero.

II. DERIVATION OF POSITIVITY DOMAIN

We shall assume the existence of SU(2) &&SU(2)

and hypercharge currents, formed from fundamen-
tal spin-~ and spin-0 fields.

~'„' =fk(T'r& + Tpi'„r5)&l&+I'Q 2(f'+ I'5)6& 0
a = 1, 2, 3 (2.1)

the measurable structure functions which are just
linear combinations of the reduced matrix elements
of M~and M~.

In this way one finds the following positivity do-
main I) corresponding to a representation (j„j„y)
of SU(2) &&SU(2) && F for spin--,' partons [the corre-
spondlllg alltIpaI'tons belong 'to (J» j» -y)]:

F,"' ""=pmI[3(i+i)'+4y'+ Sy- 3(c n1)(I +y)],

(2 2)

where we have chosen a Hermitian basis for the
scalar fields P which implies that f' and f'5 are
skew symmetric. —,'(T's T;) and —,'(f'a f',) form
SU(2) x SU(2) representations:

(2.3)

(F,+F,)"'""=Pm, ~ej,{j,+1),

(F, —F,)"""=pm, ~j,(j,+1),

(F,+F,)"-'"=pm, (-v)(1+2b n, ),

(F,-F,)" '" =pm, (-p)(I+2a ~ II,),

(2.10)

(2 4)

The parton model expresses the structure func-
tions in terms of parton densities in the nucleon.
For electroproduction, for instance, one finds'

N

F,"(x)= xgp„p fi(x)&Q (2.5)

where Q; is the charge of ith parton. In complete
analogy to nonrelativistic nuclear physics we shall
rewrite Eq. (2.5) as an expectation value in the nu-
cleon state of a one-particle operator, acting in
the Pock space of partons.

F I"(x) = x{&rI x'(x)Q'x(x} Ir& +&r I y'(x}~'y(x} lr&j,

(2.6)

where r =proton or neutron and }&(x) and p(x) are
the annihilation operators for spin-& and spin-0
partons with

(2.7)

Q and q are the charge matrices for spin-2 and
spin-0 partons, respectively. Similar expressions
hold for neutrino-induced production. The crucial
step is to introduce 2 matrices:

(2 9)

&, I~.l, » =& Ix.'xsl &, (2.6)

{r,nfM, fs, p& =&rfy„y, fs&,

and to observe that M~ and Mi are positive matri-
ces, invariant under SU(2), acting in a space with
representations D(j,) xD(j,) xD(-, ), if the fields }&,

'

and P carry the representation (j„j,) of SU(2)
&&SU(2} and r, s =proton, neutron. It is a standard
problem of the addition of 3 angular momenta to
find the reduced matrix elements of M~ and M~.
Positivity requires the reduced matrix to be posi-
tive. This can then be translated in restrictions on

where ff j,—j, l
——,'I & I &j, +j, +-,' and a, b, c are 3-

vectors such that

(2.12}

FL~'I" =Pm„2[vlk(@+1) + vy'],

FXI' I" =g m„(--,'y)[l(l+1) —&&'I(&t, +1)—g],
(2.12)

F" ""=p „v[j,(j,.i) j.(j. I}],

F",-""=pm„v[l(l+ i) }I(u+ I) v], — —

where fj, —j, f
&0 &j,+j„ III ——,'f &I &0+-,', and

m») 0. The edges of the positivity domain are
again obtained by allowing only one of the m» to
be nonzero.

For the integrals of the structure functions,
Jo' &fx F(x), there are further restrictions due to
the sum rules expressing total charge, hyper-
charge, and baryonic number of the nucleons:

dx {pm,(- I + c ~ n, )
40

+pm„[l(i+I) —k(II+I) —v]] =-T,

(2.14)

a+b+c=0, (2.ii)
Ial=j, +l, fbi=i. +l, Icf=i+l,

and m, 0, ln, l
«1. If a, b, c are linearly depen-

dent, n, has to be replaced by a unit vector in the
direction of the 3-vector a, b, or c of greatest
magnitude

The edges of the positivity domain are obtained
by se'ttlIlg 111 Eq. (2.10) all except 0118 of the m1
equal to zero and ln, I

= 1.
For spin-0 partons one finds, if P belongs to a

representation (j» j» y)+(j» j» y) of SU(2) SU(2)
XP,
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1

J dx(gm, y+Lm p, y) =1,
0

J
1

d x(P m, b) =1,
0

(2.15)

(2.16)

resentation. The comparison with experiment
shows that some models can already be ruled out

by presently existing data.
(a) Itatio F~~"/F~~P Qu. ark-parton model fSU(2)

symmetry]:
where 5 is the baryon number of the partons.
Equation (2.14) is of course Adler's sum rule';
Eqs. (2.15) and (2.16) reduce to the sum rule of
Gross and I lewellyn Smith in the quark-parton
model.

I'1
For the first moments, fo dxxF(x), there is one

further restriction expressing that the total longi-
tudinal moment of partons has to add up to the lon-
gitudinal momentum of the proton. This implies

1

i" d»(Km~+Km») -1.
J0

(2.17)

III. CONCLUSION AND COMPARISON
VfITH EXPERIMENTS

Equations (2.10) and (2.13) express the conse-
quences for the structure functions of deep-inelas-
tic electroproduction and neutrino-induced produc-
tion which follow from assigning a set of internal
quantum numbers to partons and constitute there-
fore a test of these assignments. This extends our
earlier findings in the quark-parton model' to the
general case of an arbitrary SU(2) x SU(2) & Y rep-

—' (Fx"/F'YP (4 (3.1)

Models with integral charges:

0 (FY"/F )'P (~ (3.2)

2

20' ljP +Ptt G ME
7T

up+vs G ME
2 F

1

Z dx (
1F&P+tln 1FvP+Un + 1FUPI+Un)'F 3 T L

0

(3.3)

(3.4)

(3.5)

Only an isodoublet of partons with charges (0, +1)
can give F,~"/F,~P = 0. Experimentally, the neutron-
to-proton ratio drops from one at x=0 to some-
thing very near & at x=1, if not below &.

' lf it
drops below 4 this would exclude the quark-parton
model (assuming the longitudinal contribution to be
small).

(b) Neutrino induced-Production versus electro
Production. The total neutrino and antineutrino
cross sections can be expressed as first moments
of structure functions:

1

g d ~vp+ ~Up+ g& +lj
1 3 V L

0
(3.6)

5-

.2
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FIG. 1. Positivity domain for neutrino versus anti-
neutrino cross sections 2o p+ "=(G ME/m')Z, 2o+
= (GtME/x)Z taking Yg= fdxE~tp(x) =0.17, Y2= fdxF~t" (x)
=0.13, and assuming only integrally charged partons of
spin 2. Full line: parton isospin ~1. Shaded: parton
isospin ~ 2. Experimental value for Z =0.52 + 0.12.

FIG. 2. Same as Fig. 1 for a model with integrally
charged partons of spin 2, isospin 2, and spin 0, isospin
~1. (for instance, the usual o model), assuming a longitu-
dinal contribution fdxxFz~ (x) —0.04.
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From the CERN neutrino experiment one knows"

Z= 0.52 + 0.12 . (3.V)

This can be compared with the first moments of
electroproduction structure functions measured at

pl
dxxE"1, 2 L

0

experimentally:

Y, = 0.1V, F, = 0.13, I„,~ 0.04.

(3.8}

(3.9)

The quark-parton model is compatible with Eqs.
(3.7) and (3.9).' Integrally charged models are
compared with experiment in Figs. 1 and 2. If one
assumes that only integrally charged partons of
spin —,

' contribute, one needs partons of isospin
greater than —,'. This excludes, for instance, the
3-triplet model of Ref. 13 and the 4-quark model
of Ref. 14. If one allows spin-0 partons, one finds
that the small value of the longitudinal structure
function for electroproduction does not imply the
same for neutrino-induced production. There can
be a 0 parton which is neutral but contributes via
the axial-vector current to neutrino reactions. It
would, however, be odd that there should be more

0 than m partons in the nucleon.
Note added in proof. In models with additional

internal quantum numbers like "charm, "the elec-
tromagnetic and weak currents will in general
have pieces which violate charm. Since no
"charmed" particles have so far been observed,
experiment measures only the charm-conserving
pieces of the currents. Our relations therefore
test only the SU(2}xSU(2) x Y algebra associated
with the charm-conserving pieces of the currents,
and charge in the preceding article always means
charm-conserving piece of the charge, etc. Our
relations cannot distinguish between two models
if they contain the same representations of the
charm-conserving SU(2}x SU(2) x Y algebra. This
was demonstrated explicitly by Lipkin" for the
usual quark model and the Han-Nambu model. "
Our conclusions for the 3-triplet model of Ref. 13,
which is different from the Han-Nambu model,
are unchanged.
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