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Radiative Weak Decays of Hyperonse
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Current-algebra techniques and Low's soft-photon theorem are applied to evaluate the am-
plitudes of the radiative weak decays of hyperons. The calculated branching ratio and asym-
metry parameter for the decay Z+ —p + p are in very good agreement with recently measured
values.

I. INTRODUCTION

Insufficient experimental information- on two-
body radiative weak decays of hyperons has pre-
vented the selection of the best model among sev-
eral proposed since the first papers on the subject
appea, red more than a decade ago. These models
predict decay rates and branching ratios that are
in rough agreement with each other and with the
available data. However, the first experimental
determination' of the asymmetry parameter for
the decay Z'-P + y gave the unexpected result
a = -1.03", ,"„much larger than the theoretical
predictions. The soft-pion and soft-photon ap-
proach, considered by Ahmed, ' subsequently led
to a value for the asymmetry parameter consistent
with the experimental value given above, but at the
expense of an internal inconsistency in the calcu-
lation as pointed out by Ram Mohan. ' When the in-
consistency is removed, Ahmed's calculation also
yields a, negligible asymmetry pa.rameter for

In this paper we consider the soft-pion-soft-
photon method and obtain excellent results by prop-
erly avoiding inconsistencies and by using the
values of the parameters found in our previous
analysis of nonleptonic decays of hyperons. 4. The
method essentially consists in relating the ampli-
tudes for the two- and three-body radiative weak
decays, n-P+y and a-P+7)'+y, via the soft-

pion theorem. By expanding the three-body radia, -
tive decay amplitude in powers of the photon mo-
mentum according to Low's soft-photon theorem, '
it is possible to express the decay amplitude for
n- P+ y in terms of the amplitude for the nonradia-
tive process n-P+7('.

In Sec. II we present the details of the formalism.
The parity-conserving (pc) and the parity-violating
(pv) amplitudes, as well as the quantities accessi-
ble to experimental determination, are given in
Sec. III in terms of the parameters found in non-
radiative decays of hyperons. 4 An Appendix pro-
vides the final explicit expressions for the ampli-
tudes ~

II. FORMALISM

Let R~ be the transition amplitude for the three-
body radiative weak decay

~(P) —fI(J ') +v'(q') + r(k)

with normalization defined by

(P(P')v'(q')r(k) I&, (0) I &(P))
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(2)

where N„= (8„/M„)'" and E„ is the total energy of
the particle ~ with mass M . The soft-pion the-
orem applied to R~& ~ gives

e R~z" (q' =0) =lim[(m '/c)e qI, Sg„(q') —c RBa)„'(q')] —(m '/c)(2)))'"(2k, )'"N„NB(P(P')y(k)I[5» X»j In(P)) )
+t~p

(2)

where the surface term S(„is defined by

„S)'(q')=- (qq)" (2k)"N N'kf d'''" ((2 '2) (2)k( (22(*)q22(0)) )(2)) . (4)

In Eq. (2) we have separated the amplitude Rs„ in-
to Born (R~z)„') and non-Born (RN8)„') parts. The de-
sired amplitude for the two-body radiative decay,

n-P+y, is proportional to the equal-time com-
mutator (ETC) term. Since we know how to evalu-
ate the surface Born term, the next step consists
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in relating R&8„ to the amplitude MB of the non-
radiative decay a-P+m'.

&P(P')Q'(q')l&w(0)lcQ(P)&=. 2 .Q/Q (2 .Q/Q~ N MQ

Now, by keeping terms of the order k ' and k0 in
the expansion in 0 of the amplitude R~8, Low's
soft-photon theorem relates R~z„ to Ms . 5 the
Born part of Mz is removed from this relation-
ship, we are left with a connection between the
non-Boxn parts R~s& and M~8 . In the soft-pion
limit, q' -0, Low's soft-photon theorem then reads

e ft")'(q' =0)

=eQQ(p') ' g+ ' p'// M,"„(q' =0)

+ccv„(c'=0)/ (v' ~
Q

/a' v()),

(6)

where Ms~ is the amplitude M&~ without the Dirac
spinors.

Now consider the soft-pion formula" for MB„..

~,".(q' = 0)

= lim [(Q/Q„'Ic)q~TQ (q' ) MQ' (q')]-
q '~0

—(m„'/c)(2v)'~. ~,&P(P') l [F'. ,~.] l~(P)&,

(7)

where the surface term Tb is defined by

z;".(q') = -Q (2~}'v„NQ

x d'xe""" p p' T S', ~ x 0) a p

(8)

The ET& term in (7} is just the current-aige»a
term of the nonradiative decay n- p+ m . Note that
in our analysis the current-algebra term alone
does not represent the entire observed amplitude
for the nonradiative decay.

From Eqs. (3), (6), and (7) we see that the on-
mass-shell amplitude for n- P+y is given in terms
of the off-mass-shell surface Born terms and the
current-algebra term for (Q- p+ m'. These off-
mass-shell terms take different values for deriva-
tive and nonderivative couplings of pseudoscalar
mesons to baryons. In fact, working in the limit of
exact unitary symmetry and assuming nonderivative
coupling for the BBp vertex, Ahmed' obtained a
relatively large pv amplitude for the decay Z'- p+y
coming from these off-mass-shell surface Born
terms. On the other hand, assuming unitary sym-
metry, CP invariance, and the usual octet domi-
nance, Hara has shown' that the pv amplitudes for
Z'- p+y and - - Z + y are zero in the current
x current interaction picture. This apparent con-
tradiction has its origin in the use of the nonderi-
vative coupling for the BBm vertex as pointed out

by Ram Mohan. ' Therefore, within the framework
of current algebra and the current& current inter-
action, the derivative coupling should be used con-
sistently throughout the ealeulation.

In light of the above arguments we use derivative coupling for the strong BBp vertex, in which ease the
surface Born terms of (3) and (7) vanish. Then, from (3), (6), and (7) we obtain

(2.)"'(».)'"~.~,&V(u'h (» l&,(0) l~(»&

1=cv((r) /+QM // /, Q M (cv r, vv )+(cv„-r,v„c-„)~ „)( ~ (/+Q~ )(/) v(P),

where we have written the weak vertex as

&P(P') l3* (0) I/Q(»&

1 1
(2 )Q

Q(P )(c() PQv() ) P{P).
n

(10)

m. pc AND pv AMPLn'UDES

The most general form for the two-body radia-
tive weak-decay amplitude' can be written in terms
of two invariant amplitudes, pc (A') and pv (B'):

&P(P')r(» I
& (o) lo(»&

1 1
(2 )Q/Q (2 )1/Q e Q (f )8Q(Q YQ+Q(Q)PK+(P)

0 o.

(II)
Inserting expression (ll) in the left-hand side of
Eq. (9) and performing simple algebraic manipula-
tions, we obtain

A' 1 p. . p,

M -M, 2M, 2M„
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the decay rates and the asymmetry parameter~:

)L( B ~n
Be Me+MB 2MB'2Ma 'Bn

M M
Zs (x ™8

( fgi[3+ [IfI /2)
8m M

2 Re(A'*8') (16)

f =1.513m„G =11.25m. ,

in units of 10'm, '" sec '".
Furthermore, the experimentally determined

(total) magnetic moments of the proton and of the
neutron9 (in units of nuclear magneton) are used:

p~(total) = 2.793, p,„(totao = —1.913. (15)

The total magnetic moments, p.„, of the other bar-
yons are taken to be the SU(3) values'0 multiplied
by M~/M . These "mass-corrected" values" come
closer to the existing' experimental values for p. A

and p, g+.
Once the amplitudes are known we can calculate

1 p, ~ 1
+M„+M, 2M, ""'M, +MB 2M, "& '

(12)
where we have included terms ax ising from the
electromagnetic transition Zo —A, with p. ~ and

Mr = —,'(Mzo+MA) being the transition anomalous
magnetic moment and the transition mass, re-
spectively. Of course these transition terms are
absent in the decays of charged hyperons.

If %'e write cB~ and vB ~ as

c8„=2&2 (fFs +dDq ),
~8„=2~»G[n~a +(1—n)&'g 1

then the parameters f, d, G, and n have the nu-
merical values found in the analysis of the nonra-
diative decays, ' namely,

(1 —n)/n = &3, d/f = —1.09

The numerical results are displayed in Table I.
The only experimental information available at
present' refers to the decay Z'- p+y.

~ ~~ =(2.6+O.3)xlO-3,1'(Z'-p+ v')

1 O3+ 0.52 '

The theoretical branching ratio and asymmetry pa-
rameter for 5'- p+y are 2.82' 10 ' and -0.78, re-
spectively. The agreement is excellent, although
further reduction of the experimental error is
highly desired. Note that the relatively large vio-
lation of unitary symmetry found in nonradiative
decays gives rise to the relatively large magnitude
of 8' which is the symmetry-breaking amplitude
for the radiative decay. Therefore, the measured
asymmetry parameter of about -1.0 strongly sup-
ports the breaking of unitary symmetry in both
types of decays, a result quite different from that
of the pole models. "
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For each specific decay the general expression
(12) yields the following amplitudes.

TABLE I. Theoretical radiative weak-decay amplitudes
of hyperons, decay rates, and asymmetry parameters.

Decay Amplitude

(10' m„-"' sec-'" OeV ')
Decay rate

(107 sec ~)

Asymmetry
parameter

-0,147

0.887

-1.538

0..483

1.574

0.0015

0.927

-0.429

—0.304

-0.512

0.226

-0.062

0.795

2.328

6.009

0.653

0.846

0.0013

-0.309

—0.783

+0.380

-0.998

+0.281

-0,049
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