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We describe an empirical test to distinguish hadrons which are composites in the low-
threshold channels from those which can be understood only from a more global point of view.
This test is based on the existence of a pole in the K matrix in the latter case. Thus, the
absence of a K pole signals a composite hadron. The test is applicable to hadrons coupled to
S-wave two-body channels only. The properties of the K pole are analyzed using a field-theo-
retic model, and the pole and the residues are related to the wave-function renormalization
constant of the hadron. We also construct coupling-constant sum rules which are connected
to the test for compositeness. Applications to A(1405) and other hadrons are described.

I. INTRODUCTION

One of the most striking features of hadron phys-
ics is just the fact that there are so many hadrons.
Two viewpoints have been prevalent in the attempts
to understand this rich hadron spectrum. Vfe may
broadly characterize these as follows:

(A, ) Local model. This point of view regards any
observed hadron as a composite (bound or reso-
nant) formed by forces in the adjacent hadron chan-
nels. Effects due to the very distant channels are
treated, if at all, as an afterthought. Most of the
old bootstrap-model calculations belong to this
type.

(8) Global model. The neighboring hadron chan-
nels are essentially ignored in this point of view
and'the dynamics of the existence of the observed
hadrons are sought elsewhere. A simple version
of this type of approach is the so-called naive
quark' model, which considers the observed had-
rons as bound states of some so-far unobserved
heavy quarks. Among the more sophisticated ver-
sions of this philosophy, one may cite the models
based on the infinite-component wave equation, the
infinite-dimensional representations of current al-

gebra, the currently popular zero-width dual mod-
els, etc. The common feature of all these models
is to ignore the coupling of a particular hadron to
its neighboring channels or to treat it as small.

The experimentally observed hadron spectrum
being so complex and the interactions among the
various hadrons being so diverse, it is reasonable
to expect that the. two models (A) and (8) may play
a complementary role in understanding the hadron
spectrum. In other words, it is quite possible, for
instance, that the global point of view does encom-
pass many of the hadrons, but, nevertheless, some
of the hadrons may owe their existence to special
local features, and may be essentially composites
formed by strong attractive forces in the neighbor-
ing channels. VFe shall call the hadrons which can
be understood on the basis of the local model as
class-A hadrons, and those requiring the global
model as class-B hadrons.

In a dynamical calculation which explicitly takes
into account only the forces in the adjacent chan-
nels, a hadron of class A will come out as a pole
in the S matrix, whereas a hadron of class 8 mill
have to be put in by hand as a Castillejo-Dalitz-
Dyson' pole. In an equivalent field theory, the



former corresponds to a composite hadron, while
the latter corresponds to an elementary one. So,
we have the correspondence

class A -composite,

class B-elementary .

But these adjectives "composite" and "elementary"
used in their wider connotation may be misleading. '
%'8 use these words only because of a lack of better
terminology, and they are to be understood strictly
within the context of the local Rnd global models
already described.

If it is granted that the multifarious aspects of
the hadronic world cannot be handled by a single
model, then it is of importance to know which of
the observed hadrons belong to class A and which
to clRss B. As has been pointed out sonle time
ago, '4 there exists a simple phenomenological cri-
terion which may allow one to decide whether a
particular hadron H belongs to class A or B. This
criterion is that the X matrix (or the reaction ma-
trix) for the se't. of the neighboring two-body S-
wave channels, which must include at least one
closed channel, should have a pole near the mass
of the hadron H if H belongs to class B. Qf course,
the S matrix always has a pole corresponding to a
particle. We argue that the K matrix also should-

have a pole in the neighborhood if the particle is
not formed by forces in the neighboring channels.

In contrast to other methods, this K-pole test is
a low-energy test and hence is easier to apply.
But the test is applicable only to hadrons coupled
to S -wave two-body channels.

It turns out that the E-pole test is closely related
to earlier work by Ezawa, Muta, and Umezawa, '
as well as by Weinberg. ' In fact, one can use
Weinberg's expressions for the scattering length
and effective range to show the existence of the
pole of the E matrix, which, in the single-channel
case, is simply (kcot5) '. Such a pole is not pres-
ent for the 38, nucleon-nucleon phas~ shift and
hence the deuteron belongs to class A. By directly
focusing attention on the pole of the complete K
matrix for a multichannel process, a certain
amount of conceptual simplicity can be achieved,
and further, the test is nom applicable to stable as
well as unstable hadrons.

The purpose of the present paper is to give a
more complete discussion of this problem than
was attempted earlier. Vfe first give a general ar-
gument based on the smoothness of the K-matrix
elements to show the existence of the K pole in the
neighborhood of the "elementary" hadron (Sec. II).
This is then confirmed by explicit calculation using
a field-theoretic model (Sec. III and Appendix).
The position of the K pole as well as its residues

are expressed in terms of the wave-function re-
normalization constant' of the hadron. Iri the next
two sections, higher partial waves and the hier-
archy of multichannel K matrices are discussed,
and the mea, ning of the K-pole test is made more
precise. We then construct another equivalent test
for "elementarity" in the form of sum rules for the
physical coupling constants of the hadron (Sec. VI) . .

The tests are applied to the case of A(1405) in Sec.
VII which also 'includes a discussion of the SU(S)
breaking in the coupling constants of A(1405). Pos-
sibiDties of applying the tests to other hadrons are
indicated in See. VIII. Brief comments on a few
other aspects of the problem are offered in Sec. IX.

II. A GENERAL ARGUMENT

Consider a two-body two-channel 8-wave scat-
tering. Given the 2 x 2 8 matrix describing the
two-channel process, one can introduce the T and
K matrices as folloms:

(2.1)

(2.2)

k» k2 being the momenta in the two channels in the
c.m. system.

The elements of the 7.' matrix considered as func-
tions of the total energy W in the c.m. system have
branch points at the two thresholds m, + p, y Rnd

m, +p,„ in contrast, the K matrix is regular at
these po1nts. %8 shRll wl lte

(2.3)

where a, b, and c are real for real 8' Rnd we can
represent them by smooth functions of W even in
the neighborhood of the thresholds. From Egs.
(2.2) and (2.3) we get

(2.4)

T~~- a — -ak1 (2.5)

where we have put k, =+il k, i. Identifying with the

& = cc —b' —k,k, —(ik,c+ik,a) .
We are considering the case where the mass of

the hadron H lies between the tmo thresholds. The
hadron H will then occur as a resonance in the low-
er channel, which we denote as the channel 1. So,
let us look at 1'», which from Eq (2.4) is.
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usual form for elastic scattering,

Tkk = (k~ cot5k —ikk) ', (2.6)

where 5, is the phase shift in channel 1, we get

b'
k, cot5, =a— (2.7)

At the resonance W =W» 5, passes through —,'p and
so

K pole.
One'can go further. If the hadron H belongs to

class B, then it should be possible to move the
threshold m, + p., to the left of Wo so that the reso-
nance H continues to exist even above m, + p, To
show that this indeed is the case for Fig. 1, one
should now write down the formulas for a two-chan-
nel resonance. Let us use the eigenphase shifts

i5& obtained through diagonalizing by means of
an orthogonal transformation U:

Or,

&+~k2~ w=w (k'"Hk'") ' = U(
cot5 0 p-1

0 cot6&
(2 9)

(detK '+a
I kB I)]P=]U

where

(2.8) At the two-channel resonance W = Wo occurring
above m, + p, „one of the eigenphase shifts passes
through —,'m. So, we have

detK '=ac —b'.

In Figs. 1 and 2 we have plotted the functions
detK ' and -a~ k, ~

schematically. Their intersec-
tion determines the resonance position 8;. Since
a, b, and c are smooth functions of W, detÃ ' can
be approximated by a straight line over the small
region of interest. On the other hand, -a

~ k, ~
has

the form -(m, + p., —W)'~' near the threshold ypg,

+ p, There are two distinct possibilities for
detK ' as illustrated in Figs. 1 and 2. In Fig. 1,
detK ' has a large slope and passes through zero
in the neighborhood and so the K matrix has a pole
at that point. In Fig. 2, detK ' has a small slope
and stays constant over the region of interest and
so there is no pole for the K matrix.

Let us now consider the classification mentioned
earlier. If the hadron H belongs to class B, it does
not have much to do with the channels 1 and 2. So,
if we move the threshold m, + p, , to the left, for in-
stance, the value of W, should be relatively unaf-
fected and so m, + p, , —W, should become arbitrarily
small. This is in fact the case in Fig. 1. For
small perturbations in the threshold in which we
are interested, the most sensitive dependence on
the threshold m, + p, , comes from ~k, ~, and thus
detK ' and a can be left unchanged. So, as m, + p, ,
moves to the left, the curve -a

~ k, ~
will move along

w'ith it, whereas the line detK ' stays put. The
point of intersection, W» moves only a little be-
cause of the steepness of the line detK ', and m,
+ p., —W, approaches zero. So a class-B hadron is
consistent with Fig. 1, i.e., with the presence of a

(detK ')v )),,=(k,k, coti)„cot68)~ v, =0. (2.10)

Since in Fig. 1 detK ' does pass through zero in
the neighborhood, we see that the resonance H con-
tinues to exist even above the threshold m, + p,
This is exactly what one would expect of a class-B
hadron. In fact, the position of the resonance in
this case is just the K pole.

In the case of Fig. 2, one can easily see that as
m, + p, , moves to the left, W, also moves to the left
by about the same extent, and hence the difference
m2+ p, 2

—Wo remains approximately constant. One
cannot decrease m, + p., —W, arbitrarily in this case
and the existence of H is intimately connected with
the channel 2. So, the case of absence of a nearby
K pole (i.e., Fig. 2) corresponds to a class-A had-
ron.

III. A FIELD-THEORETIC MODEL

%Ye construct a Lee-type model with two S-wave
channels denoted by B,P, and B,P, having the same
quantum numbers as the particular hadron H under
consideration. Such a model is very convenient for
the purpose of comparing the elementary H with the
composite H. If the bare coupling constants g', and

g,' for the vertices HByPy and HB,P, as well as the
bare mass m~ of II were finite, the model de-
scribes the case of the elementary H (class B).
The case of composite H (class A) is obtained' by
taking the limit g', —~, g, -~, m 0 —~, keeping
(gko)'/m '„and (gBO)'/m '„ finite.

The model is described by the Hamiltonian

X= mgH H+myB~B~+m2B2B2+ d k (d~P~ k P~ k (d2P2 k P2 k

d kuk-(4II)'"g,'f 4'4 „„, .„,[H BP(k)+Bc]—(4k)" g,', „„„,[H BP(k)+HO], (41)

where u, =(k'+ p4')'" and u(k) is the cutoff function. The T matrix in the B,P, —B,P, sector is
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tnt-N)0

FIG. 1. Plots of detÃ t and -a (kt( against W with
K pole.

FIG. 3. Graphical determination of 8'0 and 8'& with
elementary particle t8-wave ease).

D(W)=,(m'„- W) -F(W),1

(g.)'

where me have put

g~ =~~go (3.3)

2 l " ~, kau {k2)
2 ~ ~ ~I {34)

Let us also define the principal-value function:

3 P ",k2u (km}
2 ~

gpss

gf

The denominator function of the K matrix involves
F„(w) defined by

Fs(w}= F(W) —ik, A, u'(k, ) -ik, A., u'(k, ) . (3.5)

and we have introduced the function F(W) defined by

( ), l ~, k{u(k{)
m' m~+p, 8"—8"-&&

1

(g.)', (m'„- W) -F,(W, ) =0. (3.V)

Our aim is to look for a pole of K (if any) corre-
sponding to the H particle. If the K pole occurs at
O'= W~, then we should have

olds.
Note that the 7 and E matrices in this model are

factorizable and their inverse matrices do not ex-
ist. This defect is remedied in a more realistic
model studied in the Appendix. But the conclusion:
arrived at in the present section on the basis of
the simpler model stand essentially unchanged.

As before, let us arrange so that the physical H
occurs as a resonance in channel 1 at W-' = Wo be-
tween the two thresholds. The phase shift 5, can
be calculated from T» in Eg. (3.2):

mH -8' 1
k cotd, =

{ }, —F~(w)

for m, +p, &w&m, +g, . (3.8)

Since 5, passes through —,'w at W= W„we have

In fact the K matrix ls given by precisely the
same expression as the T matrix above with F(W)
replaced by Fr(w) Note that F.(W) is an analytic
function of W' with branch points at the thresholds,
whereas F~(w) is nonanalytic. The function Fr(W)
is also analytic (provided the cutoff function is an-
alytic) but without the branch points at the thresh-

I .

(g.)'2
(ms - Wr) Fr(wr) = o-. (3.8)

a ]k, )

mo

Qo

FIG. 2. Plots of detZ i and -a ~k &~ against W with-
out K pole.

FIG. 4. Graphical determination of 8'0 and W~ with
composite particle (8-wave case}.
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We have to solve Eqs. (3.V) aud (3.8) for Wo and

S~. A graphical solution helps to visualize the sit-
uation. Note that F»(W) is a smooth function of W.

On the other hand, E~(w) has a kink (discontinuous
derivative) at the thresholds. One can see that

EJ (W) = E»(W) for W& m, + p,„
E (w) =F,(w) ~-; l k, lu'(k, ) (3.9)

for m, +p, ,& S'& m, +p,

We mill put I= 1 in the lorn-energy region of inter-
est. The functions FJ,(w) and F»(W) along with the
straight line (m»o —W)/(go)' are plotted schemati-
cally in Fig. 3. The intersection of F~(W) with

(m„—W)/(g, )' gives Wo, while the intersection of
E»(W) with (m'„—W)/(g, )' gives W». Thus the
physical resonance at 8'p is followed by a K pole
at W~ to the left of Rp. So far we have an elemen-
tary H present in our model.

As already mentioned, the composite-H case is
obtained by taking the limit (g,)'-~, m'„-~, keep-
ing m»/(g, )' constant. The only change is that the
straight line nom has zero slope, and this is shown
in Fig. 4. We still want the physical H at Rp and

so the straight line mo»/(go)' has to intersect E~(w)
at W,'. But it does not intersect E„(W), and hence
there is no K pole in the neighborhood.

The above argument for the K pole is clearly
based on the closeness in value of E~ and EI,. Al-
though E~ has to coincide with E~ at the threshold
m, +p.» it is possible to imagine E~ in Fig. 3 to
have a rapid variation for 8' below m, + p., in such
a way as not to cut the straight line (mos —W)/(g, )'.
However, this is implausible, since the depen-
dence of E~ and K ' on energy is generally' gov-
erned by the range of the interaction, and for
short-range interactions rapid variation with re-
spect to energy is not expected. In any case, if
this happens, and a pole in the K matrix is avoid-
ed, K ' will then have a surprisingly large varia-
tion with respect to energy, which can be checked
empirically. Summarizing, we may say that the
K-pole test is applicable if K ' has a small depen-
dence on energy and W, is close to m, + p,

Actually, in the limiting case of 8'p occurring
very close to the threshold, we can show that
E»(W) has a dominant constant contribution. To
show it, let us write F(W) in the once-subtracted
form

E(W) —E(W )+(W W) ~ ~'k~u (k,') 2
" dW'k2u (k2)

» ))),+))~ (W' —Wo)(W' —W) v m2+))2 (W' —W())(W' —W)
(3.10)

Consider the second integral, F»(W) = F„(WO) . (3.11)

J
k'dW'u'(k') " k'dE'u'(k')

,~ (w'-w, )(w'-w) . (E'+ lE, l)(E'-E) '

where we have put W'= m, +p, , +E' and similarly
for Wand W~. Since E'= k "/2)((,, in the nonrelati-
vistic limit, for small E', the integrand is E""/
[(E'+ lEol)(E' —E)] and the integral diverges at the
lower limit for lE, l-0 and E-0. So, for small
lE, l

and E, the integral is dominated by the small-
E' contribution, and hence it can be estimated" by
using the nonrelativistic formula E' = k"/2p, . Note
that in that case, we do not need the cutoff function
for convergence at the upper end. Also, since the
first integral is much smaller than the second for
small l Eo l and small E, an exact evaluation of the
former is not crucial for our argument. So, we

may conveniently evaluate that also using the non-
relativistic kinematics and ignoring the cutoff.
With these, the integrals in Eq. (3.10) can be ob-
tained in closed form and we find

E(W) = F(WO)+iX~ (k~ —k~)+iA2 (k2 —k2),

where ky and k2 are the momenta evaluated at 8'p.

Comparing with Eq. (3.5), we see that

. We have shown that in the limit of 5'p occurring
very close to the threshold m, + p,„E~can be
treated as a constant, and in this case me can get
a compact formula for the K-pole 8'~. For, Eqs.
(3.V) and (3.8) become

2(~p wo) E»+~2 (202 IEol)
LRp)

1„(m„—W») -F»= 0,
gp)

(3.12)

where E, =W, —(m, + p, ,), and similarly we define
E». Eliminating F» from Egs. (3.12), we get

E =E.- (a,')'(2u. IE.I)'". (3.13)

(3.14)

where the right-hand side is evaluated at Wp. This

This formula involves the bare coupling constant

g,'. It can be expressed in terms of the renormali-
zation constant. To do this, we note that in the
narrow-width approximation, Eq. (3.6) leads to the
following expression for the width of the resonance:
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m4!
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( m„-N)

0
lTI~ +P ~ m ~

FIG. 5. Graphical determination of Wo and O'E with
elementary particle.

FIG. 6. Graphical determination of W'0 and 8'& with
composite particle.

suggests the following definitions of the physical
coupling constants" g, and the wave-function re-
normalization constant Z for II:

(3.15)

(3.17)

In the composite-particle limit, Z-0 and the K
pole runs away. But this formula for E~ can be
used only for smaQ E, and E~.

In the Omit of constant F„, we can easily verify
that the K matrix itself has a very simple form:

Ago
w, -w z (w„-w) (3.18)

So, in this model, the residues of the K matrix are
just the bare coupling constants. It is clear that in
the composite-particle limit, the residues as mell
as the pole of the K matrix tend to ~, so that the
K matrix becomes essentially constant.

It is important to note that the residues of this
K pole have the usual sign characteristic of genu-
ine particle poles. Hence detX ' should decrease
th~ough zero at the KPole. "

Finally, we may remark that E(l. (3.18) suggests

In the limiting case, when F„is treated as con-
stant,

( (E (-'~'
W0

and so

(3.16)

Note that in the composite-particle limit, g,'- ~
and hence Z-O. Eliminating (g,')' in E(ls. (3.1S)
and (3.16) in favor of Z, we get a remarkably sim-
ple formula for the position of the K pole:

the reason why the K matrix is so useful in testing
for the "elementarity" of the particle. In contrast
to the S matrix (whose residues are the physical
coupling constants), the K matrix reveals the
"bare structure" of the particle involved. "

IV. HIGHER PARTIAL WAVES

So far we have considered only $-wave scatter-
ing. For higher partial waves, 0' in the integral
for F(W) is replaced by k'"". This has two con-
sequences. First, the integral cannot be dominat-
ed by the lorn-energy contribution, and the con-
stant-E~ approximation fails. Second, the differ-
ence between F~ and E~, mhich is now proportional
to ~k~"", becomes less significant for small k.
The typical behavior of F~ and F~ is illustrated in
Figs. 5 and 6. We see that for l ~ 1, H is followed
by a K pole whether 0 is elementary or composite.

Physically, the above effect is closely related4
to the existence of the centrifugal barrjer for l+ 1.
Because of the barrier, it is possible for the par-
ticle II to exist with a mass even above m, + p, , and
the curve for FJ,=F~ above m, +p, , has to have a
positive slope, as shown in Figs. 5 and 6, in order
to enable this possibility. Since F~ is a smooth
function, it continues to have such a slope even
below the threshold and EI„being not very differ-
ent from E~ for l & 1, also has a positive slope.
This leads to the shape of the curves shown in
Figs. 5 and 6. So, a centrifugal barrier always
leads to a K pole, and one cannot test for elemen-
tarity in its presence. '~

This argument suggests that even for l =0, if
there is a repulsive barrier surrounding the at-
tractive potential, II will be follomed by. a K pole
in both the elementary- and composite-particle
cases.

Summarizing, we may say that the presence of



616 G. RA JASEKARAN

a K pole is not an evidence for "elementarity" un-
less at the same time surrounding repulsive bar-
riers (centrifugal or otherwise) are shown to be
absent. On the other hand, the absence of a KPole
is certainly an evidence for compositeness.

V, A PROCEDURE FOR DISCOVERING THE

CONSTITUENTS

On the basis of the foregoing considerations, we

may give a systematic procedure for discovering .
the constituents of a hadron H in an idealized world
where H is coupled to a series of two-body S-wave
channels of increasing thresholds.

For this purpose, let us define the hierarchy of
K matrices. Consider the T matrix of dimension
m&& rn connecting the first m channels starting with
the lowest threshold. Calling it T we can define
K( ) of dimension m x m through E(l. (2.2), which
can be rewritten as

(K(m))-z (T(m))-x .k(m) (5.1)

where k™is the diagonal momentum matrix of di-
mension m x m. Next include the (m +1)th chan-
nel. From T( ") of dimension (m+1)x (m+1)
connecting the rn +1 channels, define E " by

(K ") '=(7 "') '+ik (5.2)

Similarly, we can define the K matrices corre-
sponding to any number of channels.

Now, the procedure is as follows. Let 8', be the
mass or the resonance energy of the hadron H. If
a certain number of channels, say n, be open at
this energy R~, it follows immediately that H is
not a composite of the particles comprising these
n open channels. For, an S-wave resonance can-
not arise from the attractive interactions in the
open channels. We assume that there are no re-
pulsive barriers, for the sake of simplicity.

The matrix K " for these n open channels will be
found to have a pole corresponding to an eigen-
phase shift increasing through —,')( [see E(i. (2.10)].
But we should look at K "",where n+ 1 is a closed
channel. If K "" also has a pole, then H is not a
composite in the (n+1)th channel also. Repeat the
procedure including more and more closed chan-
nels and stop at the Pth channel if E ~ does not
have a pole. The hadron II is then a composite of
the particles comprising the pth channel.

The above ideal situation has been described only
to bring out the ideas involved in a clear fashion.
In the real world every hadron will be coupled to
many-body channels and two-body channels with
E» 1, occurring at higher thresholds. So, one will
be able to complete the above procedure only in
the fortunate cases when K for small P does not
have a pole. Also, there could be repulsive inter-

actions in w'hich case even though H may be a com-
posite in the nth channel, K" may have a pole.
Thus, again, only the absence of a K Pole is of
significance.

It is also useful to record the relationship be-
tween K and the m x m submatrix of K " . Let
us write

K(m+g) (5.3)

where n is the m x m submatrix of E ", p is a
(m +1)x 1 column vector, p its transpose, and y
is a single element. Then,

(„) tk „PPK =a+ 1-ik-. r
(5.4)

With respect to the (m + 1)-channel system, K( )

is called the "reduced K matrix. ""
The above relation (5.4) provides yet another

way' of showing the existence of the pole in a
lower-dimensional K matrix when the hadron is
composed of particles in a very distant channel
((luark channel for instance). For this, one can
identify the (m+1)th channel as an "effective"
quark channel. The strong attractive forces in the
quark channel will lead to a zero of 1-ik „y, thus
implying a pole of K '; at the same time, K
will not have a pole.

VI. SUM RULES FOR COUPLING CONSTANTS

We shall now construct sum rules for the physi-
cal coupling constants which also can be used to
test for "elementarity. " For this purpose we may
define the physical coupling constants as the resi-
dues of the pole of the T matrix. The T matrix
necessarily has a pole (in the unphysical Riemann
sheet) corresponding to the resonance. Near this
complex pole W~, we may write

T,&
= — +background term,yf'vj

T-
so that

y, y,. = lim (Wr —W)T, ,W'~ WZ

(6.1)

(6.2)

where a, b, c are constants. Forming the T ma-
trix out of this and extracting the residues at the
pole 8"~, we get

Note that the coupling constants y, defined here are
also complex.

Let us first consider the case of a constant two-
channel K matrix and write
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. de . dk2 a-i' channels we have the following results:

. dkj. c-ik2 . dk2y2'= z
dR a-zk, +z

dry

where all the quantities are to be evaluated at S'~.
Eliminating (a -ik, )/(c ik,—) between these two
equations, we get the following sum rule for the
coupling constants:

(6.3)

'Y]'Yy =g]gyZ ~

where

(6.4)

ZI 1+ g 2 (6.5)

The renormalization constant Z' defined here is of
course different from Z defined earlier. In fact
Z' is complex. " However, what we need for our
purpose is only the fact that both Z and Z' are non-
zero in the elementary-particle case, while both
these parameters vanish in the composite-particle
limit. Using in Eq. (6.5) the constant-F„approxi-
mation already discussed, we get

(
2 dky . 2 dk2

1 +'l'Y2 -
—1 Z

Wy

(6.6)

Thus, in the presence of the elementary particle,
the coupling constants are reduced by a factor
1 —Z'.

We have used complex coupling constants and
complex Z' only because of the conceptual simpli-
city of considering the complete T matrix since it
treats the closed and open channels alike. One can
write a sum rule also in terms of the real coupling
constants introduced in Eq. (3.15). In fact it is al-
ready contained in Eq. (3.16). Putting (g,')'
=(g, )'Z ' in this equation, we get

g gp =1 —Z. (6.7)

This shows that if we use the real coupling con-
stants, the sum rule involves only the closed chan-
nels, in contrast to Eq. (6.6).

As one can verify, for an arbitrary number of

What we have obtained is a multichannel gt:nerali-
zation of Landau's formula" for the coupling cor..-
stant.

The important point for our consideration, hciw-

ever, is that the above sum rule as well as Lan-
dau's formula are not correct if the particle i;:& ele-
mentary (class B). To see this, . let us go back to
the model studied in Sec. IG and calculate the resi-
dues 8,t the pole of the T matrix in that model. Vfe

find

Z Yf 1 Z

(summation over all channels) (6.8)

g3 =1-Z

(summation over closed channels) . (6.9)

Because of the assumptions used in their deriva-
tion, these sum rules are valid only if all the
thresholds are near the resonant energy. How-
ever, the sum rules contain a built-in mechanism
by which only those channels whose thresholds are
nearby contribute effectively. For, (dk, jdW)~ is
infinite when the ith threshold coincides with the
resonant energy 8; and so is large only for nearby
channels. Thus, in Eqs. (6.8) and (6.9), one needs
to include only the nearby channels.

Using empirically determined values of the. cou-
pling constants in these sum rules, one can test
for nonzero values of Z or Z'. It should be made
clear that this is not an independent test for ele-
mentarity. It has precisely the same content as
the K-pole test; however, it provides an alternate
language for discussing the problem of elementar-
ity.

VII. APPLICATION TO A(1405)

Apart from the deuteron already studied, "the
hadron A(1405) provides an ideal application"
since it is connected to the S-wave channels Zm

and NK, and since the experimental study of this
system has been going on continuously for almost
a decade. The relative positions of the Zm and NK
thresholds with respect to A(1405) are shown in

Fig. 7. To test for the compositeness of A(1405)
one should ask whether the two-channel K matrix
connecting Z7t and NK has a pole in the neighbor-
hood of A(1405) to its left.

Almost all" of the phenomenological analyses of
this system are consistent with either a constant
two=channel K matrix or a mi'idly varying one.
None of them show any evidence for a pole in the
K matrix. As an example, detK ' from Kim's
analysis" is shown in Fig. 7. It does not pass
through zero to the left of 1405 MeV; even the sign
of the slope indicates against such a possibility.
One may wonder whether detK ' in Fig. 7 increases
through zero at a large 8'. Even if this happens,
the residues at this K pole are opposite to that in
Eq. (3.18) and this is not the K pole we are looking
for. This will be similar to the situation occurring
in the case of the deuteron, where kcot5 (=A ')
increases through zero at about 8 MeV for
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detK (F 3

lss0

l500—

(450
h ()405) N K l500

W (MeV)

Arrc'-= 0 64 + 0 08. (V.2)

Since only the real coupling constants have been
determined, the relevant sum rule to be used is

-1.0- gNr z =1-Z. (7.3)

-2.0-

At 8~=1405 MeV, we have

—0 59 (V.4)

FIG. 7. Plot of Aim's detÃ ~ for M7, Zx system (Ref.
19). Also shorn along the 8" axis are the ZVt, M7 thresh-
olds, and the A(1405).

E =W —2m„. The phase shift (or an eigenphase
shift) decreases slowly through —,'v at such a point
[see remark (a) in Sec. IX].

More recent analyses". "show that the data are
consistent even with a zero slope for detE '. Fur-
ther, Martin, Martin, and Ross22 attempted to fit
the data directly by Rssum1ng R pole 1Q the Q ma-
trix and found that such a fit is not favored by the
data.

So, it may be concluded that A(1405) is a com-
posite of N and K (class A) and it cannot have much

to do with global models. Actually the absence of
a K pole near A(1405) was indicated as early as
1960, when the first analysis was made by Dalitz
and Tuan, "and A(1405} was called a "virtual-
bound-state resonance. " However, the signifi-
cance of this fact for global models like the quark
model does not seem to have been recognized until

recently.
The above conclusion is in agreement with the

fact that a potential-model calculation24 based on
vector-meso@, exchange between baryons and me-
sons also indicates that A(1405) is a composite.

In applying the K pole test, we have implicitly
assumed that A(1405) is close enough to the M7
threshold. Roughly, the criterion for this close-
ness may be taken as (2g (E,()"2«r ', where

(E, ( is the "binding energy" of A(1405) with re-
spect to NE, p. is the reduced masq for NE, and

r is the typical range of interaction. For A(1405),
(2p. (E, ()'~'= 130 MeV and with vector-meson ex-
change, z '= 800 MeV. The small slope of the
empirically determined'0'2' detK ' indicates an
even larger value for ~ '. So the E-pole test is
clearly applicable.

Vfe may also apply the sum rule for coupling
constants. Using the empirical knowledge of the
T matrix, Kim and von Hippel" have evaluated the
coupling constants of A(1405) to Zw and ETC:

g~„=0.141+ 0.021,

Putting Eqs. (7.2) and (V.4) into (7.3), we have

1 —Z = 1.08+ 0.12, (V.5)

It = 4.5 + 0.8 (empirical) (V.V)

obtained from Eqs. (7.1) and (7.2). However, this
empirical ratio is in good agreement with theoreti-
cal calculations based on potential models'4'8 as
well as current algebra"".

R = 4.4 (potential models), (7 9)

ft= 3.2 (current algebra). (V.9)

One may give a simple explanation for this large
dev1Rt1on of R froIQ 3 oQ the bRsis of the suxn rule
in Eq. (7.3). The point is that, if Z=O, Eq. (7.3)
is in effect a dynamical constraint on g„g', where-
as there is no such constraint on g~ '. With such
a complete dissymmetry between the two channels,
the symmetry of the coupling constants is lost."
The existence of this constraint on g„g' also helps
to explain why such diverse methods as empirical
determination, potential models, and current al-
gebra [Eqs. (V.V)-(V.9)] lead to about the same re-
sult.

If the compositeness of A(1405) is granted, i.e.,
Z= 0, the relation (7.3) can in fact be used to de-
termine g„p' merely from the value of the mass
1405 MeV and the result is

(7.10)

which is almost the same as that obtained by Kim
and von Hippel: 0.64+ 0.08. Further, the value of

gz, ' can be determined from the width of A(1405}
in the usual way. Thus, it is interesting that both

which indicates Z= 0 for A(1405) in conformity
with the eonelusi. on already reached.

At this point we digress a little from our main
enquiry for a brief discussion of the A(1405) cou-
pling constants from the point of view of SU(3)
symmetry and its breaking. Exact SU(3) symmetry
with the singlet assignment of A(1405) leads to the
following value for the ratio ft =g„s'/gz„'.

f1=-', [SU(3)]. (7.6)

This is in violent disagreement with the empirical
ratio
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FIG. 8. Baryons coupled to S-wave channels. The
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cate that they are complex poles in the T matrix.
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g„~' and g~„' can be obtained from the resonance
position and the width and a detailed empirical
knowledge of the T matrix is not needed.

Finally we have to strike a note of caution. It
has been particularly stressed by Dalitz" that our
knowledge of the K matrix below the NK threshold
is based on extrapolation of the experimental in-
forrnation available above this threshold and it may
be desirable to obtain more direct knowledge of the
K matrix below this threshold. This can be
achieved in principle in the "virtual-target" meth-
od based on a study of the reaction Kd- ZmN. Such
an analysis has been performed by Cline, Lau-
mann, and Mapp" and their result is in contradic-
tion with the conclusion that A(1405) belongs to
class A. Specifically, they find the coupling NK
-A(1405)- Zw to be much smaller than what the
earlier analyses give. Using Eq. (7.3), this im-
plies Z= 1. This is an important result since it
calls for a drastic modification of most of our ear-
lier knowledge of the K matrix for the NK-Zw sys-
tem. But further study of the "virtual-target"
method is needed before one can reject the earlier
conclusion based on so many years of experimen-
tal and phenomenological work.

VIII. POSSIBLE APPLICATIONS TO OTHER HADRONS

The possible applications are restricted by the
demand that the hadrons be coupled to S-wave two-
body channels. The various hadrons" to which the

FIG. 9. Mesons coupled to S-wave channels. The
threshold energies are in MeU. The hadrons under test
are shown as circular dots off the energy axis to indi-
cate that they are complex poles in the T matrix.

test is applicable are indicated ip Figs. 8 and 9 in
their proper setting with respect to the channels
to which they couple. A brief discussion of these
follows.

N'(1535). It is known" that the two-channel ma-
trix K ' connecting the open channels Nm and Ng
has a pole. As already remarked in Sec. V, this
is as expected on general grounds. To test for el-
ementarity of ¹(1535),one should look at the A
matrices with one or more closed channels. This
involves fitting the data on associated production:
Nm- AK and Nm -ZK with K ' and K ~ .

N"(1700). One needs to consider K ' including
the Nq' channel, where g' is the pseudoscalar me-
son q'(958). This may be hard.

6(1650). Here the problem is simpler since one
can consider K ' connecting Nm and ZK, but this
ignores a dominant decay mode Nww (73 /p). Per-
haps one can consider a complex K for Nw and
ZK which takes account of Non in an indirect fash™
ion just like the complex phase shifts. "

A'(1670) and Z(1 750). We should look at K ' cori-
necting Zm', NK, Aq, and:-K, and K' connecting
Aw, Z w, NX, Aq, and:"K for A'(1670) and Z(1750),
respectively. This needs fitting with NK- "K.

The experimental and phenomenological analyses
of these multichannel systems are yet to be done.
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So, for the present, we may proceed in the reverse
direction. We may use our limited theoretical
knowledge of the long-range forces in the baryon-
meson channels to conjecture which of the above
hadrons may be composites in these channels and
thus belong to class A. One may thus guess which
of the K matrices will not have poles, and this in-
formation may help the phenomenological analyses
of these systems. A model based on vector-meson
exchange is one such possibility and this leads" to
N'(1535) and A'(1670) as composites, while A(1650)
is not a composite, the force being repulsive. On
this basis we may "predict" that K ' connecting
Nm, Ng, AK, and ZK as well as K connecting Zm,

NK, Aq, and =K will not have poles corresponding
to N'(1535) and A'(1670), whereas K' connecting
Nm and ZK will have a pole corresponding to 6
(1650).

In all the above cases, one can also try to test
for nonzero values of Z and Z' by using the sum
rules for coupling constants Eqs. (6.8) and (6.9) if
the coupling constants are known in some way. "
In this connection, it is interesting to note that
A'(1670) has a surprisingly large branching ratio
(35%) for decay into Aq in spite of the tiny phase
space available. (Aq threshold=1665 MeV. ) This
implies a large coupling constant for Ag. Retain-
ing the Aq channel alone in Eq. (6.8) because of its
extreme proximity as compared to others, one ean
see that large y«' will lead to Z'= 0 for A '(1670).
This is in agreement with the expectation in the
last paragraph.

Let us now consider systems with zero baryonie
number (Fig. 9). The K matrices required to test
these are harder to get, since the experimental
information has to be obtained in a very indirect
manner. For instance, one may have to study the
process nN- NKK and extrapolate to the one-pion-
exchange pole in order to extract empirical infor-
mation on ~m-KK. In the cases of higher-spin
mesons included in Fig. 9 there are further com-
plications due to the fact that apart from the two-
body S-wave channels which alone are indicated in
the figure, there are three-body channels as well
as two-body D-wave channels with low thresholds.
Perhaps these can be handled by using complex K
matrices as mentioned earlier.

Application of the coupling-constant sum rules
may prove to be easier. The large branching ratio
for q„(1060)-KK and the fact that w„(1016)-KK
is seen in spite of the small phase space may in-
dicate Z'= 0 for these.

IX. FINAL REMARKS

Leuk&son, 's theorem. W'e have already men-
tioned (Sec. VII) the slow decrease of the phase

shift through —,'m at F. = 8 MeV in the case of the
deuteron. This may be related to Levinson's theo-
rem which states

(9 1)

where n~ is the total number of bound states, and

n~ is the number of elementary particles in the
channel. We know that 6(E =0) = w and the decrease
of 6 through —,'w at about 8 MeV suggests 6(E =~)
=0. Using this in Eq. (9.1), one can argue for the
nonelementarity of the deuteron. A similar argu-
ment can be made in the case of A(1405) because
of the possible increase of detK ' through zero
(Sec. VII). Thus, the K-pole test is consistent with
Levinson's theorem. However, application of Lev-
inson's theorem requires knowledge of the phase
shift at infinite energies and in contrast the K-pole
test is based on low-energy data alone.

b. Poles in unPhysical sheets. The class-A
hadron is also associated with a distinctly differ-
ent behavior with respect to the poles of the T ma-
trices on the various unphysical Riemann sheets.
The T matrices on the different sheets can be ob-
tained by simply changing the signs of one or more
elements of the momentum matrix k in the equation

As a consequence, if there is a pole in K, it is
generally followed by poles of T in all the unphys-
ical sheets, " But in the ea,se of the class-A had-
ron, which is a composite in the highest threshold,
there is no pole in K although there are poles in
the lower-dimensional K matrices defined in Sec.
V. Correspondingly, T poles exist in the Riemann
sheets reached from the unphysical region by ana-
lytic continuation below this threshold, whereas
there is no T pole in the sheets obtained by contin-
uation above this threshold. In the case of A(1405)
formed as a composite of NK, the T matrix in the
sheet reached by continuation below the NK thresh-
old has a pole, whereas there is no pole in the
sheet obtained by continuation above this threshold.
This is clearly illustrated in the potential-model
calculation of Logan and Wyld. "

c. Tests for I ~1. Can we find other methods to
distinguish class-A from class-8 hadrons in the
case of l ~ I? We have to look for finer effects in
hadron spectroscopy. One such effect is the extra-
ordinary accuracy with which certain mass formu-
las are satisfied experimentally. For instance, the
SU(3) equal-spacing law for the decimet compris-
ing b.(1236), Z(1385), =(1530), and 0 (1672) is
satisfied to an accuracy of about 3%, whereas if
these are composites in the P-wave baryon-meson
channels, dynamical calculations predict about
20% deviations (unless fortuitous cancellations
are invoked). The hypothesis that these decimet
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baryons belong to class 8 and are only weakly cou-
pled to the baryon-meson system leads to a natural
understanding of this phenomenon. "

Aegge trajectones. Our classification of the
hadrons into classes A and 8 has the following im-
plications for the Regge trajectories. Since the
class-A hadrons are generated by the interactions
in the low-threshold channels, we expect them to
belong to trajectories of the potential-model type,
namely trajectories which turn and fall quickly
with respect to energy. Existence of indefinitely
rising almost straight-line trajectories has been
strongly indicated by recent developments in theo-
ry and experiment. A dynamical explanationse of
such straight-line trajectories would require a

global model, the heavy-quark model being one
simple example, and so we may associate the
class-8 hadrons with the rising trajectories. Thus
we have

class A -potential-model tx ajectory,

class 8-indefinitely rising trajectory.

It will be interesting to check whether A(1405) falls
on a trajectory of the potential-model type.
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In the model considered in Sec. ID, B, and P, could interact only through the intermediate state II. A

more realistic model can be obtained by introducing another interaction between B, and P, . We shall
study the model described by the Hamiltonian39

X= m'„a'JI+g m, B,'B, + d'kg ~,Pt{k)P,(k) (4~)'"-g g', , „„„,[Jf'B,P, (k) +H.c.]

d'kd'k'u(k)u(k').
+

(2 ),[ ( ) (,)I,q, g k,qB~tP~(k)BqPq(k'), (A1)

where h„- are constants and we consider an arbi-
trary number of B,P, channels.

This model also is exactly soluble and the T ma-
trix f'or BP scattering is given by

Tfg T fg + T fg p

(~) (2)

T~' = -u(k, )u(k, )[(1+kE) 'k]„,
T~',&= u(k, )u(k,.)r, r,.D-',

r, = [(1+kE)-'g']„

D ' = m'„—W - g E(1 + kE) 'g ',
1 ", kgu'(k()

sj)

In these equations, matrix notation has been used:
h is the square matrix with elements 5,» E is a
diagonal matrix with elements E„and g' is a col-
umn matrix with elements g', . The two parts T '
and T('~ describe the scattering amplitude in the
absence of II and the contribution of H, respective-
ly. 1", is the complete HB,I', vertex function and
D ' is the complete II propagator.

The K matrix is obtained by simply replacing E,
by E~ where

E )=E, -ik, u'(k, ) .
Let us also define I ~ and D~ by replacing al/ E&

occurring in F, and D by E&~. %'e also need

P ",k(u'(kg)
~P (A4)

and we correspondingly define I', and D .
For clarity we may again concentrate attention

on the two-channel situation with the resonance
position TV, occurring between m, + p, , and m, + p, ,
%'e have, for the phase shift 5„

m, +P~& W& ~+ p,

The resonance position TVo is determined by~o

D (W)=0, (A6)

whereas the K pole 8'~, if it exists, is given by

D"(W„)= 0. (A7)

The relations between E~ and E, are as follows:

E, =E» E, =F, for 8'& m, +p»

E,'=E„E,'=E,"-
i k, iu'(k, ) (AB)

for ~, +~,&W& ~, +~, .

In the limit of W~ occurring very close to m, +ILL,„
we may again regard E," and E3~ as constants so
that from Eqs. (A6) and (AV), we get, after some
algebra,
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E, —E,= -[r,'(w, )]'(2u, I E, I
)'", (A9)

which is the relation analogous to Eq. (3.13) in the
text. On the right-hand side of (A9) we have re-
tained only the lowest-order term in I E, I

'".
The physical coupling constants g, , the wave-

function renormalization constant Z for II, and the
HB,P, vertex renormalization constants X, can be
defined by the following set of relations:

(g, )2=lim (Wo —W)(k, cot6, ) ~

W~ Sp

where the background term b, &
is

b =-[(1+hF ) 'h] (A14)

So we have the desired background term in this
model. Further, the residues of the K matrix are
only "partially bare. " They are "bare" with re-
spect to the wave-function renormalization, but
"covered*' with respect to the vertex renormaliza-
tion.

The sum rules for coupling constants derived in
Sec. IV remain valid. Putting [I', (W,)]'= (g, )'Z '
in Eq. (A11), we get

g g2 =1-Z ~ (A15)

(go)2ZX -2

(g, )'= (g,')'ZX, ',

"=("-")
de= 1+(r )' '+(r')'

0

(A10)

Finally we may consider the complex coupIing
constants y, defined through the residues at the
pole of the T matrix:

y, y&
= lim (Wr —W)T„

W~Wp .

dD

x, ' = (g', ) 'I', (w, ) .

These relations reduce to Eq. (3.15) if X, = 1. The
vertex-renormalization effect is one of the new
features of the present model.

In the limit of IE,I-0, we have

z= {I+[r'(w)]'q, IE, I-'")-'
so that I', (W, ) in Eq. (A9) can be eliminated, lead-
ing to the result

g Og 0

=Xxz

z
& cSV

(x,')-'= (g', )-'r, (w, ),

(A16)

1' E,= —(2 —Z)E„ (A12)

which is the same as before.
In the same limit, the K matrix has the structure

where Z' and X,' are the complex renormalization
constants. Using constant F» and putting [r,(wr)]'
= y, '(Z') ' in the above expression for Z', we re-
cover the sum rule

z (w, —w)
(A13)

~

~
2 dkg . ~ dk2

1 +~» =1 —Z
Wg

(A17)
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