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By making use of postulated commutation relations of a CP-violating Hamiltonian with the
vector and axial-vector charges of chiral SU{2)x SU{2) symmetry, we obtain a theoretical
prediction of asymmetry in the slope parameters of 7 ~ decay in terms of the&& 2&0

parameter P. We expect &= (a+-a )/(a++a ) -4d, where a~ are the slope parameters in
the linear matrix-element approximation of 7.~ decay. With the present experimental limit,
(e'( ~T [e (, this gives an upper limit for ~ of 10 3.

I. INTRODUCTION

Although much time has elapsed since CP viola-
tion was first observed experimentally, ' there
has been little success in determining the precise
form of the interaction. Most of the experimental
data on CP violation come from observing the two-
pion decay modes of the neutral-K-meson system.
By observing the charged and neutral decays of
Z~ and Ks, the two (complex) parameters 7i, and

Qpp are measured and values for e and e' deduced. '
The CP parameters e and e' characterize quite
different physical origins of the CP violation and
so it is essential that their value be determined
carefully. The parameter e characterizes a
mass shift in the neutral-K system which need not
come from the weak interaction itself, and the

parameter c' is related to a matrix element of a
CP-violating weak interaction.

Two approaches to the origin of these parame-
ters have evolved; (1) a new interaction is postu-
lated or (2) the existing weak-interaction current-
current form is modified. One of the approaches
of the first type is the superweak theory which
associates the breakdown of CP invariance with a
new

~
nS

~

= 2 interaction which gives rise to a
mass shift and also to a nonzero e.' The super-
weak theory predicts that &40 and e' =—0 since
there is no primary interaction that violates CP
invariance. Two theories of the second type have
been proposed, one introducing phases between
the vector and axial-vector currents in the Cabib-
bo current of the weak interaction and another
model introducing neutral currents as the source
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of the CP violation. ~' Of course any modification
of the weak interaction has severe limits placed
on it due to the body of CP-conserving data that
exist .The neutral-current theory (which is on
the verge of being ruled out due to inconsistencies
with CP-conserving decays) is constructed so that
it ha, s the AI= —', rule and so e' =-0, while Glashow's
model of introducing phases in the Cabibbo cur-
rent admits solutions ranging from e' =—0 to

~

e'
~

—
~ e( by adjusting the phases. '
In view of the various models for CP violation it

is very important to find the relative sizes of e
and e'. Unfortunately, it is extremely difficult to
observe the neutral-two-pion decay and so another
observation is desirable. One observation that
can be made is the three-pion decay of the charged
K mesons, where the CP violation will show up as
a difference in the slope parameters of the transi-

tion rates. This observation has the advantage
that it occurs only in a ~= —,

' channel, so that if
it can be related to CP violation in K~ -2g, it is
determined by e' alone. This means that the ex-
perimental information on K~ -2g ean be used to
predict the asymmetry in 7' decays. It is the pur-
pose of this work to establish a relation between
the CP parameter z' and the slope asymmetry in
g' and 7- decay. Section II deals with the eurrent-
algebra techniques to be used and Sec. III discus-
ses the resulting linear approximation and de-
fines the slope parameters. Section IV defines
the weak-interaction Hamiltonians and the commu-
tation relations needed for current-algebra tech-
niques, and Sec. V is concerned with the computa-
tion of the slope asymmetry. Finally, Sec. VI re-
lates this to other experiments and discusses the
results.

II. REDUCTION FORMULA

To compute the matrix elements for v decay, we will use the soft-pion emission formula developed by
Weinberg and the techniques of applying this formula to K-Sm decay which were developed by Abar-
banel. " These techniques have been utilized elsewhere in. a calculation of the charge asymmetry in KL,
decay. ' Vfe treat all three pions as soft and find that the matrix element for the three-pion decay is'

E„'(w"( q) w 8( q) w ~ ( q) ~
H (0) ~

K~}= —-', f(0 )
[E' (0), [F'8(0), [E6~(0),H „(0)]]]~ X~) + per mutations of (n, p, y)j

+ 2 F„[Dy~
(a )H

&& (q —q ) ~
+ D

& g (n)H»" (qm
—qq)» + D ~ y (P)H~ (q~ -qm) &L],

(2.1)

where we have used partial conservation of axial-vector current (PCAC) in the form B„A'„=m,'F, q&", and

we have defined

a~'= ~ d'xe-"&2+'~" n' 7.' V'„xa 0 X' . (2.2)

In obtaining Eg. (2.1) we have assumed the validity of the once-integrated equal-time SU(2) xSU(2) commu-
tation relations given by Gell-Mann":

[F (t), &„'(y)l,=,,=D'g(n)&', (X) (2.3a)

(2.3b)

(2.3c)

(2.3d)

[F (t),~„'(y)),-„=D'„'8( )»(y),

[F' (t), ~„'(y)]. ..=D",8(~)»(y),

[E'"(t),&„'(})1,-,,= D'„'8(~) i &(y),

where DO~&(n) =[I(I+1)]'I2(I1pn~Iy) and the E's (5 's) are the space integrals of the Vo's (Ao's). By dis-
persing the H„defined in Eg. (2.2) in the variables v= -q ~ q„/m„q =q, +q„we find that it can be written

(2.4)

where we -have kept only the p and E pole terms. and

is an SU(3) Clebsch-Gordan coefficient. " Substituting this result into Eg. (2.1) and retaining only the low-
est-order terms in the pion momenta, . we find
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P.'&» (qi)»'(qm)»'(q. ) IH„(o) lac'&= —-'{&oil.& (o) I:F"(o),l:P"(o),ff„11]lx'&+permutations of (u, p, y))

+,",dP„(~)(~ «, ~)(w'I«„(0)I«")«, («. -«, )

8+d(~&(a), '1(w')«. (0)l«")«, (q, -t«)

+&l'y(«)(, «, «)(w"l«. (o)l«")s, (« -«,). (2.5)

This expression has been utilized to obtain the slopes for the CP-conserving 7 decays with remarkably
good agreement. ' If we take the CP-conserving results to be an indication of the validity of E(I. (2.5), then
essentially any deviations from the experimental results will come from the form of the Hamiltonian chos-
en.

We are only concerned with the v' decays at present and so we will focus our attention on the decays
&'-)y')y'w', i.e. , we will put o(= p in E(I. (2.5). Carrying this out we have

P.'&»"(q )»"(qm)»y(q«) IH. (o) lz'& = —-'(c "y+c"y +cy" )

F 3D('& o 6

K
(2.6)

where we have defined the commutator terms as

c'y =-(o IIP "(o),I P"(o),IP»(o), H. (o)111I~&&. (2.7)

E(luation (2.6) will be utilized to compute the slope asymmetry in y. ' decay when the Hamiltonian contains
both CP-even @nd CP-odd components.

III. STRUCTURE OF MATRIX ELEMENT

Experimentally it is found that the rate for the
decay K~ - w m w& depends linearly on the kinetic
energy of m&, the "odd" pion. This is the so-
called linear approximation which was first sug-
gested by Weinberg. " Thus, we write

l~(&' - »'»')y') I' =- IM'I' = c'(I+ a' v'), (3.1)

where Y= (3T, —Q)/Q, Q = T, + T, + T„and C' and
a' are constants. The a's are the slope param-
eters and it is the asymmetry in the a' and a
that we wish to compute. Various attempts to ex-
plain this simple form have been made, with one
of the most successful being that of Abarbanel'
discussed in Sec. II. For example, E(I. (2.5) pre-
dicts that a' =0.26 while experimentally it is found
that a =0.247+0.005. This very satisfying
agreement lends some support to the validity of
the calculational techniques we are using.

We now note that the matrix element written in
E(I. (2.6) is of the form

&» (q, ))y (q, )yyy(q, )l H (o)l K'& = E"+g "(s - s,),
(3.2)

where c( is + (-) for the y' (y ) mode, s, =—(q» —q, )',
and ss = s, + s, + s,. S(luaring E(I. (3.2) and keeping

terms linear in s and lower, we obtain the corre-
spondence with E(I. (3.1) with the identifications

n 4a = —
—, mq (3.3)

The parameters (y and E are given by E(I. (2.6)
as

Ea (Cnay + Cny)«+Cy(«(«)1
3pl 3 (3.4a)

(y =2P 2 2 a ~) ~ &»" Iff (o)lff"&.
3&35,')„(~) s s s.

2E«m, -m» A. K~ EP
(3.4b)

If any CP violation occurs in the T' decays, one
of the ways it can appear is in a difference be-
tween the slopes a' and a-. Defining the param-
eter 5, by

a'-a
a +a (3 5)

it is a measure of the amount of CP violation pre-
sent in the charged-K decays. Since we are deal-
ing only with charged K mesons, a measure of 4
is also a direct measure of ~', the parameter
characterizing the primary CP-violating weak in-
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teraction. " This is the purpose of the present
work, to establish this connection and make a pre-
diction for the magnitude of ~. Combining Eqs.
(3.3), (3.4), and (3.5) we may write

1 —R2/R~
1+R2/R

(3.6)

where R„=-x"/x-. Equations (3.4) will thus allow
us to compute the value of h, once we have speci-
fied the commutation relations implied in these
equations.

IV. HAMILTONIANS

We will divide the weak Hamiltonian into its CP-
even and CP-odd parts as

(4.1)

Since the vector charges generate the algebra of
SU(2), we have

[F (0),e'p'(I)]=D"' (n)H p
~ (I).

The commutator of H~ ~ with the axial-vector
charge will be assumed to mix the isospin com-
ponents of H . This assumption seems to re-
quire that H~„~ transform at least reducibly under

SU(2) xSU(2). So we take

(4 4)

[F'"(0),Hz (I )] = Q a11 (I

lpga

~

I'p')H~& ~(I'),
I, p

(4.5)

where the constants a» are to be determined by a
particular choice for H„. These commutation re-
lations allow us to compute the slope asymmetry,

where (CP)H„"'(CP) '=+H„" and (CPT)H"(CPT) '
=H„'. We know that deviations from the AI= —,

'

rule are small for K' - Sp decays, so we will take
Suzukl's model for H(:) which says that the CP-
conserving Hamiltonian transforms like (-,', 0) un-
der SU(2) xSU(2)."" This makes the commutation
relation of H„' with the vector and axial-vector
charges the same,

V. COMPUTATION OF 6
In order to compute the quantity a defined by

Eq. (3.6), we must compute four quantities cr', a-,
E', and E, where these are defined in Eqs. (3.4a)
and (3.4b). We will first turn our attention to the

computation of E
The quantity E is made up of three commutator

terms, each of which can be written

[F"(0),e", (-,')] = [F"(O), H', '(-', )]

—D(1 / 2)
( )H(+ )( 1

) (4.2)

CaBy Ca&y'+ +CaPy' + Ca~y
1/2 1/2 3/2 (5.1)

by virtue of the properties of the weak Hamilton-
ian. We have defined

H(-) H(-)(1) ye(-)(2) (4.3)

where p is the third component of isospin.
The most that we can say about the CP-violating

Hamiltonian H' is that it may have both ~= —,
' and

AI= —,
' components,

c 1' =-(o~[s'"(o),[F"(0),[F 1(0),e(:&(I)]]]~sc~&.

(5.2)

The commutation relations (4.2) and (4.5) com-
pletely specify the form of the C's and we have

and

C "& " = (—'~3)'(-,' la )
—,'a')(-', la'P

(
—', a")(-' la"n

(

—'o'")(—'-'pa'" (00)g '

C 1-= g azz az z az 1I2(Ilay~I'a')(I'lo'P~I"a")(I"1a"a'. (2a'")(—'pa'2"~00)g'-',
I 2I

(5.3a)

(5.3b)

where we have defined g'~ =(0~(H('~ ()K). These relations can be used to compute the ratio of the E's with

the result

E' 1+B'y
E E 1+B y' (5.4)

where we have y=-g( ~/g(', which is of order c', and

8 2B'=& . „(-W2 „a„+2o,a,)aa, aa,a„+,o,)vY . 45

1 1 1
+a» +

2
a»a»+a, 3a3g Cl33 9

1P 03/a» —
5 2 a»a3$ (5.5)



CP VIOLATION IN v DECAYS 685

We have written the coefficients encountered in
using the commutation relation (4.5} as a31 31. and
these will be determined subsequently.

Now we turn to the computation of 0 defined in
Eg. (3.4b). Again, by virtue of the Hamiltonian
structure, we can write

(5.6)a a ++ a, -+ @,-
Xi/3 +Xi/3 +X3/3 ~

where we have defined X,
' = (3"~H~,'~(I)

~
K"). We

can use soft-pion techniques and write

X"'' = ——(0
~
[E "(0),H~'~(I)j ~IP),

1
(5 7)

where the commutator was determined previously.
Utilizing the commutation relations and Eg. (3.4b),
we find for the ratio of the 0's

0' 1+4'y
R

o 1+2 y' (5.8)

where we have defined

A'=-
3 (+2a„+a31).~ =1 (5.9)

Combining Eqs. (5.4) and (5.8} with Eq. (3.6), we

find for ~
~=-,'(A' -A +H--a')y, (5.10)

8 3W2 2

3~g 4 ll 11 31 13 ~g 13 33s31

1 ~ 1~""-"~""")
Now we notice that the basic structure of this ex-
pression is that a is a product of (model-depen-
dent) numbers of order unity and a number of or-
der e'. It is this feature that allows a measure-
ment of 6 to place restrictions directly on the

CP parameter e'.
In order to relate ~ directly to e' we will make

use of techniques developed in a previous paper,
to which the reader is referred for details. ' The
parameter c' defined by

(5.11)

(5.12)
vY

can be related to y =@~ ~/g~'~ by using the commu-
tation relations and the soft-pion techniques
sketched in Sec. 11. Neglecting the phases (since
we only want an order-of-magnitude estimate), we
have

2 1
I a'I=~&a„a„a~&a*) I&I. (5.13)

where we have only retained terms to lowest order
in y (order e'). Substituting the value for A' and B',
we obtain

Combining this with Eq. (5.11), we obtain the re-
sult

W2 1
+31 Sl1 +

~g &33

3&2 -2X gpss 4gj ]gsgg) 3 Q$3Q3303$4 V5

1 2 1
+~& a»a»'+ a33a»a» ~

e' ~. (5.14)
&10

In order to obtain a numerical value for ~, we
must specify the values of the coefficients and
make an estimate for the magnitude of e'.

VI. DISCUSSION

5&3 2v 3 2&6 v 15
1& 6 3 +31 3

a ~
6

Substituting these values into Eg. (5.14), we find

I&I-=41 "I, (6.1)

which is the result alluded to in the Introduction,
i.e. , that a measurement of ~ provides a direct
limit on the size of e'.

In order to obtain a value for ~' for substitution
into Ell. (6.1) we must turn to the experimental
information. The K'-2p experiments do not give
a clear choice for the magnitude of e' other than
to say that it appears to be much smaller than e.
We shall take the present upper limit to be

~

e'
~

This gives the upper limit of z of 10 ',
which is consistent with the present experimental
value of

~
a ~.„3= (7.0 + 5.3) x 10 '."

Since none of the experimental data are as yet
sufficiently sensitive to detect e'-10, we con-
clude that at present all experimental data are
consistent either with a small direct CP violation
in M= —,

' or with the superweak model. Experi-
ments now in progress on K~ -2z will hopefully
clarify the situation by providing a better upper
limit on

~

e'~.

In order to evaluate Ell. (5.14) for b, we must
take a model for the CP-violating Hamiltonian so
we can obtain values for the a's and we must get
an estimate for e'. If we take a model such as
Qlashow's for the Hamiltonian, then the coeffi-
cients are determined. 4 This was done in a pre-
vious paper, where the coefficients are listed. '
If we take the piece of the Hamiltonian which trans-
forms as (—,', 1) under SU(2) x SU(2) in order to get
an estimate for the a' s, then we have



686 E. R. McCLIMENT AND W. D. TEETERS

*Research supported in part by a grant from the Re-
search Committee of Chicago State University.

C. R. Christenson & al., Phys. Rev. Letters 13, 138
(1964).

2The notation and phase convention is that of T. D. Lee
and C. S.Wu, Ann. Rev. Nucl. Sci. 16, 511 (1966).

3L. Wolfenstein, Phys. Rev. Letters 13, 562 (1964).
4S. L. Glashow, Phys. Rev. Letters 14, 35 (1965).
R. J Oakes, Phys. Rev. Letters 20, 1539 (1968).
If the phases introduced in &$ = 0 and ~ = +1 currents

are set equal, then the model has &I= 2, while any dif-
ference admits a nonvanishing P .

VS. Weinberg, Phys. Rev. Letters 16, 879 (1966).
H. D. I.Abarbanel, Phys. Rev. 153, 1547 (1967).

BE. R. McCliment and W. D. Teeters, Nuovo Cimento
62A, 949 (1969).' Similar techniques have been applied to
7 decay by B.R. Holstein, Phys. Rev. 177, 2417 (1969).
He finds similar results although the emphasis is some-
what different in spirit.

~ We have suppressed the state normalization in writing
Eq. (2.f.) and we have also dropped the 0-meson terms.
The reader is referred to Ref. 8 for details.

~M. Gell-Mann, Physics 1, 63 (1964).

~2We use the phase convention of J. J. de Swart, Rev.
Mod. Phys. 35, 916 (1963).

~3S. Weinberg, Phys. Rev. Letters 4, 87 (1960).
W. T. Ford, P. A. Pirou6, R. S. Remmel, A. J.S.

Smith, and P. A. Souder, Phys. Rev. Letters 25, 1370
(1970). We quote in the text the value these authors ob-
tain without Coulomb corrections, since Eq. (2.5) does
not contain these corrections.

~5Technically, this statement is a model-dependent state-
ment, since g' is related to the parity-violating part of the
CP-violating Hamiltonian and & is related to the parity-
conserving part. Thus, in order for q' and & to be re-
lated, these two parts of the CP -violating Hamiltonian
must be related. This relation is specified more precise-
ly by Eq. (4.5) which requires them to transform in the
same way under SU(2) x SU(2).

~6We could include ~I = ~~ effects in the Cp-conserving
weak Hamiltonian and everything would go through the
same with a slight change in the definition of g(+~ given
in Eq. (5.4).

M. Suzuki, Phys. Rev. 144, 1154 (1966).
~ J. M. Gaillard, in Proceedings of the Daresbury Con-

ference, 1971 (unpublished) .

PHYSICAL REVIEW D VOLUME 5, NUMBER 3 1 FEBRUARY 1972

Tests for the Internal Quantum Numbers of Partons

O. Nachtmann*
Institute for Advanced Study, Princeton, New Jersey 08540

(Received 21 October 1971).

The restrictions for the structure functions of deep-inelastic, electroproduction and neu-
trino-induced production following from assigning partons to any representation of SU(2)
x SU(2) x Y are derived. Apart from the general parton-model, assumptions only isospin in-
variance and positivity are used. Comparison with experiment. allows us to exclude all mod-
els which have only partons of spin 2, isospin ~ 2, and integral charge.

I. INTRODUCTION

One of the popular models for deep-inelastic
electron- and neutrino-nucleon scattering is Feyn-
man's parton model. ' ' In thi. s model one views
the nucleon as built of constituents, partons, which
scatter incoherently. It is then natural to ask for
the quantum numbers of partons. '

On a more fun-
damental level one may hope to identify partons
with the bare quanta of some underlying field theo-
ry and ask for the quantum numbers of the basic
fields which build up the electromagnetic and weak
currents.

The relation of Callan and Gross' gives a direct
test for the spin of partons.

If partons have only spin —,', the longitudinal struc-
ture functions vanish; for spin 0, the transverse
ones vanish. In the present article we will derive
the restrictions for the structure functions which

follow from internal-quantum-number assignments
to partons. The basic fields are assumed to carry
a representation of SU(2) xSU(2)x Y, where Yis
the hypercharge. We exploit only isospin invari-
ance and positivity. No assumptions on the momen-
tum distribution of partons etc. are made. The
generalization to SU(S) && SU(3) would be straight-
forward but tedious.

All notations and definitions are taken from Ref.
6. Bjorken's scaling functions' will be defined by

F,(x) = lim2MW, (v, Q'),

F,(x) = limvW, (v, Q'),

F,(x) = limvW, (v, Q'),

F,(x) =-F,(x) —F,(x),

where x= Q'/2M v and the limit is taken for v- ~,
Q'-~, x fixed. The Cabibbo angle of the weak


